MONTE CARLO CALCULATIONS OF THE BASE OF NATURAL LOGARITHM

Fall semester 2025

https://www.phys.uconn.edu/~rozman/Courses/P2200 25F/

Last modified: November 8, 2025

Consider the following Monte Carlo algorithm for calculating the value of e, the base of natural logarithm:

Let X_i be independent random numbers from the uniform distribution on [0,1). Let n be the minimum number such that $\sum_{i=1}^{n} X_i > 1$. (Note that n is also a random variable; $n \ge 2$.) Then, the average value of n is equal to e.

The proof of the statement is as follows:

Let Pr(n) be the probability distribution for the random variable n:

$$\Pr(n) \equiv P(X_1 + \dots + X_{n-1} \le 1 \text{ and } X_1 + \dots + X_n > 1). \tag{1}$$

First, let's determine the probability $P(X_1 + ... + X_n \le 1)$. We prove by induction the following more general result: if $0 \le t \le 1$, then

$$P(X_1 + \ldots + X_n \le t) = \frac{t^n}{n!}.$$
 (2)

The base case, n = 1, is correct: for the uniform distribution on [0,1) $P(X \le t) = t$.

If Eq. (2) holds for n, then $P(X_1 + ... + X_{n+1} \le t)$ is as follows:

$$P(S_{n+1} \le t) = \int_{0}^{t} P(S_n + x \le t) \rho(x) dx = \int_{0}^{t} P(S_n \le t - x) \rho(x) dx = \int_{0}^{t} \frac{(t - x)^n}{n!} dx = \frac{t^{n+1}}{(n+1)!}, (3)$$

where S_n denotes the sum $X_1 + \cdots + X_n$, and for uniform distribution $\rho(x) = 1$.

Hence,

$$P(S_n \le 1) = \frac{1}{n!}.\tag{4}$$

Next,

$$P(S_n > 1 \text{ and } S_{n-1} < 1) = P(S_{n-1} < 1) - P(S_n < 1).$$
 (5)

Therefore,

$$\Pr(n) = \frac{1}{(n-1)!} - \frac{1}{n!} = \frac{n-1}{n!}.$$
(6)

Finally, the average value of n,

$$\bar{n} \equiv \sum_{n=2}^{\infty} n \Pr(n) = \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = \sum_{n=0}^{\infty} \frac{1}{n!} = e.$$
 (7)

References

[1] K. G. Russell. "Estimating the Value of e by Simulation". In: *The American Statistician* 45.1 (1991), pp. 66–68.