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1 Introduction
How can someone send a secret message in a way that only the recipient could read the content even if the
message happens to have been intercepted by a third party? There are several ways to do so.

Early cipher algorithms relied on a unique key which had to be used both by the sender to encrypt the
message and by the recipient to decrypt it. A very simple example is Caesar’s cipher which consists in
shifting letters according to the key.
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Figure 1: Caesar ciphering with key=6

A major weakeness of such a system is that the key has to be disclosed to all the participants, increasing the
risk for the key to be compromised by a third party.

Asymmetric algorithms allow to reduce this weakeness by using two keys: a public key which is used to
encrypt messages and which can be widely shared without compromising the exchanges, and a private key
which is kept only by the recipient to decrypt the data. The idea is that anyone can encrypt messages using
the public key but only the recipient can decrypt them with his private key. Particularly, the knowledge of
the public key should not be enough to decrypt messages.

Message in clear Encrypted message Message in clear

Public key Private key

Asymmetric cryptographic systems were theoretically developed in the mid 70s and the first concrete
algorithm of this kind was the RSA algorithm which appeared in 1978 and is named from the initials of its
authors (Ron Rivest, Adi Shamir, and Leonard Adleman). Actually, the British secret service developed a
similar algorithm as early as 1973 but it was kept confidential until the 90s.

In this chapter, we are going to explain the RSA algorithm which relies on modular arithmetic. The
original proof of work used Fermat’s little theorem but the RSA algorithm is actually easier to explain using
Euler’s theorem (which is a generalization of Fermat’s little theorem, as you already know).



2 The RSA algorithm

The robustness of this cipher relies on the fact that we don’t know yet an efficient algorithm in order to
find the prime decomposition of a given positive integer. This last difficult problem will not be addressed
in this chapter.

2 Generation of the keys
The recipient, that we will call Alice, picks two distinct prime numbers 𝑝 and 𝑞. She sets 𝑛 ≔ 𝑝𝑞 and then
she chooses 𝑒 ∈ ℕ such that gcd(𝑒, 𝜑(𝑛)) = 1. Then the public key is (𝑛, 𝑒). Alice can publicly provide this
key to people willing to send her a crypted message.

Since gcd(𝑒, 𝜑(𝑛)) = 1, 𝑒 admits a multiplicative inverse modulo 𝜑(𝑛), i.e. there exists 𝑑 ∈ ℕ such that
𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)). Indeed, there exist 𝑢, 𝑣 ∈ ℤ such that 𝑒𝑢 + 𝜑(𝑛)𝑣 = 1 (and we can easily find such a
Bézout’s relation using Euclid’s algorithm). Then we take 𝑑 = 𝑢 + 𝑘𝜑(𝑛) for a suitable 𝑘 ∈ ℤ for 𝑑 to be
positive. Then the private key is (𝑛, 𝑑). Alice should not share this key with anyone else.

Note that in order to find a suitable 𝑑, it is necessary to know 𝜑(𝑛) and 𝑒. Alice knows the prime numbers
𝑝 and 𝑞 that she used to define 𝑛 so she can easily compute 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1). But the shared information
is only the public key (𝑛, 𝑒). Although it is theoretically possible to find 𝜑(𝑛), there is no known efficient
algorithm to compute 𝜑(𝑛) directly from 𝑛. Nonetheless, if a third party were able to quickly compute the
prime factorization of a positive integer, then it could computes 𝜑(𝑛) allowing him to recover (𝑛, 𝑑) from
(𝑛, 𝑒).

The prime numbers 𝑝 and 𝑞 should be chosen wisely so that there is no known efficient algorithm to
recover 𝑝 and 𝑞 from 𝑛 using our current computing power. For instance, not only 𝑝 and 𝑞 should be large
enough but 𝛿 = |𝑝 − 𝑞| should be large too. Indeed, assume that 𝑝 < 𝑞 then 𝑞 = 𝑝 + 𝛿. Thus √𝑛 = 𝑝√1 + 𝛿

𝑝 ∼
𝑝 + 𝛿

2 . Hence, according to Proposition 3 of Chapter 3, it is enough to check whether numbers less than √𝑛
divides 𝑛, and from the above estimation, 𝑝 could be obtained after less than 𝛿

2 attempts (starting from √𝑛).

3 How to encrypt a message
The sender, that we are going to call Bob, wants to send a secret message to Alice. But he wants to make
sure that only her can read the content. First, Bob obtains her public key (𝑛, 𝑒).

A message is going to be an element of 𝑚 ∈ {0, 1, … , 𝑛 − 1} (in practice, Alice and Bob need to agree on
how to reduce a human readable message into a sequence of natural numbers less than 𝑛, that’s the goal of
the various protocols used in computer sciences).

Then, there exists a unique 𝑐 ∈ {0, 1, … , 𝑛 − 1} such that 𝑐 ≡ 𝑚𝑒 (mod 𝑛). It is going to be the crypted
message. Bob sends 𝑐 to Alice, and Alice will use her private key in order to recover 𝑚 from 𝑐.

4 How to decrypt a message
Alice just received the secret message 𝑐 from Bob. He told her that it was encrypted using her public
key (𝑛, 𝑒). Since she knows her private key (𝑛, 𝑑), Alice can find the unique 𝑘 ∈ {0, 1, … , 𝑛 − 1} such that
𝑘 ≡ 𝑐𝑑 (mod 𝑛).

We claim that 𝑚 = 𝑘. Indeed, since 𝑒𝑑 = 1 + 𝑙𝜑(𝑛) for some 𝑙 ∈ ℕ, we obtain using Euler’s theorem that

𝑘 ≡ 𝑐𝑑 (mod 𝑛) ≡ 𝑚𝑒𝑑 (mod 𝑛) = 𝑚1+𝑙𝜑(𝑛) (mod 𝑛) ≡ 𝑚 × (𝑚𝜑(𝑛))
𝑙 (mod 𝑛) ≡ 𝑚 × 1𝑙 (mod 𝑛) ≡ 𝑚 (mod 𝑛)

We conclude since 𝑘 has a unique representative in {0, 1, … , 𝑛 − 1} and 𝑚, 𝑘 ∈ {0, 1, … , 𝑛 − 1}.
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Note that the above proof doesn’t workwhen gcd(𝑚, 𝑛) ≠ 1, i.e. when 𝑝|𝑚 or 𝑞|𝑚 (because we can’t apply
Euler’s theorem). Nonetheless, it is still true that 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑛) in this case (you will prove it during next
week tutorials).

5 An example
Alice wants to create a pair of keys for the RSA algorithm so that people could send her secret messages.
She picked the prime numbers 𝑝 = 13 and 𝑞 = 17 then 𝑛 = 221 and 𝜑(𝑛) = 12 × 16 = 192. Then she picks
𝑒 = 11, which is a suitable choice since gcd(192, 11) = 1.

Using Euclid’s algorithm, Alice obtains the Bézout relation 192 × (−2) + 11 × (35) = 1. Therefore, she
sets 𝑑 = 35 so that 𝑒𝑑 ≡ 1 (mod 192). Finally, she shares the public key (𝑛, 𝑒) = (221, 11) on her website and
preciously keeps the private key (𝑛, 𝑑) = (221, 35) for herself only.

Later, Bob wants to send the private message 𝑚 = 149 ∈ {0, 1, 2, … , 220} to Alice. He finds on her
website her public key and computes 𝑚𝑒 = 14911 ≡ 89 (mod 221). So the encrypted message is 𝑐 = 89 ∈
{0, 1, 2, … , 220}. He sends it to Alice by e-mail.

After receiving the e-mail, Alice computes 𝑐𝑑 = 8935 ≡ 149 (mod 221) and she recovers the original
message 𝑚 = 149.

6 In practice
It is not difficult to find a Bézout relation using Euclid’s algorithm. But two other things seem not to be very
practical in the above example:

1. How to generate the prime numbers 𝑝 and 𝑞?
2. The computations seem to involve very large numbers which are not suitable to computers (14911 is

already a very large number).

The first problem is a little bit tricky. In practice we generate a random odd number 𝑘 of the wanted
order of magnitude and we check whether it is prime or not. If not, we take the next odd number and we
repeat the process. According to the prime number theorem1 we could expect a prime number before ln(𝑘)

2
attempts.

Nonetheless, we don’t know efficient algorithms to check whether a number is prime or not. Instead,
we usually use probabilistic primality tests (so they can fail, but with a very low probability).
Some algorithms rely on Fermat’s little theorem: if 𝑝 is prime then ∀𝑎 ∈ ℤ, 𝑎𝑝 ≡ 𝑎 (mod 𝑝).
Therefore, since 24221 ≡ 176 (mod 221), we know that 221 is not prime.
Nonetheless, it is possible for such a congruence to hold even for a non-prime number 𝑎, for instance we
have 2341 ≡ 2 (mod 341) although 341 = 11 × 31.

The second problem has easy workarounds. First, note that we don’t need to actually compute 𝑚𝑒.
Indeed, we only need a representative modulo 𝑛. More precisely, given 𝑚, 𝑒, 𝑛 ∈ ℕ, we want to find (the
unique) 𝑐 ∈ {0, 1, … , 𝑛 − 1} such that 𝑚𝑒 ≡ 𝑐 (mod 𝑛). One naive way to avoid very large numbers consists
in iteratively multiplying by 𝑐 and to reduce to a representative in {0, … , 𝑛} before the next step.
For instance, in order to compute 14911 (mod 221), we would do:

1. 1491 ≡ 149 (mod 221)
2. 1492 = 149 × 149 = 22201 ≡ 101 (mod 221)
3. 1493 = 101 × 149 = 15049 ≡ 21 (mod 221)
4. 1494 = 21 × 149 = 3129 ≡ 35 (mod 221)
5. 1495 = 35 × 149 = 5215 ≡ 132 (mod 221)
6. 1496 = 132 × 149 = 19668 ≡ 220 (mod 221)

7. 1497 = 220 × 149 = 32780 ≡ 72 (mod 221)
8. 1498 = 72 × 149 = 10728 ≡ 120 (mod 221)
9. 1499 = 120 × 149 = 17880 ≡ 200 (mod 221)

10. 14910 = 200 × 149 = 29800 ≡ 186 (mod 221)
11. 14911 = 186 × 149 = 27714 ≡ 89 (mod 221)

Note that no involved number exceeded 32780 whereas 14911 = 803616698647447868139149 (actually 149 ×
220 = 32780 is the largest number we could have obtained).

1For 𝑘 large enough, there are about 𝑘
ln(𝑘) prime numbers less than or equal to 𝑘.


