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1 Introduction

An isolated system consisting of two point masses exerting forces on one another — which
is usually referred to as a two-body problem — can always be solved by converting it into
an equivalent one-body problem. In particular, we can exactly solve a dynamical system
containing two gravitationally interacting point masses. What about a system containing
three gravitationally interacting point masses? Despite hundreds of years of research, no
exact solution of this famous problem — which is generally known as the three-body problem
— has ever been found. It is, however, possible to make some progress by restricting the
problem’s scope.

2 The circular restricted three-body problem

Let’s consider a mechanical system consisting of three point masses, M;, M,, and m. Suppose,
that mass m is much smaller than the other two so that it has a negligible effect on their
motion. Suppose, further, that the first two masses, M; and M,, execute circular orbits about
their common center of mass. This simplified problem is known as the circular restricted
three-body problem.

Let’s assume, to simplify the presentation of the final calculations, that mass m moves in the
plane of the orbital motion of masses M; and M,.

Let w be the orbital angular velocity of masses M; and M, on the circular orbit. We can

the centripetal force acting upon the mass y = 1\% 1+MZ\/fz (the equivalent

find w by equating Fp,
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M,

Figure 1: The circular restricted three-body problem.

one-body problem), and F,, the force of gravitational attraction between masses M; and Mj:

_ MM, 0?2
" M;+M, R’

, (1)

where G is the gravitational constant, v is the constant linear velocity of mass p. From Eq. (1)

Ml +M2

2
=G
v R

(2)

The period of orbital motion on a circular orbit, T, is

2R
T=—, 3
: 3)

thus,

2
2t v > v

TR YR
Substituting Eq. (2) into Eq. (4), we arrive at the following expression.

w

M1+M2

2 _
w =G R3

(5)

Let us define a Cartesian coordinate system (&, #, C) in an inertial reference frame whose
origin coincides with the center of mass, C, of the two orbiting masses, M; and M,. Let the
orbital plane of these masses coincide with the -7 plane, and let them both lie on the £-axis
at time t = 0 — see Figure 1. Suppose that R is the constant distance between the two orbiting
masses, r; the constant distance between mass M; and the origin, and r, the constant distance
between mass M, and the origin.
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Let the third mass have position vector 7= (&, 7, 0). The Cartesian components of the equation
of motion of this mass are thus

R T R ) ©
P1 P2
i = —GM, (7 —3771) _GM, (77 _3’72)’ )
P1 P2
where (£1,771) and (&, 1,) are the coordinates of masses M; and M, respectively, and
pr = (E-&)*+(p-m)’, (8)
3 = (E-&)+(n-m) (9)

p1 and p; are the distances between mass m and masses M; and M, respectively.

3 Co-rotating reference frame

Let us transform to a non-inertial frame of reference rotating with angular velocity w about
an axis normal to the orbital plane of masses M; and M,, and passing through their center
of mass. The masses M; and M, are stationary in this new reference frame. Let us define
a Cartesian coordinate system (X, Y) in the rotating frame of reference which is such that
masses M; and M, always lie on the X-axis. Let the position vector of mass m be 7= (x, y) —
see Figure 2.

The masses M; and M, have the fixed position vectors
71 =(-aR,0,0) »=((1-a)R,0,0) (10)
in our new coordinate system. Indeed, by the definition of the center of mass,
riMy = ryM,. (11)

on the other hand,
rn+r= R. (12)

Solving Egs. (11) and (12), we obtain,

M, M, M,
-2 R =—— R=[1-——|R, 13
T M M, 2T MM, ( M, +M2) (13)
i.e. in Eq. (10)
2
__M 14
YT M M, (14)
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Figure 2: The co-rotating frame.

The equation of motion of mass m in the rotating reference frame are obtained by including

into Egs. (6), (7) two additional forces — Coriolis force l?wr and centrifugal force F)Cf:

ﬁcf:—mﬁx(ﬁxf):me?, (15)
Feor = =2m@ x 7= 2mw (=X + 9X) (16)
P=_GM, (r_;l) ~GM, (r_;Z) + WP 2@ X7, (17)
P1 P2
where & = (0, 0, w), and
p? = (x+aR)*+y? (18
p; = (x—(1-a)R?+p°. (19
The components of Eq. (17) reduce to
M R My (x—(1—-a)R
X = G 1(x3+0( ) _GM,(x § a) )+a)2x+2a)y', (20)
P1 P2
GM GM
j o= o TRV L 2y 2w (21)

N 03
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4 Jacobi integral

Egs. (20), (21) can be rewritten as following.

U
i-209 = -5 (22)
1200 = ~2Y (23)
V+2wx = 7y
where )
GMI GM2 w 2 2
Uxy)=——————(x"+ 24
(op)= -t =T (4 y?) (24)
is the sum of the gravitational and centrifugal potentials.
Now, it follows from Eqs. (22)—(23) that
iX-2wxy = —x%—g, (25)
PU+2wxy = —yaa—;]. (26)
Summing the above equations, we obtain
dl,., .
” [E (52 +9%)+ U(x,y)] _0, (27)
In other words,
C=-2U-v? (28)

is a constant of the motion, where v = %2 + 2. C is called the Jacobi integral. The trajectory

mass m is restricted to regions in which

-2U >C, (29)

2

since v~ is a positive definite quantity.

5 Dimensionless form of the equations

No analytic solutions of Egs. (20)- (21) are known. Our goal is to solve them numerically. As
the first step, we convert them to a dimensionless form.

Circular restricted three body problem has two natural scales: the distance, R, between
masses M; and M,, and the characteristic time of their orbital motion 1/w. Let us introduce
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dimensionless variables by measuring the coordinates x and y in units of R, thus introducing

new unknowns u and v as following,

u

v

fad 4
R’ R’

Let us measure time f in units of 1/w, introducing dimensionless variable ,

T = wt.

“Old” derivatives with respect to time are going to have the following forms:

_dx d(uR) du
Y2 T Ay - R

2
x'zd—(@):i(wkd—”) R (d—“):w2Rd—”.

di\dt |~ ai\“Nde | T /e \de 2
Similarly,
dv
—wRZZ
y=w dt
d%v
2
— w?RZ
y=w dr?

Substituting Egs. (32)- (35) into Egs. (20), (21), we get:

2 M M -1
szd—Z = & 1R(3u+a)_G 2R(u3 +a)+w2Ru+2a)2Rd—v,
dt P1 P2 dt
2RIV - _GMiRv GMaRv | op, 524t
dv? Pl P dt

Here p; and p, expressed via dimensionless parameters are as following;:
1
p1 = R((u +a)’+v%)’ =Rd,,
1
P2 = R((u —1+a)? +v2)2 = Rd,,

where

S
1l
—_
<
+
2
[\S]

+
<
[\
~—
Nl=
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[\S]

M
—_—
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2

N
+
<
N
~—
=
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Dividing each term in Egs. (36)- (37) by w?R, we arrive at the following equations:

d*u GM; (u+a) GM, (u—1+a) v
—— = - = p Ry 42
dr? w?R3 g3 w?R3 d3 HET" (42)
d*v GM; v GM, v du
S = - — - — V-2 43
dr? w?R3 43 w?R3 43 VT Yr (43)
Noticing that
GM, M,
= =1- 44
W2R3 M, + M, “ (44)
and oM M
2 2
= = 4
W2R3 M+ M, ° (45)
we arrive at the following equations.
d*u (u+a) (u-1+a) dv
— = —(1- - 2—, 46
R B R (46)
d*v v v du
o= (l-a)—m-—a—+v-2—. 47
dr? @)z rv2q, (47)
Equations (46)- (47) can be rewritten in a compact form
U
i = ———+27, 48
1 5 +2v (48)
U
jo= —Z=— -2, 49
v 5, 24 (49)
where ) |
__1t-a_a 12 2
U(u,v) = 7 a4 2(u +v ) (50)

is the dimensionless version of Eq. (24).

Equations (46)- (47) are dimensionless and contain a single parameter, @. Some of the results
of their numerical solution are presented in Figs. 3 and 4. A fragment of the code used for
calculations is presented in the Appendix A.
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Figure 3: Arenstorf periodic orbits for a = 0.012277471 (Earth—-Moon system) and initial conditions
x(0) = 0.994, y(0) = 0, x(0) = 0; left subfigure: y(0) = -2.0317326295573368357302057924, right
subfigure: y(0) = -2.00158510637908252240537862224,
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Figure 4: Chaotic orbit: @ = 0.5, x(0) = 1, (0) = 0, %(0) = 0, ¥(0) = 0.
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Appendix A

A fragment of a Julia code to solve the restricted three-body problem using OrdinaryDiffEq

package.

function arensdorf!(dudt, u, p, t)

end

X, y, dxdt, dydt = u
mu = p

mul = 1.0 - mu

d(r) = ((x + r)"2 + y~2)~(3/2)
d1 = d(mu)

d2 = d(-mut)

dudt[1] = u[3]

dudt[2] ul4]

dudt[3] = x + 2xdydt - mul*(x + mu)/d1 - mu*x(x - mul)/d2
y - 2xdxdt - mulsy/d1 - muxy/d2

dudt[4]
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