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1 Introduction

An isolated system consisting of two point masses exerting forces on one another — which
is usually referred to as a two-body problem — can always be solved by converting it into
an equivalent one-body problem. In particular, we can exactly solve a dynamical system
containing two gravitationally interacting point masses. What about a system containing
three gravitationally interacting point masses? Despite hundreds of years of research, no
exact solution of this famous problem — which is generally known as the three-body problem
— has ever been found. It is, however, possible to make some progress by restricting the
problem’s scope.

2 The circular restricted three-body problem

Let’s consider a mechanical system consisting of three point masses, M1, M2, and m. Suppose,
that mass m is much smaller than the other two so that it has a negligible effect on their
motion. Suppose, further, that the first two masses, M1 and M2, execute circular orbits about
their common center of mass. This simplified problem is known as the circular restricted
three-body problem.

Let’s assume, to simplify the presentation of the final calculations, that mass m moves in the
plane of the orbital motion of masses M1 and M2.

Let ω be the orbital angular velocity of masses M1 and M2 on the circular orbit. We can
find ω by equating Fcp, the centripetal force acting upon the mass µ = M1M2

M1+M2
(the equivalent
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Figure 1: The circular restricted three-body problem.

one-body problem), and Fg , the force of gravitational attraction between masses M1 and M2:

Fcp =
M1M2

M1 +M2

v2

R
, Fg = G

M1M2

R2 , (1)

where G is the gravitational constant, v is the constant linear velocity of mass µ. From Eq. (1)

v2 = G
M1 +M2

R
. (2)

The period of orbital motion on a circular orbit, T , is

T =
2πR
v

, (3)

thus,

ω ≡ 2π
T

=
v
R
, ω2 =

v2

R2 . (4)

Substituting Eq. (2) into Eq. (4), we arrive at the following expression.

ω2 = G
M1 +M2

R3 . (5)

Let us define a Cartesian coordinate system (ξ, η, ζ) in an inertial reference frame whose
origin coincides with the center of mass, C, of the two orbiting masses, M1 and M2. Let the
orbital plane of these masses coincide with the ξ-η plane, and let them both lie on the ξ-axis
at time t = 0 — see Figure 1. Suppose that R is the constant distance between the two orbiting
masses, r1 the constant distance between mass M1 and the origin, and r2 the constant distance
between mass M2 and the origin.
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Let the third mass have position vector r⃗ = (ξ, η, 0). The Cartesian components of the equation
of motion of this mass are thus

ξ̈ = −GM1
(ξ − ξ1)

ρ3
1

−GM2
(ξ − ξ2)

ρ3
2

, (6)

η̈ = −GM1
(η − η1)

ρ3
1

−GM2
(η − η2)

ρ3
2

, (7)

where (ξ1,η1) and (ξ2,η2) are the coordinates of masses M1 and M2 respectively, and

ρ2
1 = (ξ − ξ1)2 + (η − η1)2, (8)

ρ2
2 = (ξ − ξ2)2 + (η − η2)2. (9)

ρ1 and ρ2 are the distances between mass m and masses M1 and M2 respectively.

3 Co-rotating reference frame

Let us transform to a non-inertial frame of reference rotating with angular velocity ω about
an axis normal to the orbital plane of masses M1 and M2, and passing through their center
of mass. The masses M1 and M2 are stationary in this new reference frame. Let us define
a Cartesian coordinate system (X, Y ) in the rotating frame of reference which is such that
masses M1 and M2 always lie on the X-axis. Let the position vector of mass m be r⃗ = (x, y) —
see Figure 2.

The masses M1 and M2 have the fixed position vectors

r⃗1 = (−αR, 0, 0) r⃗2 = ((1−α)R, 0, 0) (10)

in our new coordinate system. Indeed, by the definition of the center of mass,

r1M1 = r2M2. (11)

on the other hand,
r1 + r2 = R. (12)

Solving Eqs. (11) and (12), we obtain,

r1 =
M2

M1 +M2
R, r2 =

M1

M1 +M2
R =

(
1− M2

M1 +M2

)
R, (13)

i.e. in Eq. (10)

α =
M2

M1 +M2
. (14)
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Figure 2: The co-rotating frame.

The equation of motion of mass m in the rotating reference frame are obtained by including
into Eqs. (6), (7) two additional forces — Coriolis force F⃗cor and centrifugal force F⃗cf :

F⃗cf = −mω⃗ × (ω⃗ × r⃗) = mω2r⃗ , (15)

F⃗cor = −2mω⃗ × ˙⃗r = 2mω (−x̂ẏ + ŷẋ) (16)

¨⃗r = −GM1
(r⃗ − r⃗1)

ρ3
1

−GM2
(r⃗ − r⃗2)

ρ3
2

+ω2r⃗ − 2ω⃗ × ˙⃗r, (17)

where ω⃗ = (0, 0, ω), and

ρ2
1 = (x+αR)2 + y2, (18)

ρ2
2 = (x − (1−α)R)2 + y2. (19)

The components of Eq. (17) reduce to

ẍ = −GM1 (x+αR)

ρ3
1

− GM2 (x − (1−α)R)

ρ3
2

+ω2x+ 2ωẏ, (20)

ÿ = −
GM1 y

ρ3
1

−
GM2 y

ρ3
2

+ω2 y − 2ωẋ. (21)
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4 Jacobi integral

Eqs. (20), (21) can be rewritten as following.

ẍ − 2ωẏ = −∂U
∂x

, (22)

ÿ + 2ωẋ = −∂U
∂y

. (23)

where

U (x,y) = −GM1

ρ1
− GM2

ρ2
− ω2

2
(x2 + y2) (24)

is the sum of the gravitational and centrifugal potentials.

Now, it follows from Eqs. (22)–(23) that

ẍ ẋ − 2ωẋ ẏ = −ẋ ∂U
∂x

, (25)

ÿ ẏ + 2ωẋ ẏ = −ẏ ∂U
∂y

. (26)

Summing the above equations, we obtain

d
dt

[1
2

(
ẋ2 + ẏ2

)
+U (x,y)

]
= 0. (27)

In other words,
C = −2U − v2 (28)

is a constant of the motion, where v2 = ẋ2 + ẏ2. C is called the Jacobi integral. The trajectory
mass m is restricted to regions in which

−2U ≥ C, (29)

since v2 is a positive definite quantity.

5 Dimensionless form of the equations

No analytic solutions of Eqs. (20)– (21) are known. Our goal is to solve them numerically. As
the first step, we convert them to a dimensionless form.

Circular restricted three body problem has two natural scales: the distance, R, between
masses M1 and M2, and the characteristic time of their orbital motion 1/ω. Let us introduce
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dimensionless variables by measuring the coordinates x and y in units of R, thus introducing
new unknowns u and v as following,

u ≡ x
R
, v ≡

y

R
, (30)

Let us measure time t in units of 1/ω, introducing dimensionless variable τ ,

τ ≡ωt. (31)

“Old” derivatives with respect to time are going to have the following forms:

ẋ ≡ dx
dt

=
d(uR)
d(τ/ω)

= ωR
du
dτ

, (32)

ẍ ≡ d
dt

(
dx
dt

)
=

d
dt

(
ωR

du
dτ

)
= ωR

d
dτ/ω

(
du
dτ

)
= ω2R

d2u

dτ2 . (33)

Similarly,

ẏ = ωR
dv
dτ

(34)

ÿ = ω2R
d2v

dτ2 (35)

Substituting Eqs. (32)– (35) into Eqs. (20), (21), we get:

ω2R
d2u

dτ2 = −GM1R (u +α)

ρ3
1

− GM2R (u − 1 +α)

ρ3
2

+ω2Ru + 2ω2R
dv
dτ

, (36)

ω2R
d2v

dτ2 = −GM1Rv

ρ3
1

− GM2Rv

ρ3
2

+ω2Rv − 2ω2R
du
dτ

. (37)

Here ρ1 and ρ2 expressed via dimensionless parameters are as following:

ρ1 = R
(
(u +α)2 + v2

) 1
2 = Rd1, (38)

ρ2 = R
(
(u − 1 +α)2 + v2

) 1
2 = Rd2, (39)

where

d1 ≡
(
(u +α)2 + v2

) 1
2 , (40)

d2 ≡
(
(u − 1 +α)2 + v2

) 1
2 . (41)
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Dividing each term in Eqs. (36)– (37) by ω2R, we arrive at the following equations:

d2u

dτ2 = −GM1

ω2R3
(u +α)

d3
1

− GM2

ω2R3
(u − 1 +α)

d3
2

+u + 2
dv
dτ

, (42)

d2v

dτ2 = −GM1

ω2R3
v

d3
1

− GM2

ω2R3
v

d3
2

+ v − 2
du
dτ

. (43)

Noticing that
GM1

ω2R3 =
M1

M1 +M2
≡ 1−α (44)

and
GM2

ω2R3 =
M2

M1 +M2
≡ α (45)

we arrive at the following equations.

d2u

dτ2 = −(1−α)
(u +α)

d3
1

−α (u − 1 +α)

d3
2

+u + 2
dv
dτ

, (46)

d2v

dτ2 = −(1−α)
v

d3
1

−α v

d3
2

+ v − 2
du
dτ

. (47)

Equations (46)- (47) can be rewritten in a compact form

ü = −∂U
∂v

+ 2 v̇, (48)

v̈ = −∂U
∂v
− 2 u̇, (49)

where
U (u,v) = −1−α

d1
− α
d2
− 1

2

(
u2 + v2

)
(50)

is the dimensionless version of Eq. (24).

Equations (46)- (47) are dimensionless and contain a single parameter, α. Some of the results
of their numerical solution are presented in Figs. 3 and 4. A fragment of the code used for
calculations is presented in the Appendix A.
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Figure 3: Arenstorf periodic orbits for α = 0.012277471 (Earth–Moon system) and initial conditions
x(0) = 0.994, y(0) = 0, ẋ(0) = 0; left subfigure: ẏ(0) = −2.0317326295573368357302057924, right
subfigure: ẏ(0) = −2.00158510637908252240537862224,
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Figure 4: Chaotic orbit: α = 0.5, x(0) = 1, y(0) = 0, ẋ(0) = 0, ẏ(0) = 0.
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Appendix A

A fragment of a Julia code to solve the restricted three-body problem using OrdinaryDiffEq
package.

function arensdorf!(dudt, u, p, t)

x, y, dxdt, dydt = u

mu = p

mu1 = 1.0 - mu

d(r) = ((x + r)ˆ2 + yˆ2)ˆ(3/2)

d1 = d(mu)

d2 = d(-mu1)

dudt[1] = u[3]

dudt[2] = u[4]

dudt[3] = x + 2*dydt - mu1*(x + mu)/d1 - mu*(x - mu1)/d2

dudt[4] = y - 2*dxdt - mu1*y/d1 - mu*y/d2

end
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