
what every physicist should know about

floating-point arithmetic

Fall 2023

https://www.phys.uconn.edu/˜rozman/Courses/P2200_23F/

Last modified: September 20, 2023

1 Why don’t my numbers add up?

So you’ve written some simple test code, say for example:� �
0.1 + 0.2 == 0.3� �

and got a really unexpected result:� �
false� �

Or, you decided to raise an integer, say 10, into an integer power:� �
10ˆ19� �

and got something very wrong:� �
-8446744073709551616� �

This document is here to:

• Explain why you get that unexpected result

• Tell you how to deal with this problem

2 Number formats

2.1 Binary Fractions

As a programmer, you should be familiar with the concept of binary integers, i.e. the
representation of integer numbers as a series of bits:

12310 = 1 · 102 + 2 · 101 + 3 · 100,

Page 1 of 6

https://www.phys.uconn.edu/~rozman/Courses/P2200_23F/


PHYS 2200 floating-point arithmetic Fall 2023

4568 = 4 · 82 + 5 · 81 + 6 · 80 = 30210

10010012 = 1 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= 6410 + 810 + 1 = 7310

This is how computers store integer numbers internally. And for fractional numbers, they
do the same thing:

0.12310 = 1 · 10−1 + 2 · 10−2 + 3 · 10−3

0.100101 = 1 · 2−1 + 0 · 2−2 + 0 · 2−3 + 1 · 2−4 + 0 · 2−5 + 1 · 2−6

=
1
2

+
1

16
+

1
64

=
37
64

= .57812510

While they work the same in principle, binary fractions are different from decimal fractions
in what numbers they can accurately represent with a given number of digits, and thus
also in what numbers result in rounding errors. Specifically, binary can only represent
those numbers as a finite fraction where the denominator is a power of 2. Unfortunately,
this does not include most of the numbers that can be represented as finite fraction in base
10, like 0.1.

Fraction Base Positional Notation Rounded to 4 digits

1/10 10 0.1 0.1

1/3 10 0.3333. . . 0.3333

1/2 2 0.1 0.1

1/10 2 0.00011. . . 0.0001

And this is how you already get a rounding error when you just write down a number like
0.1 and run it through your interpreter or compiler. It’s not as big as 3/80 and may be
invisible because computers cut off after 23 or 52 binary digits rather than 4. But the error
is there and will cause problems eventually if you just ignore it.

2.2 Why use Binary?

At the lowest level, computers are based on billions of electrical elements that have only
two states, (usually low and high voltage). By interpreting these as 0 and 1, it’s very easy
to build circuits for storing binary numbers and doing calculations with them.

Page 2 of 6



PHYS 2200 floating-point arithmetic Fall 2023

While it’s possible to simulate the behavior of decimal numbers with binary circuits as
well, it’s less efficient. If computers used decimal numbers internally, they’d have less
memory and be slower at the same level of technology.

Since the difference in behavior between binary and decimal numbers is not important for
most applications, the logical choice is to build computers based on binary numbers and
live with the fact that some extra care and effort are necessary for applications that require
decimal-like behavior.

3 Floating Point Numbers

3.1 Why floating-point numbers are needed

Since computer memory is limited, you cannot store numbers with infinite precision, no
matter whether you use binary fractions or decimal ones: at some point you have to cut
off. But how much accuracy is needed? And where is it needed? How many integer digits
and how many fraction digits?

• To an engineer building a highway, it does not matter whether it’s 10 meters or
10.0001 meters wide - his measurements are probably not that accurate in the first
place.

• To someone designing a microchip, 0.0001 meters (a tenth of a millimeter) is a huge
difference - But he’ll never have to deal with a distance larger than 0.1 meters.

• A physicist needs to use the speed of light (about 300000000 in SI units) and Newton’s
gravitational constant (about 0.0000000000667 in SI units) together in the same
calculation.

To satisfy the engineer and the chip designer, a number format has to provide accuracy
for numbers at very different magnitudes. However, only relative accuracy is needed. To
satisfy the physicist, it must be possible to do calculations that involve numbers with
different magnitudes.

Basically, having a fixed number of integer and fractional digits is not useful - and the
solution is a format with a floating point.

3.2 How floating-point numbers work

The idea is to compose a number of two main parts:

Page 3 of 6



PHYS 2200 floating-point arithmetic Fall 2023

• A significand that contains the number’s digits. Negative significands represent
negative numbers.

• An exponent that says where the decimal (or binary) point is placed relative to the
beginning of the significand. Negative exponents represent numbers that are very
small (i.e. close to zero).

Such a format satisfies all the requirements:

• It can represent numbers at wildly different magnitudes (limited by the length of
the exponent)

• It provides the same relative accuracy at all magnitudes (limited by the length of the
significand)

• allows calculations across magnitudes: multiplying a very large and a very small
number preserves the accuracy of both in the result.

Decimal floating-point numbers usually take the form of scientific notation with an explicit
point always between the 1st and 2nd digits. The exponent is either written explicitly
including the base, or an e is used to separate it from the significand.

Significand Exponent Scientific notation Fixed-point value

1.5 4 1.5 104 15000

-2.001 2 -2.001 102 -200.1

5 -3 5 10−3 0.005

6.667 -11 6.667e-11 0.00000000006667

3.3 The standard

Nearly all hardware and programming languages use floating-point numbers in the same
binary formats, which are defined in the IEEE 754 standard. The usual formats are 32 or
64 bits in total length:

Single precision Double precision

Total bits 32 64

Sign bits 1 1

Page 4 of 6



PHYS 2200 floating-point arithmetic Fall 2023

Single precision Double precision

Significand bits 23 52

Exponent bits 8 11

Smallest number 2−126 ≈ 1.2× 10−38 2−1022 ≈ 2.2× 10−308

Largest number ca. 2× 2127 ≈ 3.4× 1038 ca. 2× 21023 ≈ 1.8× 10308

Note that there are some peculiarities:

• The actual bit sequence is the sign bit first, followed by the exponent and finally the
significand bits.

• The exponent does not have a sign; instead an exponent bias is subtracted from it
(127 for single and 1023 for double precision). This, and the bit sequence, allows
floating-point numbers to be compared and sorted correctly even when interpreting
them as integers.

• The significand’s most significant bit is assumed to be 1 and omitted, except for
special cases.

• There are separate positive and a negative zero values, differing in the sign bit,
where all other bits are 0. These must be considered equal even though their bit
patterns are different.

• There are special positive and negative infinity values, where the exponent is all
1-bits and the significand is all 0-bits. These are the results of calculations where the
positive range of the exponent is exceeded, or division of a regular number by zero.

• There are special not a number (or NaN) values where the exponent is all 1-bits
and the significand is not all 0-bits. These represent the result of various undefined
calculations (like multiplying 0 and infinity, any calculation involving a NaN value,
or application-specific cases). Even bit-identical NaN values must not be considered
equal.

Page 5 of 6



PHYS 2200 floating-point arithmetic Fall 2023

4 Errors

4.1 Rounding Errors

Because floating-point numbers have a limited number of digits, they cannot represent all
real numbers accurately: when there are more digits than the format allows, the leftover
ones are omitted - the number is rounded.

4.2 Comparing floating-point numbers

Due to rounding errors, most floating-point numbers end up being slightly imprecise. As
long as this imprecision stays small, it can usually be ignored. However, it also means that
numbers expected to be equal (e.g. when calculating the same result through different
correct methods) often differ slightly, and a simple equality test fails. For example:� �

1 a = 0.15 + 0.15;

2 b = 0.1 + 0.2;

3 a == b # should be false!

4 isapprox(a, b) # should be true� �
4.3 Error Propagation

While the errors in single floating-point numbers are very small, even simple calculations
on them can contain pitfalls that increase the error in the result way beyond just having
the individual errors “add up”.

In general:

• Multiplication and division are “safe” operations

• Addition and subtraction are dangerous, because when numbers of different magni-
tudes are involved, digits of the smaller-magnitude number are lost.

• This loss of digits can be inevitable and benign (when the lost digits also insignificant
for the final result) or catastrophic (when the loss is magnified and distorts the result
strongly).

• A method of calculation can be stable (meaning that it tends to reduce rounding
errors) or unstable (meaning that rounding errors are magnified). Very often, there
are both stable and unstable solutions for a problem.

Page 6 of 6


	Why don't my numbers add up?
	Number formats
	Binary Fractions
	Why use Binary?

	Floating Point Numbers
	Why floating-point numbers are needed
	How floating-point numbers work
	The standard

	Errors
	Rounding Errors
	Comparing floating-point numbers
	Error Propagation


