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1 Introduction

White dwarfs are the final evolutionary state of stars whose mass is not high enough to
become a neutron star or a black hole. After the hydrogen–fusing (H→ He) lifetime of
a star ends, such a star fuses helium to carbon and oxygen, (He→ C,O). If a star has
insufficient mass to generate the core temperatures required to further fuse carbon, an
inert mass of carbon and oxygen will build up at its center. After shedding its outer layers,
the star will leave behind the core, which is the white dwarf.

The material in a white dwarf no longer undergoes fusion reactions, so the star is not
supported by the heat generated by fusion against gravitational collapse. It is supported
only by electron degeneracy pressure, causing the star to be extremely dense.

To descriibe the stricture of white dwarf star, we chose as a model a system in which the
electrons form a gas, similar to the electrons in a metal, and are responsible for the internal
pressure of the star. The heavy nuclei are responsible for the mass of the star and the force
of gravity holding the star together. We neglect the relatively small mass of the electrons.
We further assume that the star is spherically symmetric.
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Figure 1: Observational support for the white dwarf mass-radius relation: more massive
white dwarfs have smaller radii. The data downloaded from VizieR online database[1]. In
the axis labels M� and R� are the mass and the radius of the Sun.

2 The equations of the mechanical equilibrium

If the star is in mechanical equilibrium, the gravitational force at each point inside is
balanced by the force due to the spatial variation of the pressure P . The gravitational force
acting on a unit volume of matter at a radius r is

Fgrav = −G
m(r)ρ(r)

r2 , (1)

where G is the gravitational constant, ρ(r) is the mass density of the star, and m(r) is the
mass of the star interior to the radius r:

m(r) =
∫
ρdV = 4π

r∫
0

ρ(r ′)r ′2 dr ′, (2)
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where we used the volume of spherical shell or radius r and thickness dr:

dV = 4πr2dr.

A differential relation between the mass, m(r), and the density, ρ(r), can be obtained by
differentiating the Eq. (2) with respect to r:

dm
dr

= 4πr2ρ(r). (3)

The radial component of the force per unit volume of matter due to the changing pressure
is as following:

Fr =
dP
dr
. (4)

When the star is in equilibrium, we thus have:

dP
dr

= −G
m(r)ρ(r)

r2 . (5)

The description of mechanical equilibrium is completed by specifying the equation of state,
a relation that gives the pressure, P (ρ), which is required to maintain the matter at a given
density, ρ. Using the identity

dP
dr

=
dP
dρ

dρ
dr
, (6)

Eq. (5) can be written as
dρ
dr

= −
(

dP
dρ

)−1
Gm(r)
r2 ρ(r). (7)

Equations (3) and (7) are two coupled first-order differential equations for ρ(r) and m(r)
that determine the structure of the star for a given equation of state. The values of
the dependent variables at r = 0 are ρ = ρc, the (unknown) central density, and m = 0.
Integration outward in r then gives the density and mass profiles. The radius of the star,
R, is being determined by the point at which ρ = 0. The total mass of the star is then
M = m(R). Since both R and M depend upon ρc, variation of this parameter allows to
determine the mass-radius relation for white dwarf stars R(M).

3 Background on QuantumMechanics

3.1 Degenerate fermions

All elementary particles may be classified as either fermion or bosons. Electrons, neutrons,
and protons are fermions. The Pauli exclusion principle implies that in a many-fermion
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system each fermion must be in a different quantum state. Thus the lowest energy state
of the system results from filling energy levels from the bottom up. Degenerate matter
corresponds to a many-fermion state in which all the lowest energy levels are filled and all
the higher ones are unoccupied.

Degenerate matter plays an important role in a variety of astrophysical applications. For
example, in white dwarf stars the electrons are highly degenerate, and in neutron stars the
neutrons are highly degenerate.

3.2 Fermi momentum

We use the following quantum mechanivcal result: the number of quantum states for a
free particle with the position somewhere in a volume V is V d3p/(2π~)3, where d3p is the
volume element in the momentum space. For a spherically symmetric distribution of the
electron momenta d3p = 4πp2 dp.

Considering a small but macroscopic volume V containing a group of N electrons that
occupy the lowest available energy states with magnitude of momentum 0 ≤ p ≤ pf .
Remembering the two-fold spin degeneracy of each electron state, we have

N = 2V

pf∫
0

d3p

(2π~)3 = 2V

pf∫
0

4πp2 dp
(2π~)3 =

V

π2~3

p3
f

3
. (8)

Using Eq. (8) we can determine the value of the local Fermi momentum, pf , i.e. the maximum
local magnitude of the electron momentum, in terms of the local electron density n(r) = N

V :

pf (r) =
(
3π2

) 1
3 ~ n(r)

1
3 . (9)

The energy of an electron with the momentum pf is called Fermi energy. For the reference,
the Fermi energy of a nonrelativistic electron is

εf =
p2
f

2me
=

(
3π2

) 2
3

(
~2

2me

)
n(r)

2
3 . (10)

The Fermi energy of an ultrarelativistic electron is

εf = cpf =
(
3π2

) 1
3 (~c) n(r)

1
3 . (11)

The condition for the electron gas to be strongly degenerate is that kT , where k is the Boltz-
mann constant and T is the temperature, should be small in comparison with the energy
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ef . We will be interested in such electron densities that pf ≥mec. Such momenta corre-
spond to relativistic and ultrarelativistic electrons such that εf ≥mec2 ≈ 0.5× 106eV. The
temperatures, when the approximation of strongly degenerate electron gas is applicable,
are

T � mec
2

k
∼ 0.6× 1010K. (12)

3.3 Ideal electron gas

A degenerate electron gas has the peculiar property that it increasingly approaches the
ideal gas state as its density increases.

Let us consider a gas consisting of electrons and a corresponding number of positively
charged nuclei which balance the charge on the electrons. The assumption of ideal-gas
properties means that the presence of the nuclei does not affect the thermodynamic
quantities for the electron gas. The energy (per electron) of the Coulomb interaction
between the electrons and the nuclei, Ec is of the order of

Ec ∼
1

4πε0

Ze2

d
, (13)

where Ze is the nuclear charge and d is the mean distance between the electrons and the
nuclei,

d ∼
(ZV
N

) 1
3
. (14)

The condition for an ideal gas is that Ec should be small compared with the mean kinetic
energy of the electrons, which is of order of the Fermi energy εf . For nonrelativistic
electrons the inequality Ec� εf , after the substitution of Eq. (14) into Eq. (13) and using
Eq. (10) for εf , gives the condition

N
V
�

(
e2me

4πε0~2

)3 ( Z

3π2

)2
= a−3

0

( Z

3π2

)2
∼ a−3

0 , (15)

where a0 is the Bohr radius, a0 ≈ 5.3× 10−11m.

For ultrarelativistic electrons the inequality Ec� εf leads to the relation

e2

4πε0~c
�

(
3π2

Z2

) 1
3

. (16)
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The dimensionless combination of fundamental physical constants on the right is fine
structure constant α:

α ≡ e2

4πε0~c
≈ 1

137
.

Eq. (16) does not impose a restriction on the electron density but rather on the atomic
number:

Z �
(

3π2

α3

) 1
2

≈ 8730. (17)

3.4 Pressure Ionization

Let’s demonstrate that, as a consequence of quantum mechanics, ionization can be induced
by sufficiently high pressure. As a consecuence, most stars are completely ionized over
much of their volume.

Suppose the radius of each atom is a and the average spacing between atoms is d. For
simplicity, we assume that the stellar material consists only of ions of a single species and
the electrons produced by ionizing that species. Electrons in the atoms obey Heisenberg
relations of the form p · a ≥ ~. Taking the average volume needed per electron to be V0, we
can write this as p ≥ ~/V 1/3

0

The uncertainty principle produces ionization when the effective volume of the atoms
becomes too small to confine the electrons. The average volume needed per electron V0 is
related to the average volume needed per nuclei Vi by ZV0 = Vi , since there are Z electrons
per ion. Thus p ≥ (~Z1/3)/V 1/3

i .

If the star is composed entirely of an element with atomic number Z, there are Z electrons
in each sphere of diameter d (the average spacing between atoms) and the average number
density of electrons ne is related to d by ne ∼ Z/d3.

This can be solved for d to give d ∼ (Z/ne)1/3, which shows that d becomes smaller as ne
becomes larger. If d < a we expect pressure ionization. With increasing density fewer
locally bound states are possible until none remain and the electrons are all ionized.

4 Quantummechanics and the equation of state

We must now determine the equation of state appropriate for a white dwarf. We will
assume that the matter consists of a single kind large nuclei (e.g. oxygen) and their
electrons. The nuclei, being heavy, contribute nearly all of the mass but make almost
no contribution to the pressure since they hardly move at all. The electrons, however,
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contribute virtually all of the pressure but essentially none of the mass. We will be
interested in densities far greater than that of ordinary matter, where the electrons are
no longer bound to individual nuclei, but rather move freely through the material. A
good model is then a free gas of electrons at zero temperature, treated with relativistic
kinematics.

The number of nucleons per unit volume at radius r is approximately ρ(r)/Mp, where
Mp is the proton mass (we neglect the small difference between the neutron and proton
masses). If Ye is the number of electrons per nucleon, then the concentration of electrons
at radius r is

n(r) = Ye
ρ(r)
Mp

. (18)

The total relativistic energy of this group of electrons occupying the lowest possible
momentum eigenstates is

E = 2V

pf∫
0

ε(p)
4πp2 dp
(2π~)3 =

V

π2~3

pf∫
0

ε(p) p2 dp (19)

where

ε(p) =
√
p2 c2 +m2

e c4 (20)

is the relativistic energy of an electron with massme and momentum p, and pf is the Fermi
momentum given by Eq. (9).

Changing the variable of integration in Eq. (19) to y = p
me c

, we arrive to the integral

E =
V

π2~3

pf∫
0

p2
√
p2 c2 +m2

e c4 dp = V
m4
e c

5

π2~3

x∫
0

y2
√

1 + y2 dy, (21)

where the dimensionless parameter x is:

x =
pf
me c

. (22)

Using Eq. (9),

x =
{

3π2~3n(r)

m3
e c3

} 1
3

=
{
n(r)
n0

} 1
3

, (23)
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where

n0 =
m3
e c

3

3π2~3 (24)

is the local electron density at which the local Fermi momentum is pf (r) =me c. For the
reference, n0 = 5.87× 1029 cm−3.

Another form of Eq. (23):

x =
{
ρ(r)
ρ0

} 1
3

, (25)

where ρ(r) is the local mass density of matter; from Eq (18)

ρ(r) =Mp
n(r)
Ye

(26)

ρ0 is the local mass density of matter when the local electron density is n0:

ρ0 =
Mpn0

Ye
=
Mpm

3
e c

3

3π2~3Ye
= 9.82× 105Y −1

e g cm−3. (27)

The elementary integral in Eq. (21) is

β(x) =

x∫
0

y2
√

1 + y2 dy =
1
8

[
x
(
1 + 2x2

)√
1 + x2 − ln

(
x+
√

1 + x2
)]
. (28)

For the future reference, if x = x(α), where α is a parameter, then

dβ
dα

= x2
√

1 + x2 dx
dα
. (29)

Eq. (29) is a particular case of the Leibniz integral rule that gives a formula for differentiation
of a definite integral whose limits are functions of the differential variable.

We finally get the local energy of this group of electrons in the form

E = 3V n0 mec
2β(x). (30)

From thermodynamics, the local pressure is related to how the energy of this group of N
electrons changes with volume V at fixed N :

P (r) = −∂E
∂V

(31)
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Taking into account that x = x(V ):

x =
{
n(r)
n0

} 1
3

=
{
N
V n0

} 1
3

, (32)

thus
dx
dV

= − x
3V

, (33)

and using Eq. (29), the local pressure, Eq. (31) has the form:

P (r) = −3n0mec
2
{
β(x) +V x2

√
1 + x2 dx

dV

}
= −3n0mec

2
{
β(x)− x

3

3

√
1 + x2

}
(34)

The pressure has the units of energy per unit volume or force per unit area (since energy
has the units of force times distance).

We then need the derivative dP
dρ to make use of Eq.(7). Noting that x = x(ρ),

dP
dρ

= n0mec
2 x4
√

1 + x2

dx
dρ
. (35)

From Eq. (25),
dx
dρ

=
1
3
ρ
− 1

3
0 ρ

− 2
3 =

1
3ρ0

1
x2 . (36)

Thus,
dP
dρ

= Ye
me c

2

Mp
γ(ρ) (37)

where Mp is the mass of the proton, me is the mass of of the electron, Ye is the number of
electrons per nucleon, c is the speed of light, and dimensionless function γ(x) is

γ(ρ) = γ(x) =
x2

3
√

1 + x2
. (38)

Here

x =
(
ρ

ρ0

)1/3

(39)
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and

ρ0 =
Mpm

3
e c

3

3π2~3Ye
. (40)

Using Eq.(5) in Eq.(7) we get an explicit differential equation governing the evolution of ρ
(recall that dimensionless γ is a function of x which is a function of ρ which is a function
of r):

dρ
dr

= −
(

Mp

me c2Ye

)
Gm(r)
γ(ρ)r2 ρ(r). (41)

To avoid a fictious numerical divergency in Eq. (41) for small values of r, notice that for
sufficiently small r

m(r) ≈ 4
3
πr3ρc. (42)

Hence, Eq. (41) can be written in the following form:

dρ
dr

= −4
3
π

(
Mp

me c2Ye

)
Gr
γ(ρc)

ρ2
c , (43)

which avoids diverging factor 1/r2.

5 Scaling the Differential Equations

It is always useful to reduce equations describing a physical system to dimensionless form,
both for physical insight and for numerical convenience. To do this for the equations of
white dwarf structure, we introduce dimensionless radius, density, and mass variables:

r = R0 r̄ , ρ = ρ0 ρ̄, m =M0 m̄ (44)

with the radius and mass scales, R0 and M0 to be determined for convenience.

Substituting Eq. (44) into Eqs. (3), (41) yields

dm̄
dr̄

=
(

4πR3
0ρ0

M0

)
r̄2 ρ̄ (45)

and
dρ̄

dr̄
= −

(
GMpM0

me c2YeR0

)
m̄ ρ̄

γ(ρ̄) r̄2 . (46)
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If we now choose M0 and R0 so that the coefficients in parentheses in these two equations
are ones, we find

R0 =
(
me c

2Ye
4πρ0GMp

)
= 7.71× 103Ye km, (47)

and
M0 = 4πR3

0ρ0 = 5.66× 1030Y 2
e kg. (48)

If we consider a white dwarf star consisting of 12C, a chemical element with 6 protons, six
neutrons, and six electrons, then Ye = 1

2 and M0 = 0.71×M� and R0 = 0.006×R�, where
M� and R� are the mass and the radius of the Sun.

The dimensionless differential equations are

dm̄
dr̄

= r̄2 ρ̄, (49)

dρ̄
dr̄

= −
m̄ ρ̄

γ(ρ̄) r̄2 . (50)

These equations are completed by recalling that γ is given by Eq. (38) with x = ρ̄1/3.

γ(ρ̄) =
ρ̄2/3

3
√

1 + ρ̄2/3
(51)

This pair of equations is then integrated from r̄ = 0, ρ̄ = ρ̄c, m̄ = 0 to the value of r̄ at which
ρ̄ = 0, which defines the dimensionless radius of the star R̄, and the dimensionless mass of
the star is then M̄ = m̄(R̄). The results of numerical integration of Eqs. (49) and (50) are
presented in Fig. 2.
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Figure 2: White dwarf mass-radius relation: comparison between observational data
(scatterplot, see also Fig. 1) and the theory (solid line). In the axis labels M� and R� are
the mass and the radius of the Sun.
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