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What is Big Data?

● Large ( > terabytes - 1012 aka 240 bytes), complex (can be 
structured or unstructured), diverse (different types) data.

● Data that has high enough volume (total amount), velocity 
(speed of reception and/or processing), and/or variety 
(different types and unstructured) that traditional data 
storage and processing techniques are insufficient.
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Wikipedia contents under big data
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Case Study: Modelling Hospital Demand
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Capacity Computing for Data-Driven Science

● Can you think of any examples in your field?

● Why might I need it?
○ It takes too long on my laptop!
○ The data won’t fit   “   “   “
○ I have other stuff to do  “  “  “
○ Or, what more might I be able to do? Check more alternative ideas 

/ models? Do more simulations to understand my data? Try out 
speculative ideas, just because I can?

● Where might I turn?
○ my research group or Department’s dedicated resources
○ the Cloud
○ Central IT (HPC at UConn!) research computing resources
○ National HTC (Open Science Grid) or HPC  resources for science 
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High Performance vs. Throughput 
Computing (HPC / HTC)

High Throughput Computing (HTC):

● e.g. UConn’s HPC cluster** https://hpc.uconn.edu/ or the 
Open Science Grid, https://opensciencegrid.org 

● HTC tasks can be decomposed into small parts, but need to 
be done many many times (e.g. analyzing millions of individual 
images).

● Like 100,000 compact cars -- don’t need any special skills to 
use it, but has a large throughput. 

● Most modern-day big data science problems require HTC. 

10

High Performance Computing (HPC):

● Problems that can’t be decomposed 
into small parts (e.g. inverting a large 
matrix, lattice QCD)

● Problems that have huge memory 
and/or cooperative scheduling 
requirements 

● Highly tuned complex problems. Like 
a highly tuned Formula 1 car -- built 
for a specific high performance task, 
but requires special skills to use.

● ** UConn’s cluster is named an HPC, 
because it was when it was first 
developed 20 years ago, but now would 
be considered HTC.
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https://opensciencegrid.org


High Performance vs. Throughput 
Computing (HPC / HTC)

High Throughput Computing (HTC):

● e.g. UConn’s HPC cluster** https://hpc.uconn.edu/ or the 
Open Science Grid, https://opensciencegrid.org 

● HTC tasks can be decomposed into small parts, but need to 
be done many many times (e.g. analyzing millions of individual 
images).

● Like 100,000 compact cars -- don’t need any special skills to 
use it, but has a large throughput. 

● Most modern-day big data science problems require HTC. 

11

High Performance Computing (HPC):

● Problems that can’t be decomposed 
into small parts (e.g. inverting a large 
matrix, lattice QCD)

● Problems that have huge memory 
and/or cooperative scheduling 
requirements 

● Highly tuned complex problems. Like 
a highly tuned Formula 1 car -- built 
for a specific high performance task, 
but requires special skills to use.

● ** UConn’s cluster is named an HPC, 
because it was when it was first 
developed 20 years ago, but now would 
be considered HTC.

HPC Cluster - for 
smaller, flexible jobs

OSG - for bigger jobs

https://hpc.uconn.edu/
https://opensciencegrid.org


UConn’s HPC Cluster

● https://hpc.uconn.edu/ 
● Anyone can make an account!
● No proposal required for jobs!
● Run locally!
● We will run a jupyter notebook on 

the cluster today 
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https://hpc.uconn.edu/
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Instructions to access the HPC cluster

$ ssh 
<your_netid>@login.storrs.hpc.uconn.edu
password: <your_netid_password>

... <write your code>

... <test your code>

... <write yourscript.sh to automate running 
of your code>

[netid@cn01 ~]$ sbatch -p generalepyc 
<yourscript.sh>   #submits your job

[netid@cn01 ~]$ squeue                                  
#watches your job run

... <look at your results, fix the problems, 
try it again> ...
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Terminal
Jupyter Hub
https://cn410.storrs.hpc.uconn.edu:48000/ 

https://cn410.storrs.hpc.uconn.edu:48000/
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The Open Science Grid
● https://opensciencegrid.org  
● Anyone (researchers at any US academic, government, or non-profit 

organization) can make an account! https://www.osgconnect.net/ → sign up!
● Free access to the Open Science Pool via an OSG-supported access point, no 

proposal / allocation necessary
● Includes: 

○ Initial consultation with an OSG research computing facilitator
○ Online documentation and examples
○ Access to OSG’s central software modules
○ (roughly) unlimited scratch, space for staging large datasets and 

software, with cache across OSG
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https://opensciencegrid.org
https://www.osgconnect.net/
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The Open Science Grid

17

● NOT a replacement for traditional HPC

● most science problems do not require HPC, just a lot of time to run ordinary process over a 
larger volume of data or simulations -- high-throughput computing
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Covid19 research Dark matter 
simulations



UConn and The Open Science Grid

● began at UConn Health
● at Storrs: 2009 US DOE grant (R. Jones, PI) to explore possibilities

○ formed “virtual organization” of users (Gluex)
○ set up UConn Storrs as “grid site” on OSG
○ outward-facing services (VOMS, CondorCE, StachCache, gFTP, xrootd)
○ accounting and reporting (Gratia, GRACC)
○ long-lived outgoing connections (hours)

● 2019 - NSF equipment grant ($400k) for new OSG resource UConn-HTC
○ shared use model -- letter of support from UConn CIO
○ 38 new nodes housed in the data center (HPC racks)
○ different network requirements from existing HPC-Storrs cluster
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UConn-HTC operations
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https://gracc.opensciencegrid.org

Nuclear Physics 1.16 M
Engineering 1.15 M
Biological and Biomedical Sci. 911.44 K
Physics 835.11 K
Astronomy 589.36 K
Chemistry 513.12 K
Astrophysics 507.64 K
Astronomy and Astrophysics 338.65 K
High Energy Physics 323.10 K
Bioinformatics 141.57 K
Statistics 121.36 K
Comp. Architecture/Comp. Eng. 101.91 K
Materials Science 73.26 K
Evolutionary Biology 55.14 K
Biological Sciences 54.73 K
Computer Sciences 36.74 K
Education 22.94 K
Biochemistry 18.16 K
Mathematical Sciences 8.25 K
Physical Therapy 4.96 K
Elementary Particle Physics 3.29 K
Computer Science 2.70 K
Biophysics 2.37 K
Information Science and Eng. 1.78 K
Agricultural Sciences 917.36
Geographic Information Sci. 56.91
Computer and Information Sci. 27.92
Biomedical research 3.18
Evolutionary Sciences 1.24
Computer and Info. Services 0.73
Health 0.49
Multi-Science Community 0.07

https://gracc.opensciencegrid.org
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Real World Example - Using the global seismic 
wavefield to understand Earth’s interior
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● Use 100,000 individual seismograms to estimate the radius of Earth’s core!

From Harvey Mudd College Seismology: 
http://www.physics.hmc.edu/research/geo/seismo.html 

http://www.physics.hmc.edu/research/geo/seismo.html
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wavefield to understand Earth’s interior
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Example seismogram of an earthquake from 
the USGS (wikipedia) at 1 location with 3 

components of motion (vertical (Z), 
north-south, and east-west.

Global Seismic Wavefield
● An individual seismogram records ground 

motion at a single location as a function of 
time. They are essential to detect the 
location and magnitude of earthquakes 

● A global seismic wavefield incorporates 
these from across the globe and stacks 
them over time.
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Real World Example - Using the global seismic 
wavefield to understand Earth’s interior
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100,000 Stacked seismograms to create a 
global seismic wavefield

Global Seismic Wavefield
● An individual seismogram records ground 

motion at a single location as a function of 
time. They are essential to detect the 
location and magnitude of earthquakes 

● A global seismic wavefield incorporates 
these from across the globe and stacks 
them over time. Ti
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Real World Example - Using the global seismic 
wavefield to understand Earth’s interior
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The Data
● These data are from IRIS (Incorporated 

Research Institutions for Seismology) 
and comprise data from 1000s facilities 
over 29 years.

● Archive is now more than 700 
Tebibytes (1 TiB = 1.1 TB, so 770 TB), 
aka HUGE!
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Real World Example - Using the global seismic 
wavefield to understand Earth’s interior

25

● We will compile the data from 100,000 unique seismograms, retrieved from the IRIS 
database to plot the global seismic wavefield 

● This tells us about Earth’s interior
● We will estimate the radius of the Earth’s core
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Real World Example - Using the global seismic 
wavefield to understand Earth’s interior
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● Log in to jupyter hub with your netID: https://cn410.storrs.hpc.uconn.edu:48000/ 
● Follow along
● Work in groups of 2-3 (and ask questions!) to estimate the radius of Earth’s core

https://cn410.storrs.hpc.uconn.edu:48000/
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Real World Example - Using the global seismic 
wavefield to understand Earth’s interior
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100,000 Stacked seismograms to create a 
global seismic wavefield

Global Seismic Wavefield
● Final result
● Interpretation
● Questions? 
● Feedback if you have time: 

https://docs.google.com/forms/d/e/1FAIpQ
LSeyQXn32AhHv4HmJhM5q4NyJxSC_q8
on3JZ3xEpgjwhhvejCw/viewform?usp=sf_
link Ti
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