
Valgrind tutorial∗

Lena Olson
Department of Computer Sciences, University of Wisconsin-Madison

http://pages.cs.wisc.edu/˜lena/

Last updated: 16 March 2011

Although C is a very useful and powerful language, it can be hard to debug. A particular problem
that you have probably encountered at some point is memory errors. We have already talked about
gdb, which can be a helpful resource if your program consistently crashes or outputs a wrong result.
However, sometimes you suspect that the problem you are having is due to a memory error, but it
does not cause a segfault and you do not want to set a lot of breakpoints and step through in gdb.
Another common problem you might encounter is a program with a memory leak: somewhere, you
call malloc but never call free. Valgrind is a program that will help you fix both problems.

To invoke it on an executable called a.out, you simply run the following command (with any
arguments your program might need).

% valgrind ./a.out

As when using gdb, you will want to make sure to compile your program with the flag -g, so that
you can see line numbers in the output. You may also wish to debug with optimizations turned
off (-O0), since if you have them on, line numbers may be inaccurate and you may occasionally
encounter false alarms.

Example 1: reading/writing past the end of an array. One common mistake is accessing
elements past the end of an array. Your C program might segfault, or it might continue running,
producing a result which is correct or incorrect – sometimes with results varying between executions.
This makes it hard to locate this kind of problem. Here is how you would use valgrind to find the
bug:

i n c l u d e < s t d l i b . h>

i n t main (void)
{

i n t i , n = 1 0 ;
i n t ∗a = m a l lo c ((s i z e t) n ∗ s i z e o f (i n t)) ;

∗LATEX conversion of the web tutorial at http://pages.cs.wisc.edu/˜lena/valgrind.php.

1

http://pages.cs.wisc.edu/~lena/
http://pages.cs.wisc.edu/~lena/valgrind.php

Physics 2200 Valgrind tutorial Fall 2015

i f (! a)
{

/∗ ma l l oc f a i l e d ∗ /
re turn 1 ;

}

f o r (i = 0 ; i <= n ; i ++)
{

a [i] = i ;
}
f r e e (a) ;

re turn 0 ;
}

Compile the program and run valgrind as following:

% clang -Weverything -Wextra -pedantic -g -O0 example1.c -o example1
% valgrind ./example1

Output:

==16370== Memcheck , a memory e r r o r d e t e c t o r
==16370== C o p y r i g h t (C) 2002−2013 , and GNU GPL’ d , by J u l i a n Seward e t a l .
==16370== Using Va lg r ind −3 .10 .1 and LibVEX ; r e r u n wi th −h f o r c o p y r i g h t i n f o
==16370== Command : . / example1
==16370==
==16370== I n v a l i d w r i t e o f s i z e 4
==16370== a t 0 x4005F2 : main (example1 . c : 1 5)
==16370== Address 0 x51f5068 i s 0 b y t e s a f t e r a b l o c k o f s i z e 40 a l l o c ’ d
==16370== a t 0x4C28C50 : m a l l oc (i n / u s r / l i b 6 4 / v a l g r i n d / vgpre load memcheck−amd64−l i n u x . so)
==16370== by 0x4005B5 : main (example1 . c : 6)
==16370==
==16370==
==16370== HEAP SUMMARY:
==16370== i n use a t e x i t : 0 b y t e s i n 0 b l o c k s
==16370== t o t a l heap usage : 1 a l l o c s , 1 f r e e s , 40 b y t e s a l l o c a t e d
==16370==
==16370== A l l heap b l o c k s were f r e e d −− no l e a k s a r e p o s s i b l e
==16370==
==16370== For c o u n t s o f d e t e c t e d and s u p p r e s s e d e r r o r s , r e r u n wi th : −v
==16370== ERROR SUMMARY: 1 e r r o r s from 1 c o n t e x t s (s u p p r e s s e d : 0 from 0)

Your output might be slightly different, depending on the machine and version of valgrind and
libraries installed, but should include the same types of errors. If you examine the output, you will
see that there is 1 error listed (you do not need to worry about suppressed errors). Valgrind prints
what the error was (Invalid write of size 4) as well as the stack. It also lists the file,
function and line where this array was malloc’d.

Page 2 of 8

Physics 2200 Valgrind tutorial Fall 2015

Example 2: reading uninitialized memory. Another common problem is forgetting to initial-
ize a variable or array before using it.

i n c l u d e < s t d i o . h>

i n t main (void)
{

i n t i , n = 9 ;
i n t a [1 0] ;
f o r (i = 0 ; i < n ; i ++)
{

a [i] = i ;
}

f o r (i = 0 ; i <= n ; i ++)
{

p r i n t f (”%d ” , a [i]) ;
}
p r i n t f (”\n ”) ;

re turn 0 ;
}

Compile the program and run valgrind as following:

% clang -Weverything -Wextra -pedantic -g -O0 example2.c -o example2
% valgrind ./example2

Output:

==16376== Memcheck , a memory e r r o r d e t e c t o r
==16376== C o p y r i g h t (C) 2002−2013 , and GNU GPL’ d , by J u l i a n Seward e t a l .
==16376== Using Va lg r ind −3 .10 .1 and LibVEX ; r e r u n wi th −h f o r c o p y r i g h t i n f o
==16376== Command : . / example2
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E81FA9 : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== Use of u n i n i t i a l i s e d v a l u e o f s i z e 8
==16376== a t 0x4E7E13B : i t o a w o r d (i t o a . c : 1 7 9)
==16376== by 0 x4E82249 : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E7E145 : i t o a w o r d (i t o a . c : 1 7 9)

Page 3 of 8

Physics 2200 Valgrind tutorial Fall 2015

==16376== by 0 x4E82249 : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E822BC : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E8206E : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E8268A : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E820BE : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
==16376== C o n d i t i o n a l jump or move depends on u n i n i t i a l i s e d v a l u e (s)
==16376== a t 0x4E820FE : v f p r i n t f (v f p r i n t f . c : 1 6 4 1)
==16376== by 0x4E88E78 : p r i n t f (p r i n t f . c : 3 3)
==16376== by 0x4005AF : main (example2 . c : 1 4)
==16376==
0 1 2 3 4 5 6 7 8 0
==16376==
==16376== HEAP SUMMARY:
==16376== i n use a t e x i t : 0 b y t e s i n 0 b l o c k s
==16376== t o t a l heap usage : 0 a l l o c s , 0 f r e e s , 0 b y t e s a l l o c a t e d
==16376==
==16376== A l l heap b l o c k s were f r e e d −− no l e a k s a r e p o s s i b l e
==16376==
==16376== For c o u n t s o f d e t e c t e d and s u p p r e s s e d e r r o r s , r e r u n wi th : −v
==16376== Use −−t r a c k−o r i g i n s = yes t o s e e where u n i n i t i a l i s e d v a l u e s come from
==16376== ERROR SUMMARY: 8 e r r o r s from 8 c o n t e x t s (s u p p r e s s e d : 0 from 0)

Observe that the output of the program and the output of valgrind are interleaved; to get around that,
it is handy to redirect the output to a separate file. (Use the option --log-file=thefile if you
want this.) This time the errors reported are for uninitialized values, and valgrind indicates where the
access takes place (line 14 of example2.c). If you run with the option --track-origins=yes,
valgrind will give additional information about where the uninitialized values came from.

Page 4 of 8

Physics 2200 Valgrind tutorial Fall 2015

Example 3: memory leaks. Valgrind includes an option to check for memory leaks. With
no option given, it will list a heap summary where it will say if there is any memory that has
been allocated but not freed. If you use the option --leak-check=full it will give more
information.

i n c l u d e < s t d l i b . h>

i n t main (void)
{

i n t i ;
i n t ∗a = NULL;

f o r (i = 0 ; i < 1 0 ; i ++)
{

a = m a l lo c (s i z e o f (i n t) ∗ 1 0 0) ;
}
f r e e (a) ;

re turn 0 ;
}

Compile the program and run valgrind as following:

% clang -Weverything -Wextra -pedantic -g -O0 example3.c -o example3
% valgrind --leak-check=full ./example3

Output:

==16382== Memcheck , a memory e r r o r d e t e c t o r
==16382== C o p y r i g h t (C) 2002−2013 , and GNU GPL’ d , by J u l i a n Seward e t a l .
==16382== Using Va lg r ind −3 .10 .1 and LibVEX ; r e r u n wi th −h f o r c o p y r i g h t i n f o
==16382== Command : . / example3
==16382==
==16382==
==16382== HEAP SUMMARY:
==16382== i n use a t e x i t : 3 ,600 b y t e s i n 9 b l o c k s
==16382== t o t a l heap usage : 10 a l l o c s , 1 f r e e s , 4 ,000 b y t e s a l l o c a t e d
==16382==
==16382== 3 ,600 b y t e s i n 9 b l o c k s a r e d e f i n i t e l y l o s t i n l o s s r e c o r d 1 of 1
==16382== a t 0x4C28C50 : m a l l oc (i n / u s r / l i b 6 4 / v a l g r i n d / vgpre load memcheck−amd64−l i n u x . so)
==16382== by 0x4005C9 : main (example3 . c : 1 0)
==16382==
==16382== LEAK SUMMARY:
==16382== d e f i n i t e l y l o s t : 3 ,600 b y t e s i n 9 b l o c k s
==16382== i n d i r e c t l y l o s t : 0 b y t e s i n 0 b l o c k s
==16382== p o s s i b l y l o s t : 0 b y t e s i n 0 b l o c k s
==16382== s t i l l r e a c h a b l e : 0 b y t e s i n 0 b l o c k s
==16382== s u p p r e s s e d : 0 b y t e s i n 0 b l o c k s

Page 5 of 8

Physics 2200 Valgrind tutorial Fall 2015

==16382==
==16382== For c o u n t s o f d e t e c t e d and s u p p r e s s e d e r r o r s , r e r u n wi th : −v
==16382== ERROR SUMMARY: 1 e r r o r s from 1 c o n t e x t s (s u p p r e s s e d : 0 from 0)

If you see leaks indicated as still reachable, this generally does not indicate a serious problem
since the memory was probably still in use at the end of the program. However, any leaks listed
as ”definitely lost” should be fixed (as should ones listed ”indirectly lost” or ”possibly lost” –
”indirectly lost” will happen if you do something like free the root node of a tree but not the rest
of it, and ”possibly lost” generally indicates the memory is actually lost). An example of where
you might run into an example like the one above is if you have a function that allocates a buffer
(perhaps to store a string) and returns it, but the caller never frees the memory after it is finished. If
a program like that runs for a long time, it will allocate a lot of memory that it does not need.

What valgrind is NOT

Although valgrind is an extremely useful program, it will not miraculously tell you about every
memory bug in your program. There are several limitations that you should keep in mind. It does
not do bounds checking on stack/static arrays (those not allocated with malloc), so it is possible to
have a program that behaves badly while not generating any valgrind errors. For example:

i n c l u d e < s t d i o . h>

i n t main (void)
{

i n t i ;
i n t x = 0 ;
i n t a [1 0] ;
f o r (i = 0 ; i < 1 1 ; i ++)
{

a [i] = i ;
}

p r i n t f (” a [1] i s %d . ” , a [1]) ;
p r i n t f (” x i s %d\n ” , x) ;

re turn 0 ;
}

This program has a memory error, resulting in the value of x being 10 at the end rather than 0.
However, valgrind will not report any errors.

Compile1 the program and run valgrind as following:

% gcc -Wall -Wextra -pedantic -g -O0 example3.c -o example4

1In this example we use a different C compiler – gcc.

Page 6 of 8

Physics 2200 Valgrind tutorial Fall 2015

% valgrind ./example4

Output:

==16390== Memcheck , a memory e r r o r d e t e c t o r
==16390== C o p y r i g h t (C) 2002−2013 , and GNU GPL’ d , by J u l i a n Seward e t a l .
==16390== Using Va lg r ind −3 .10 .1 and LibVEX ; r e r u n wi th −h f o r c o p y r i g h t i n f o
==16390== Command : . / example4
==16390==
a [1] i s 1 . x i s 10
==16390==
==16390== HEAP SUMMARY:
==16390== i n use a t e x i t : 0 b y t e s i n 0 b l o c k s
==16390== t o t a l heap usage : 0 a l l o c s , 0 f r e e s , 0 b y t e s a l l o c a t e d
==16390==
==16390== A l l heap b l o c k s were f r e e d −− no l e a k s a r e p o s s i b l e
==16390==
==16390== For c o u n t s o f d e t e c t e d and s u p p r e s s e d e r r o r s , r e r u n wi th : −v
==16390== ERROR SUMMARY: 0 e r r o r s from 0 c o n t e x t s (s u p p r e s s e d : 0 from 0)

A more serious limitation that you will encounter is that valgrind checks programs dynamically
– that is, it checks during actual program execution whether any leaks actually occurred for that
execution. This means that if you run valgrind on a particular set of inputs that does not cause any
bad memory accesses or memory to be leaked, valgrind will not report any errors, even though your
program does contain bugs. As an example:

i n c l u d e < s t d i o . h>
i n c l u d e < s t d l i b . h>

i n t main (void)
{

char ∗ s t r = m a l lo c ((s i z e t) 1 0) ;

g e t s (s t r) ;
p r i n t f (”%s \n ” , s t r) ;

re turn 0 ;
}

This program has a bug: if the user inputs a long string, the buffer str will overflow. Please note
that you should never, ever use gets, for exactly this reason. If you run this program through
valgrind, you will get a memory error if you type in a string longer than 10 characters. However, if
you type in a shorter string, valgrind will report no errors, even though the program is buggy! If you
want to be reasonably sure that you are catching all memory bugs, you should run valgrind on a
variety of inputs, especially corner cases, as those are where you are most likely to have made a
mistake like accessing past the bounds of an array.

Page 7 of 8

Physics 2200 Valgrind tutorial Fall 2015

When fixing errors, it is a good idea to start at the top; fixing an error that occurs earlier is likely to
eliminate a lot of later errors as well.

Once in a great while you may encounter a false positive – an error even though there is nothing
wrong with your program. However, in the vast majority of cases, any error reported is real and you
should fix it. Be very wary about dismissing an error as a ”false positive,” since it is much more
likely that you have made a mistake.

One final thing to note about valgrind is that your programs will take longer to execute (like 20 to
30 times as long), and will also use more memory.

More information

If you are curious about valgrind, you can check the valgrind website, especially the FAQ.

Page 8 of 8

http://valgrind.org/
http://valgrind.org/docs/manual/faq.html

