
The Basics
of

C Programming

Adapted for PHYS2200 class from Marshall Brain’s article1

Last updated: October 22, 2015

1http://www.howstuffworks.com/c.htm

http://www.howstuffworks.com/c.htm

Contents

I Basics of C 1

1 C programming 3
What is C? . 3
The simplest C program, I . 4
Spacing and indentation . 4
Compilation and run . 4
The simplest C program, II . 5
Variables and variable types . 6
Operators . 8

2 Input and output 9
printf . 9
scanf . 11
Programming exercise . 13

3 Branching and looping 15
if statement . 15
Boolean expressions . 16
Boolean: = vs == . 17
while loop . 18
do-while loop . 19
for loop . 19
Looping: an example . 20
Programming exercise . 24

4 Functions 25
Function prototypes . 27

5 Arrays 29

i

CONTENTS CONTENTS

Programming example: sorting arrays . 31

6 Structures 37

7 Pointers 41
Pointers: why? . 42
Pointer Basics . 43
Understanding Memory Addresses . 45
Pointing to the Same Address . 47
Using Pointers for Function Parameters . 47
Pointers and Arrays . 49
Pointers to Structures . 53

II Programming Tools 55

8 Makefiles 57

9 Command Line Arguments 59

10 Version control 61

11 Debugging 63

12 Detecting memory problems with valgrind 65

III More C Programming 67

13 Dynamic Data Structures 69
Stack vs Heap . 70
Malloc and Free . 72

14 Strings 81
Programming exercise . 83

15 Operator Precedence, II 85

16 Advanced Pointers 87
Pointer Types . 87
Pointers to Arrays . 88

ii

CONTENTS CONTENTS

Arrays of Pointers . 88
Structures Containing Pointers . 89
Pointers to Pointers . 90
Pointers to Structures Containing Pointers . 90
Linking . 91
A Linked Stack Example . 92
Programming exercise . 94

17 Libraries 97
Making a library . 100
Compiling and running . 103

18 Text files 105
Text files: opening . 107
Text files: reading . 108
Main function return values . 108

19 Binary Files 111

Index 117

iii

CONTENTS CONTENTS

iv

Listings

1.1 The simplest C program . 4
1.2 Integer division and typecasting . 7
2.1 Using printf . 9
2.2 Using scanf . 11
2.3 Addition of three numbers . 13
3.1 if statement . 15
3.2 if else statement . 16
3.3 Boolean vs integer in if statement . 18
3.4 Farenheit-to-Celsius conversion using integers . 20
3.5 Farenheit-to-Celsius conversion using floating point numbers, I 21
3.6 Farenheit-to-Celsius conversion using floating point numbers, II, with a bug 22
3.7 Farenheit-to-Celsius conversion using floating point numbers, II, corrected 22
5.1 Using arrays . 30
5.2 Sorting arrays, I . 31
5.3 Sorting arrays, I . 32
6.1 Initializing structures and passing structures to functions 38
7.1 Using pointers, I . 43
7.2 Using pointers for function parameters, I . 47
7.3 Using pointers for function parameters, II . 48
7.4 Copy the content of an array . 49
7.5 Mixing arrays and pointers . 50
13.1 A program that causes a stack overflow . 70
13.2 Simple example of using malloc and free . 72
example–dynamicmemory2.c . 74
example–dynamicmemory3.c . 75
13.3 Dereferencing of NULL pointer . 76
13.4 Using malloc and free . 77
13.5 Using malloc and free with structures . 78
14.1 Using strncpy . 82

v

LISTINGS LISTINGS

14.2 Using strncmp . 82
14.3 Using pointers with string . 83

vi

Part I

Basics of C

1

Chapter 1

Basics of C programming

The C programming language is a widely used language for creating computer programs. It gives
maximum control and efficiency to the developer. If you are interested in becoming a C programmer,
there are a couple of benefits you gain from learning C:

• You will be able to read and write code for a large number of platforms – everything from
microcontrollers to the most advanced scientific systems can be written in C.

• Because of the performance and portability of C, almost all popular cross-platform program-
ming and scripting languages are implemented in C and borrowed syntax and functions
heavily from C. They share the similar operators, expressions, repetition statements, control
structures, arrays, input and output, and functions. Furthermore, almost all languages can
interface with C to take advantage of a large volume of existing C libraries.

What is C?

C is a programming language. That means that you can use C to create lists of instructions for a
computer to follow. C is one of thousands of programming languages currently in use. C has been
around for several decades and has won widespread acceptance. C is an easy to learn. It is a bit
more cryptic in its style than some other languages, but you get beyond that fairly quickly.

C is what is called a compiled language. This means that once you write your C program, you
must run it through a C compiler to turn your program into an executable that the computer can run
(execute). The C program is the human-readable form, while the executable that comes out of the
compiler is the machine-readable and executable form. What this means is that to write and run a C
program, you must have access to a C compiler.

3

THE SIMPLEST C PROGRAM, I CHAPTER 1. C PROGRAMMING

We will start at the beginning with an extremely simple C program and build up from there. I
will assume that you are using the Linux command line and clang as your environment for these
examples; if you are not, all of the code will still work fine – you will simply need to use whatever
compiler you have available.

The simplest C program, I

Let’s start with the simplest possible C program and use it both to understand the basics of C and
the C compilation process. Type the following program into a standard text editor. Then save the
program to a file named hello.c. If you leave off .c, you will probably get some sort of error when
you compile it, so make sure you remember the .c. Here’s the first program:

Listing 1.1: The simplest C program
1 #include <stdio.h>
2

3 int main (void)
4 {
5 printf ("Hello, World!\n");
6

7 return 0;
8 }

Spacing and indentation

When you enter this program, position #include so that the pound sign is in column 1. Otherwise,
the spacing and indentation can be any way you like it. On many Linux systems, you will find a
program called indent, which will format code for you. The spacing and indentation shown above
is a good example to follow.

Compilation and run

When executed, this program instructs the computer to print out the line “Hello, World!” – then the
program quits.

To compile this code on a Linux machine, type

4

CHAPTER 1. C PROGRAMMING THE SIMPLEST C PROGRAM, II

1 clang hello.c -o hello

This line invokes the C compiler called clang, asks it to compile the code sored in the file hello.c
and asks it to place the executable file it creates under the name hello. To run the program, type

1 ./hello

You should see the output “Hello, World!” when you run the program.

If you mistype the program, it either will not compile or it will not run. If the program does not
compile or does not run correctly, edit it again and see where you went wrong in your typing. Fix
the error and try again.

The simplest C program, II

Let’s walk through this program and start to see what the different lines are doing:

1 #include <stdio.h>
2

3 int main (void)
4 {
5 printf ("Hello, World!\n");
6

7 return 0;
8 }

• This C program starts with #include <stdio.h>. This line includes the “standard input/otput
library” into your program. The standard I/O library lets you read input from the keyboard
(called “standard in”), write output to the screen (called “standard out”), process text files
stored on the disk, and so on. It is an extremely useful library. C has a large number of
standard libraries like stdio, including string, time and math libraries. A library is simply a
package of code that someone else has written to make your life easier (we’ll discuss libraries
a bit later).

• The line int main (void) declares the main function. Every C program must have a function
named main somewhere in the code. We will learn more about functions shortly. At run time,
program execution starts at the first line of the main function.

5

VARIABLES AND VARIABLE TYPES CHAPTER 1. C PROGRAMMING

• In C, the { and } symbols mark the beginning and end of a block of code. In this case, the
block of code making up the main function contains two lines.

• The printf statement in C allows you to send output to standard out (for us, the screen). The
portion in quotes is called the format string and describes how the data is to be formatted
when printed. The format string can contain string literals such as “Hello, World!”, symbols
for carriage returns (\n), and operators as placeholders for variables (see below).

• The return 0; line causes the function to return an error code of 0 (no error) to the shell that
started execution. More on this capability a bit later.

Variables and variable types

As a programmer, you will frequently want your program to “remember” a value. For example, if
your program requests a value from the user, or if it calculates a value, you will want to remember it
somewhere so you can use it later. The way your program remembers things is by using variables.
For example:

1 int b;

This line says, “I want to create a space called b that is able to hold one integer value.” A variable
has a name (in this case, b) and a type (in this case, int, an integer). You can store a value in b by
saying something like:

1 b = 5;

You can use the value in b by saying something like:

1 printf ("%d", b);

In C, there are several basic types for variables:

• int - integer (whole number) values

• double - floating point values

• char - single character values (such as “m” or “Z”)

There are a number of derivative types:

• long

• short

6

CHAPTER 1. C PROGRAMMING VARIABLES AND VARIABLE TYPES

• unsigned int - positive integers

We will see examples of these and other types as we go along.

C allows you to perform type conversions between different types of variables, so called typecasting.
Typecasting automatically occurs during the assignment operation, e.g. when an integer value is
assigned to a floating point variable.

You do explicit typecasting in C by placing the type name in parentheses and putting it in front of
the value you want to change.

The following code

Listing 1.2: Integer division and typecasting
1 #include <stdio.h>
2

3 int main (void)
4 {
5 double a, b;
6

7 a = 10 / 3;
8 b = (double) 10 / 3;
9 printf ("a = %f b = %f\n", a, b);

10

11 return 0;
12 }

prints

1 a = 3.000000 b = 3.333333

since variable a is assigned the result of integer division 10/3, which is integer 3, whereas variable b
is assigned the result of floating point division, 3.33333, because 10 is converted to a floating point
value before the division.

You can declare user-defined types in C with the typedef statement. For example, if you do not
like the word “double” for real numbers, you can say:

1 typedef double real;

and then later in your code use:

1 real r1, r2, r3;

7

OPERATORS CHAPTER 1. C PROGRAMMING

You can place typedef statements anywhere in a C program as long as they come prior to their first
use in the code.

Operators

Many operators in C are similar to operators in most languages:

1 + - addition
2 - - subtraction
3 / - division
4 * - multiplication
5 % - mod

The / operator performs integer division if both operands are integers, and performs floating point
division otherwise. For example:

Operator precedence in C is similar to that in most other languages. Division and multiplication
occur first, then addition and subtraction. The result of the calculation 5+3*4 is 17, not 32, because
the * operator has higher precedence than + in C. You can use parentheses to change the normal
precedence ordering: (5+3)*4 is 32. The 5+3 is evaluated first because it is in parentheses. We’ll
get into precedence later – it becomes somewhat complicated in C once pointers are introduced.

Incremental operators are important feature of C.

1 Long Way Short Way
2 i = i + 1; i++;
3 i = i - 1; i--;
4 i = i + 3; i += 3;
5 i = i * j; i *= j;

8

Chapter 2

Input and output

printf

The printf statement allows you to send output to standard out. For us, standard out is generally the
screen (although you can redirect standard out into a text file or to the input of another command).

Here is another program that will help you learn more about printf:

Listing 2.1: Using printf

1 #include <stdio.h>
2

3 int main (void)
4 {
5 int a, b, c;
6

7 a = 5;
8 b = 7;
9 c = a + b;

10 printf ("%d + %d = %d\n", a, b, c);
11

12 return 0;
13 }

Type this program into a file and save it as add.c. Compile it with the line clang add.c -o add and
then run it by typing ./add. You will see the line “5 + 7 = 12” as output.

9

PRINTF CHAPTER 2. INPUT AND OUTPUT

Here is an explanation of the different lines in this program:

• The line int a, b, c; declares three integer variables named a, b and c. Integer variables hold
whole numbers.

• The next line initializes the variable named a to the value 5.

• The next line sets b to 7.

• The next line adds a and b and “assigns” the result to c.

The computer adds the value in a (5) to the value in b (7) to form the result 12, and then
places that new value (12) into the variable c. The variable c is assigned the value 12. For this
reason, the = in this line is called “the assignment operator.”

• The printf statement then prints the line “5 + 7 = 12.” The %d placeholders in the printf
statement act as placeholders for values. There are three %d placeholders, and at the end of
the printf line there are the three variable names: a, b and c. C matches up the first %d with a
and substitutes 5 there. It matches the second %d with b and substitutes 7. It matches the
third %d with c and substitutes 12. Then it prints the completed line to the screen: 5 + 7 = 12.
The +, the = and the spacing are a part of the format line and get embedded automatically
between the %d operators as specified by the programmer.

Let’s look at some variations to understand printf completely. Here is the simplest printf statement:

1 printf ("Hello");

This call to printf has a format string that tells printf to send the word “Hello” to standard out.
Contrast it with this:

1 printf ("Hello\n");

The difference between the two is that the second version sends the word “Hello” followed by a
carriage return to standard out.

The following line shows how to output the value of a variable using printf.

1 printf ("%d", b);

The %d is a placeholder that will be replaced by the value of the variable b when the printf
statement is executed. Often, you will want to embed the value within some other words. One way
to accomplish that is like this:

1 printf ("The temperature is ");
2 printf ("%d", b);

10

CHAPTER 2. INPUT AND OUTPUT SCANF

3 printf (" degrees\n");

An easier way is to say this:

1 printf ("The temperature is %d degrees\n", b);

You can also use multiple %d placeholders in one printf statement:

1 printf ("%d + %d = %d\n", a, b, c);

In the printf statement, it is extremely important that the number of operators in the format string
corresponds exactly with the number and type of the variables following it. For example, if the
format string contains three %d operators, then it must be followed by exactly three parameters and
they must have the same types in the same order as those specified by the operators.

You can print all of the normal C types with printf by using different placeholders:

• int (integer values) uses %d

• double (floating point values) uses %f

• char (single character values) uses %c

• character strings (arrays of characters, discussed later) use %s

You can learn more about the nuances of printf on a Linux machine by typing man 3 printf.

scanf

The previous program is good, but it would be better if it read in the values 5 and 7 from the user
instead of using constants. Try this program instead:

Listing 2.2: Using scanf
1 #include <stdio.h>
2

3 int main(void)
4 {
5 int a, b, c;
6

7 printf("Enter the first value:");
8 scanf("%d", &a);

11

SCANF CHAPTER 2. INPUT AND OUTPUT

9 printf("Enter the second value:");
10 scanf("%d", &b);
11 c = a + b;
12 printf("%d + %d = %d\n", a, b, c);
13

14 return 0;
15 }

Make the changes, then compile and run the program to make sure it works. Note that scanf uses
the same sort of format string as printf (type man scanf for more info). Also note the & in front of
a and b. This is the address operator in C: It returns the address of the variable (this will not make
sense until we discuss pointers). You must use the & operator in scanf on any variable of type char,
int, or float, as well as structure types (which we will get to shortly). If you leave out the & operator,
you will get an error when you run the program. Try it so that you can see what that sort of run-time
error looks like.

The scanf function allows you to accept input from standard in, which for us is generally the
keyboard. The scanf function can do a lot of different things, but it is generally unreliable unless
used in the simplest ways. It is unreliable because it does not handle human errors very well. But
for simple programs it is good enough and easy-to-use.

The simplest application of scanf looks like this:

1 scanf ("%d", &b);

The program will read in an integer value that the user enters on the keyboard (%d is for integers, as
is printf, so b must be declared as an int) and place that value into b.

The scanf function uses the same placeholders as printf:

• int uses %d

• double uses %f

• char uses %c

• character strings (discussed later) use %s

You must put & in front of the variable used in scanf. The reason why will become clear once
you learn about pointers. It is easy to forget the & sign, and when you forget it your program will
almost always crash when you run it.

The printf and scanf functions will take a bit of practice to be completely understood, but once
mastered they are extremely useful.

12

CHAPTER 2. INPUT AND OUTPUT PROGRAMMING EXERCISE

Programming exercise

1. Modify the following program so that it accepts three values instead of two and adds all three
together:

Listing 2.3: Addition of three numbers
1 #include <stdio.h>
2

3 int main (void)
4 {
5 int a, b, c;
6

7 printf ("Enter the first value:");
8 scanf ("%d", &a);
9 printf ("Enter the second value:");

10 scanf ("%d", &b);
11 c = a + b;
12 printf ("%d + %d = %d\n", a, b, c);
13

14 return 0;
15 }

2. Try deleting or adding random characters or words in one of the previous programs and watch
how the compiler reacts to these errors.

For example, delete the b variable in the first line of the above program and see what the
compiler does when you forget to declare a variable. Delete a semicolon and see what happens.
Leave out one of the braces. Remove one of the parentheses next to the main function. Make
each error by itself and then run the program through the compiler to see what happens. By
simulating errors like these, you can learn about different compiler errors, and that will make
your typos easier to find when you make them for real.

13

PROGRAMMING EXERCISE CHAPTER 2. INPUT AND OUTPUT

14

Chapter 3

Branching and looping

if statement

Here is a simple C program demonstrating an if statement:

Listing 3.1: if statement
1 #include <stdio.h>
2

3 int main (void)
4 {
5 int b;
6

7 printf ("Enter a value:");
8 scanf ("%d", &b);
9 if (b < 0)

10 {
11 printf ("The value is negative\n");
12 }
13

14 return 0;
15 }

This program accepts a number from the user. It then tests the number using an if statement to see if
it is less than 0. If it is, the program prints a message. Otherwise, the program is silent. The (b < 0)
portion of the program is the Boolean expression or logical expression. C evaluates this expression

15

BOOLEAN EXPRESSIONS CHAPTER 3. BRANCHING AND LOOPING

to decide whether or not to print the message. If the Boolean expression evaluates to true, then C
executes the single line immediately following the if statement (or a block of lines within braces
immediately following the if statement). If the Boolean expression is false, then C skips the line or
block of lines immediately following the if statement.

Here’s slightly more complex example:

Listing 3.2: if else statement
1 #include <stdio.h>
2

3 int main (void)
4 {
5 int b;
6

7 printf ("Enter a value:");
8 scanf ("%d", &b);
9

10 if (b < 0)
11 {
12 printf ("The value is negative\n");
13 }
14 else if (b == 0)
15 {
16 printf ("The value is zero\n");
17 }
18 else
19 {
20 printf ("The value is positive\n");
21 }
22

23 return 0;
24 }

In this example, the else if and else sections evaluate for zero and positive values as well.

Boolean expressions

Here is a more complicated Boolean expression:

16

CHAPTER 3. BRANCHING AND LOOPING BOOLEAN: = VS ==

1 if ((x == y) && (j > k))
2 {
3 z = 1;
4 }
5 else
6 {
7 q = 10;
8 }

This statement says, “If the value in variable x equals the value in variable y, and if the value in
variable j is greater than the value in variable k, then set the variable z to 1, otherwise set the variable
q to 10.” You will use if statements like this throughout your C programs to make decisions. In
general, most of the decisions you make will be simple ones like the first example; but on occasion,
things get more complicated.

Notice that C uses == to test for equality, while it uses = to assign a value to a variable. The &&
in C represents a Boolean AND operation.

Here are all of the Boolean operators in C:

1 equality ==
2 less than <
3 Greater than >
4 <= <=
5 >= >=
6 inequality !=
7 and &&
8 or ||
9 not !

= vs == in boolean expressions

The == sign is a problem in C because every now and then you may forget and type just = in a
Boolean expression. This is an easy mistake to make, but to the compiler there is a very important
difference. C will accept either = and == in a Boolean expression – the behavior of the program
changes remarkably between the two, however.

17

WHILE LOOP CHAPTER 3. BRANCHING AND LOOPING

Boolean expressions evaluate to integers in C, and integers can be used inside of Boolean expressions.
The integer value 0 in C is False, while any other integer value is True. The following is legal in C:

Listing 3.3: Boolean vs integer in if statement

1 #include <stdio.h>
2

3 int main (void)
4 {
5 int a;
6

7 printf ("Enter an integer number:");
8 scanf ("%d", &a);
9

10 if (a)
11 {
12 printf ("The value is true\n");
13 }
14

15 return 0;
16 }

If a is anything other than 0, the printf statement gets executed.

In C, a statement like if (a = b) means, "Assign b to a, and then test a for its Boolean value." So if a
becomes 0, the if statement is False; otherwise, it is True. The value of a changes in the process.
This is not the intended behavior if you meant to type == (although this feature is useful when used
correctly), so be careful with your = and == usage.

while loop

You’ll find that while statements are just as easy to use as if statements. For example:

1 while (a < b)
2 {
3 printf ("%d\n", a);
4 a = a + 1;
5 }

18

CHAPTER 3. BRANCHING AND LOOPING DO-WHILE LOOP

This causes the two lines within the braces to be executed repeatedly until a is greater than or equal
to b. The while statement in general works as illustrated to the right.

do-while loop

C also provides a do-while structure:

1 do
2 {
3 printf ("%d\n", a);
4 a = a + 1;
5 }
6 while (a < b);

for loop

The for loop in C is simply a shorthand way of expressing a while statement. For example, suppose
you have the following code in C:

1 x = 1;
2 while (x < 10)
3 {
4 blah blah blah
5 x++; /* x++ is the same as saying x = x+1 */
6 }

You can convert this into a for loop as follows:

1 for (x = 1; x < 10; x++)
2 {
3 blah blah blah
4 }

Note that the while loop contains an initialization step (x=1), a test step (x<10), and an increment
step (x++). The for loop lets you put all three parts onto one line, but you can put anything into
those three parts. For example, suppose you have the following loop:

19

LOOPING: AN EXAMPLE CHAPTER 3. BRANCHING AND LOOPING

1 a = 1;
2 b = 6;
3 while (a < b)
4 {
5 a++;
6 printf ("%d\n",a);
7 }

You can place this into a for statement as well:

1 for (a = 1, b = 6; a < b; a++)
2 {
3 printf ("%d\n",a);
4 }

It is slightly confusing, but it is possible. Thecomma operator lets you separate several different
statements in the initialization and increment sections of the for loop (but not in the test section).
Many C programmers like to pack a lot of information into a single line of C code; but a lot of
people think it makes the code harder to understand, so they break it up.

Looping: an example

Let’s say that you would like to create a program that prints a Fahrenheit-to-Celsius conversion
table. This is easily accomplished with a for loop or a while loop:

Listing 3.4: Farenheit-to-Celsius conversion using integers
1 #include <stdio.h>
2

3 int main (void)
4 {
5 int a = 0;
6

7 while (a <= 100)
8 {
9 printf ("%4d degrees F = %4d degrees C\n",

10 a, (a - 32) * 5 / 9);
11 a = a + 10;

20

CHAPTER 3. BRANCHING AND LOOPING LOOPING: AN EXAMPLE

12 }
13

14 return 0;
15 }

If you run this program, it will produce a table of values starting at 0 degrees F and ending at 100
degrees F. The output will look like this:

1 0 degrees F = -17 degrees C
2 10 degrees F = -12 degrees C
3 20 degrees F = -6 degrees C
4 30 degrees F = -1 degrees C
5 40 degrees F = 4 degrees C
6 50 degrees F = 10 degrees C
7 60 degrees F = 15 degrees C
8 70 degrees F = 21 degrees C
9 80 degrees F = 26 degrees C

10 90 degrees F = 32 degrees C
11 100 degrees F = 37 degrees C

The table’s values are in increments of 10 degrees. You can see that you can easily change the
starting, ending or increment values of the table that the program produces.

If you wanted your values to be more accurate, you could use floating point values instead:

Listing 3.5: Farenheit-to-Celsius conversion using floating point numbers, I
1 #include <stdio.h>
2

3 int main (void)
4 {
5 double a = 0.;
6

7 while (a <= 100.)
8 {
9 printf ("%6.2f degrees F = %6.2f degrees C\n",

10 a, (a - 32.) * 5. / 9.);
11 a += 10.;
12 }
13

14 return 0;

21

LOOPING: AN EXAMPLE CHAPTER 3. BRANCHING AND LOOPING

15 }

You can see that the declaration for a has been changed to a float, and the %f symbol replaces the
%d symbol in the printf statement. In addition, the %f symbol has some formatting applied to it:
The value will be printed with six digits preceding the decimal point and two digits following the
decimal point.

Now let’s say that we wanted to modify the program so that the temperature 98.6F is inserted in
the table at the proper position. That is, we want the table to increment every 10 degrees, but we
also want the table to include an extra line for 98.6 degrees F because that is the normal body
temperature for a human being. The following program accomplishes the goal:

Listing 3.6: Farenheit-to-Celsius conversion using floating point numbers, II, with a bug
1 #include <stdio.h>
2

3 int main (void)
4 {
5 double a = 0.;
6 double tbody = 98.6;
7

8 while (a <= 100.)
9 {

10 if (a > tbody)
11 {
12 printf ("%6.2f degrees F = %6.2f degrees C\n",
13 tbody, (tbody - 32.) * 5. / 9.);
14 }
15 printf ("%6.2f degrees F = %6.2f degrees C\n",
16 a, (a - 32.) * 5. / 9.);
17 a += 10.;
18 }
19

20 return 0;
21 }

This program works if the ending value is 100, but if you change the ending value to 200 you will
find that the program has a bug. It prints the line for 98.6 degrees too many times. We can fix that
problem in several different ways. Here is one way:

Listing 3.7: Farenheit-to-Celsius conversion using floating point numbers, II, corrected

22

CHAPTER 3. BRANCHING AND LOOPING LOOPING: AN EXAMPLE

1 #include <stdio.h>
2

3 int main (void)
4 {
5 double a, b, tbody;
6 a = 0.;
7 b = a;
8 tbody = 98.6;
9

10 while (a <= 150.)
11 {
12 if ((a > tbody) && (b < tbody))
13 {
14 printf ("%6.2f degrees F = %6.2f degrees C\n",
15 tbody, (tbody - 32.) * 5. / 9.);
16 }
17 printf ("%6.2f degrees F = %6.2f degrees C\n",
18 a, (a - 32.) * 5. / 9.);
19 b = a;
20 a += 10;
21 }
22

23 return 0;
24 }

The output will look like this:

1 0.00 degrees F = -17.78 degrees C
2 10.00 degrees F = -12.22 degrees C
3 20.00 degrees F = -6.67 degrees C
4 30.00 degrees F = -1.11 degrees C
5 40.00 degrees F = 4.44 degrees C
6 50.00 degrees F = 10.00 degrees C
7 60.00 degrees F = 15.56 degrees C
8 70.00 degrees F = 21.11 degrees C
9 80.00 degrees F = 26.67 degrees C

10 90.00 degrees F = 32.22 degrees C
11 98.60 degrees F = 37.00 degrees C
12 100.00 degrees F = 37.78 degrees C
13 110.00 degrees F = 43.33 degrees C

23

PROGRAMMING EXERCISE CHAPTER 3. BRANCHING AND LOOPING

14 120.00 degrees F = 48.89 degrees C
15 130.00 degrees F = 54.44 degrees C
16 140.00 degrees F = 60.00 degrees C
17 150.00 degrees F = 65.56 degrees C

Programming exercise

1. Try changing the Fahrenheit-to-Celsius program so that it adds a heading line to the table that
is produced.

2. Try to find a different solution to the bug fixed by the previous example.

3. Create a table that converts pounds to kilograms or miles to kilometers.

24

Chapter 4

Functions

Functions let you chop up a long program into named sections so that the sections can be reused
throughout the program. Functions accept parameters and return a result. C functions can accept
an unlimited number of parameters. In general, C does not care in what order you put your functions
in the program, so long as a the function name is known to the compiler before it is called.

We have already talked a little about functions. printf and main are examples of functions.

Another example is the rand function below. It accepts no parameters and returns an integer result:

1 unsigned int rand(void)
2 /*
3 * rand() generates a pseudo random integer between 0 and 32767

inclusive.
4 */
5 {
6 rand_seed = rand_seed * 1103515245 + 12345;
7 return (unsigned int)(rand_seed / 65536) % 32768;
8 }

The unsigned int rand() line declares the function rand to the rest of the program and specifies
that rand will accept no parameters and return a positive integer result. This function has no local
variables, but if it needed locals, they would go right below the opening { (C allows you to declare
variables after any { – they exist until the program reaches the matching } and then they disappear.
A function’s local variables therefore vanish as soon as the matching } is reached in the function.
While they exist, local variables live on the system stack.) Note that there is no ; after the () in the
first line. Also note that even though there are no parameters, you must use the (void). It tells the
compiler that you are declaring a function rather than simply declaring an int.

25

CHAPTER 4. FUNCTIONS

The return statement is important to any function that returns a result. It specifies the value that
the function will return and causes the function to exit immediately. This means that you can place
multiple return statements in the function to give it multiple exit points. If you do not place a return
statement in a function, the function returns when it reaches } and returns a random value (many
compilers will warn you if you fail to return a specific value). In C, a function can return values of
any type: int, double, char, etc.

There are several ways to call the rand function. For example: x = rand();. The variable x is
assigned the value returned by rand in this statement. Note that you must use () in the function call,
even though no parameter is passed. Otherwise, x is given the memory address of the rand function,
which is generally not what you intended.

You might also call rand this way:

1 if (rand() > 100)
2 {
3
4 }

Or this way:

1 rand();

In the latter case, the function is called but the value returned by rand is discarded. You may never
want to do this with rand, but many functions return some kind of error code through the function
name, and if you are not concerned with the error code (for example, because you know that an
error is impossible) you can discard it in this way.

Functions can use a void return type if you intend to return nothing. For example:

1 void print_header()
2 {
3 printf ("Program Number 1\n");
4 printf ("Version 1.0, released 12/12/2012\n");
5 }

This function returns no value. You can call it with the following statement:

1 print_header();

C functions can accept parameters of any type. For example:

26

CHAPTER 4. FUNCTIONS FUNCTION PROTOTYPES

1 int fact(int i)
2 {
3 int j, k;
4

5 j = 1;
6 for (k = 2; k <= i; k++)
7 {
8 j = j*k;
9 }

10 return j;
11 }

returns the factorial of i, which is passed in as an integer parameter. Separate multiple parameters
with commas:

1 int add (int i, int j)
2 {
3 return i + j;
4 }

Function prototypes

It is considered good practice to use function prototypes for all functions in your program. A
prototype declares the function name, its parameters, and its return type to the rest of the program
prior to the function’s actual declaration. To understand why function prototypes are useful, enter
the following code and run it:

1 #include <stdio.h>
2

3 int main (void)
4 {
5 printf ("%d\n",add(3));
6 return 0;
7 }
8

9 int add(int i, int j)
10 {

27

FUNCTION PROTOTYPES CHAPTER 4. FUNCTIONS

11 return i+j;
12 }

This code compiles on some compilers without giving you a warning, even though add expects two
parameters but receives only one. It works because many C compilers do not check for parameter
matching either in type or count. You can waste an enormous amount of time debugging code in
which you are simply passing one too many or too few parameters by mistake. The above code
compiles properly, but it produces the wrong answer.

To solve this problem, C lets you place function prototypes at the beginning of (actually, anywhere
in) a program. If you do so, C checks the types and counts of all parameter lists. Try compiling the
following:

1 #include <stdio.h>
2

3 int add (int, int); /* function prototype for add */
4

5 int main (void)
6 {
7 printf ("%d\n",add(3));
8 return 0;
9 }

10

11 int add(int i, int j)
12 {
13 return i + j;
14 }

The prototype causes the compiler to flag an error on the printf statement.

Place one prototype for each function at the beginning of your program. They can save you a great
deal of debugging time, and they also solve the problem you get when you compile with functions
that you use before they are declared.

28

Chapter 5

Arrays

In this section, we will create a small C program that generates 10 random numbers and sorts them.
To do that, we will use a new variable arrangement called an array.

An array lets you declare and work with a collection of values of the same type. For example, you
might want to create a collection of five integers. One way to do it would be to declare five integers
directly:

1 int a, b, c, d, e;

This is okay, but what if you needed a thousand integers? An easier way is to declare an array of
five integers:

1 int a[5];

The five separate integers inside this array are accessed by an index. All arrays start at index zero
and go to n-1 in C. Thus, int a[5]; contains five elements. For example:

1 int a[5];
2

3 a[0] = 12;
4 a[1] = 9;
5 a[2] = 14;
6 a[3] = 5;
7 a[4] = 1;

One of the nice things about array indexing is that you can use a loop to manipulate the index. For
example, the following code initializes all of the values in the array to 0:

29

CHAPTER 5. ARRAYS

1 int a[5];
2 int i;
3 for (i = 0; i < 5; i++)
4 {
5 a[i] = 0;
6 }

You declare arrays by inserting an array size after a normal declaration, as shown below:

1 int a[10]; /* array of integers */
2 char s[100]; /* array of characters */
3 double f[20]; /* array of floating point numbers */

The following code initializes the values in the array sequentially and then prints them out:

Listing 5.1: Using arrays

1 #include <stdio.h>
2

3 int main (void)
4 {
5 int a[5];
6 int i;
7

8 for (i = 0; i < 5; i++)
9 {

10 a[i] = i;
11 }
12 for (i = 0; i < 5; i++)
13 {
14 printf ("a[%d] = %d\n", i, a[i]);
15 }
16

17 return 0;
18 }

30

CHAPTER 5. ARRAYS PROGRAMMING EXAMPLE: SORTING ARRAYS

Programming example: sorting arrays

Arrays are used all the time in C. To understand a common usage, consider the following code:

Listing 5.2: Sorting arrays, I
1 #include <stdio.h>
2

3 #define MAX 10
4

5 static int a[MAX];
6 static unsigned int rand_seed=10;
7

8 unsigned int rand(void);
9

10 int main (void)
11 {
12 int i;
13

14 /* fill array */
15 for (i = 0; i < MAX; i++)
16 {
17 a[i] = (int) rand();
18 printf ("%d\n", a[i]);
19 }
20

21 /* more stuff will go here in a minute */
22

23 return 0;
24 }
25

26 /*
27 * rand() generates a pseudo random integer between 0 and 32767

inclusive.
28 */
29 unsigned int rand (void)
30 {
31 rand_seed = rand_seed * 1103515245 + 12345;
32 return (unsigned int) (rand_seed / 65536) % 32768;
33 }

31

PROGRAMMING EXAMPLE: SORTING ARRAYS CHAPTER 5. ARRAYS

This code contains several new concepts. The #define line declares a constant named MAX and
sets it to 10. Constant names are traditionally written in all caps to make them obvious in the code.
The line int a[MAX]; shows you how to declare an array of integers in C. Note that because of the
position of the array’s declaration, it is global to the entire program.

The line unsigned int rand_seed = 10 also declares a global variable, this time named rand_seed,
that is initialized to 10 each time the program begins. This value is the starting seed for the random
number code that follows. The rand function will produce the same values each time you run the
program with the same seed.

The line unsigned int rand(void) is a function declaration. The rand function accepts no arguments
and returns an unsigned integer value. We will learn more about functions later. The four lines that
follow implement the rand function. We will ignore them for now.

The main function is normal. Four local integers are declared, and the array is filled with 10 random
values using a for loop. Note that the array a contains 10 individual integers. You point to a specific
integer in the array using square brackets. So a[0] refers to the first integer in the array, a[1] refers
to the second, and so on. The line starting with /* and ending with */ is called a comment. The
compiler completely ignores the line. You can place notes to yourself or other programmers in
comments.

When compiled and run, the code produces the following output:

1 4543
2 28214
3 11245
4 8870
5 16887
6 2234
7 20162
8 27592
9 20255

10 30710

Now add more code, so that the program looks as following:

Listing 5.3: Sorting arrays, I
1 #include <stdio.h>
2

3 #define MAX 10
4

5 static int a[MAX];

32

CHAPTER 5. ARRAYS PROGRAMMING EXAMPLE: SORTING ARRAYS

6 static unsigned int rand_seed=10;
7

8 unsigned int rand(void);
9 void bubblesort(void);

10

11 int main (void)
12 {
13 int i;
14

15 /* fill array */
16 for (i = 0; i < MAX; i++)
17 {
18 a[i] = (int) rand();
19 printf ("%d\n", a[i]);
20 }
21

22 /*
23 * sort
24 */
25 bubblesort();
26

27 /*
28 * print sorted array
29 */
30 printf ("--------------------\n");
31 for (i = 0; i < MAX; i++)
32 {
33 printf ("%d\n", a[i]);
34 }
35

36 return 0;
37 }
38

39 /*
40 * generate a pseudo random integer between 0 and 32767 inclusive

.
41 */
42 unsigned int rand (void)
43 {

33

PROGRAMMING EXAMPLE: SORTING ARRAYS CHAPTER 5. ARRAYS

44 rand_seed = rand_seed * 1103515245 + 12345;
45 return (unsigned int) (rand_seed / 65536) % 32768;
46 }
47 /*
48 * bubble sort the array
49 */
50 void bubblesort (void)
51 {
52 int i, j, t;
53

54 for (i = 0; i < MAX-1; i++)
55 {
56 for (j = 0; j < MAX-i-1; j++)
57 {
58 if (a[j] > a[j+1])
59 {
60 t = a[j];
61 a[j] = a[j+1];
62 a[j+1] = t;
63 }
64 }
65 }
66 }

This code sorts the random values and prints them in sorted order. Each time you run it, you will
get the same values. If you would like to change the values that are sorted, change the value of
rand_seed each time you run the program.

The otput on the new version is the original unsorted array, followed by the sorted one.

1 4543
2 28214
3 11245
4 8870
5 16887
6 2234
7 20162
8 27592
9 20255

10 30710

34

CHAPTER 5. ARRAYS PROGRAMMING EXAMPLE: SORTING ARRAYS

11 --------------------
12 2234
13 4543
14 8870
15 11245
16 16887
17 20162
18 20255
19 27592
20 28214
21 30710

A good way to understand what this code is doing is to execute it “by hand.” That is, assume MAX
is 4 to make it a little more manageable, take out a sheet of paper and pretend you are the computer.
Draw the array on your paper and put four random, unsorted values into the array. Execute each
line of the sorting section of the code and draw out exactly what happens. You will find that, each
time through the inner loop, the larger values in the array are pushed toward the bottom of the array
and the smaller values bubble up toward the top.

35

PROGRAMMING EXAMPLE: SORTING ARRAYS CHAPTER 5. ARRAYS

36

Chapter 6

Structures

Structures in C allow you to group variable into a package. Here’s an example:

1 struct rec
2 {
3 int a, b, c;
4 double d, e, f;
5 };
6

7 struct rec r;

As shown here, whenever you want to declare structures of the type rec, you have to say struct rec.
This line is very easy to forget, and you get many compiler errors because you absent-mindedly
leave out the struct. You can compress the code into the form:

1 struct rec
2 {
3 int a;
4 double b, c;
5 } r;

where the type declaration for rec and the variable r are declared in the same statement. Or you can
create a typedef statement for the structure name. For example, if you do not like saying struct rec
r every time you want to declare a record, you can say:

1 typedef struct rec rec_type;

and then declare records of type rec_type by saying:

37

CHAPTER 6. STRUCTURES

1 rec_type r;

You access fields of structure using a period, for example, r.a = 5;.

You can initialize a structure as following:

1 struct rec r1 = (struct rec) { 1, 2., 3. };

XS The C language allows you to pass an entire structure to a function. In addition, a function can
return a structure back to its caller.

Listing 6.1: Initializing structures and passing structures to functions
1 #include <stdio.h>
2 #include <math.h>
3

4 struct point2d
5 {
6 double x;
7 double y;
8 };
9

10 struct triangle
11 {
12 struct point2d a;
13 struct point2d b;
14 struct point2d c;
15 };
16

17 double area(struct triangle t);
18

19

20 /*
21 * Calculate the area of a triangle
22 */
23 double area (struct triangle t)
24 {
25 return fabs(0.5*((t.c.x - t.a.x)*(t.b.y - t.a.y) - (t.c.y - t.

a.y)*(t.b.x - t.a.x))) ;
26 }
27

38

CHAPTER 6. STRUCTURES

28 int main(void)
29 {
30 struct triangle t1, t2;
31 double s;
32

33 /*
34 * initialization
35 */
36 t1.a = (struct point2d) {0., 0.};
37 t1.b = (struct point2d) {3., 0.};
38 t1.c = (struct point2d) {0., 4.};
39

40 s = area(t1);
41 printf("Area: %14.6f\n", s);
42

43 /*
44 * initialization
45 */
46 t2 = (struct triangle) { {0., 0.}, {5., 0.}, {0., 12.} };
47 s = area(t2);
48

49 printf("Area: %14.6f\n", s);
50

51 return 0;
52 }

39

CHAPTER 6. STRUCTURES

40

Chapter 7

Pointers

Pointers are used everywhere in C, so if you want to use the C language fully you have to have a
very good understanding of pointers. The goal of this section and the next several that follow is to
help you build a complete understanding of pointers and how C uses them. For most people it takes
a little time and some practice to become fully comfortable with pointers, but once you master them
you are a full-fledged C programmer.

C uses pointers in three different ways:

• C uses pointers to create dynamic data structures – data structures built up from blocks of
memory allocated at run-time.

• C uses pointers to handle variable parameters passed to functions.

• Pointers in C provide a way to access information stored in arrays. Pointer techniques are
especially valuable when you work with strings. There is an intimate link between arrays and
pointers in C.

In some cases, C programmers also use pointers because they make the code slightly more efficient.
What you will find is that, once you are completely comfortable with pointers, you tend to use them
all the time.

We will start this discussion with a basic introduction to pointers and the concepts surrounding
pointers, and then move on to the three techniques described above.

41

POINTERS: WHY? CHAPTER 7. POINTERS

Pointers: why?

Imagine that you would like to create a text editor – a program that lets you edit normal text files,
like “vim” on UNIX or “Notepad” on Windows. A text editor is a fairly common thing for someone
to create because, if you think about it, a text editor is probably a programmer’s most commonly
used piece of software. The text editor is a programmer’s intimate link to the computer – it is where
you enter all of your thoughts and then manipulate them. Obviously, with anything you use that
often and work with that closely, you want it to be just right. Therefore many programmers create
their own editors and customize them to suit their individual working styles and preferences.

So one day you sit down to begin working on your editor. After thinking about the features you
want, you begin to think about the “data structure” for your editor. That is, you begin thinking about
how you will store the document you are editing in memory so that you can manipulate it in your
program. What you need is a way to store the information you are entering in a form that can be
manipulated quickly and easily. You believe that one way to do that is to organize the data on the
basis of lines of characters. Given what we have discussed so far, the only thing you have at your
disposal at this point is an array. You think, “Well, a typical line is 80 characters long, and a typical
file is no more than 1,000 lines long.” You therefore declare a two-dimensional array, like this:

1 char doc[1000][80];

This declaration requests an array of 1,000 80-character lines. This array has a total size of 80,000
characters.

As you think about your editor and its data structure some more, however, you might realize three
things:

• Some documents are long lists. Every line is short, but there are thousands of lines.

• Some special-purpose text files have very long lines. For example, a certain data file might
have lines containing 542 characters, with each character representing the amino acid pairs in
segments of DNA.

• In most modern editors, you can open multiple files at one time.

Let’s say you set a maximum of 10 open files at once, a maximum line length of 1,000 characters
and a maximum file size of 50,000 lines. Your declaration now looks like this:

1 char doc[50000][1000][10];

That doesn’t seem like an unreasonable thing, until you pull out your calculator, multiply 50,000
by 1,000 by 10 and realize the array contains 500 million characters! Even if the computer would
accept a request for such a large array, you can see that it is an extravagant waste of space. It seems

42

CHAPTER 7. POINTERS POINTER BASICS

strange to declare a 500 million character array when, in the vast majority of cases, you will run this
editor to look at 100 line files that consume at most 4,000 or 5,000 characters. The problem with an
array is the fact that you have to declare it to have its maximum size in every dimension from the
beginning. Those maximum sizes often multiply together to form very large numbers. Also, if you
happen to need to be able to edit an odd file with a 2,000 character line in it, you are out of luck.
There is really no way for you to predict and handle the maximum line length of a text file, because,
technically, that number is infinite.

Pointers are designed to solve this problem. With pointers, you can create dynamic data structures.
Instead of declaring your worst-case memory consumption up-front in an array, you instead allocate
memory from the heap while the program is running. That way you can use the exact amount of
memory a document needs, with no waste. In addition, when you close a document you can return
the memory so that other parts of the program can use it. With pointers, memory can be recycled
while the program is running.

Pointer Basics

To understand pointers, it helps to compare them to normal variables.

A “normal variable” is a location in memory that can hold a value. For example, when you declare
a variable i as an integer, a chunk of memory are set aside for it. In your program, you refer to that
location in memory by the name i. At the machine level that location has a memory address. The
memory at that address are known to you, the programmer, as i, and it can hold one integer value.

A pointer is different. A pointer is a variable that points to another variable. This means that a
pointer holds the memory address of another variable. Put another way, the pointer does not hold a
value in the traditional sense; instead, it holds the address of another variable. A pointer “points to”
that other variable by holding a copy of its address.

Because a pointer holds an address rather than a value, it has two parts. The pointer itself holds
the address. That address points to a value. There is the pointer and the value pointed to. This fact
can be a little confusing until you get comfortable with it, but once you get comfortable it becomes
extremely powerful.

The following example code shows a typical pointer:

Listing 7.1: Using pointers, I
1 #include <stdio.h>
2

3 int main (void)

43

POINTER BASICS CHAPTER 7. POINTERS

4 {
5 int i, j;
6 int *p; /* a pointer to an integer */
7

8 p = &i;
9 *p = 5;

10 j = i;
11

12 printf ("%d %d %d\n", i, j, *p);
13

14 return 0;
15 }

The first declaration in this program declares two normal integer variables named i and j. The line
int *p declares a pointer named p. This line asks the compiler to declare a variable p that is a
pointer to an integer. The * indicates that a pointer is being declared rather than a normal variable.
You can create a pointer to anything: a double, a structure, a char, and so on. Just use a * to indicate
that you want a pointer rather than a normal variable.

The line p = &i; will definitely be new to you. In C, & is called the address operator. The
expression &i means, "The memory address of the variable i." Thus, the expression p = &i; means,
"Assign to p the address of i." Once you execute this statement, p “points to” i. Before you do so, p
contains a random, unknown address, and its use will likely cause a segmentation fault or similar
program crash.

In the program above the three variables i, j and p have been declared, but none of the three has
been initialized. Once p points to i, the memory location i has two names. It is still known as i, but
now it is known as *p as well. This is how C talks about the two parts of a pointer variable: p is the
location holding the address, while *p is the location pointed to by that address. Therefore *p=5
means that the location pointed to by p should be set to 5. Because the location *p is also i, i also
takes on the value 5. Consequently, j = i; sets j to 5, and the printf statement produces as following:

1 5 5 5

The main feature of a pointer is its two-part nature. The pointer itself holds an address. The pointer
also points to a value of a specific type - the value at the address the point holds. The pointer itself,
in this case, is p. The value pointed to is *p.

44

CHAPTER 7. POINTERS UNDERSTANDING MEMORY ADDRESSES

Understanding Memory Addresses

The previous discussion becomes a little clearer if you understand how memory addresses work
in a computer’s hardware. All computers have memory, also known as RAM (Random Access
Memory). RAM holds the programs that your computer is currently running along with the data
they are currently manipulating (their variables and data structures). Memory can be thought of
simply as an array of bytes. In this array, every memory location has its own address – the address
of the first byte is 0, followed by 1, 2, 3, and so on. Memory addresses act just like the indexes of a
normal array. The computer can access any address in memory at any time and any order (hence
the name “random access memory”). It can also group bytes together as it needs to to form larger
variables, arrays, and structures. For example, a double variable consumes 8 contiguous bytes in
memory. You might make the following global declaration in a program:

1 double f;

This statement says, "Declare a location named f that can hold one floating point value." When the
program runs, the computer reserves space for the variable f somewhere in memory. That location
has a fixed address in the memory space. The variable f consumes eight bytes of RAM in memory.

While you think of the variable f, the computer thinks of a specific address in memory (for example,
248,440). Therefore, when you create a statement like this:

1 f = 3.14;

The compiler might translate that into, “Load the value 3.14 into memory location 248,440.” The
computer is always thinking of memory in terms of addresses and values at those addresses.

There are, by the way, several interesting side effects to the way your computer treats memory. For
example, say that you include the following code in one of your programs:

1 int i, s[4], t[4];
2

3 for (i = 0; i <= 4; i++)
4 {
5 s[i] = i;
6 t[i] = i;
7 }
8

9 printf ("s:t\n");
10

11 for (i = 0; i <= 4; i++)

45

UNDERSTANDING MEMORY ADDRESSES CHAPTER 7. POINTERS

12 {
13 printf ("%d:%d\n", s[i], t[i]);
14 }

The output that you see from the program1 will look like this:

1 s:t
2 4:0
3 1:1
4 2:2
5 3:3
6 4:4

Why are s[0] incorrect? If you look carefully at the code, you can see that the for loops are writing
one element past the end of each array. In memory, the arrays are placed adjacent to one another.
Therefore, when you try to write to t[4], which does not exist, the system writes into s[0] instead
because s[0] is where t[4] ought to be. As far as the computer is concerned, t[4] is simply an address,
and it can write into it. As you can see however, even though the computer executes the program, it
is not correct or valid. The program corrupts the array s in the process of running. If you execute
the following statement, more severe consequences may result:

1 s[100000000] = 5;

The location s[100000000] is likely outside of your program’s memory space. In other words, you
are writing into memory that your program does not own. On a system with protected memory
spaces, this sort of statement will cause the system to terminate execution of the program. On other
systems, however, the system is not aware of what you are doing. You end up damaging the code
or variables in another application. The effect of the violation can range from nothing at all to a
complete system crash. In memory, i, s, t are all placed next to one another at specific addresses.
Therefore, if you write past the boundaries of a variable, the computer will do what you say but it
will end up corrupting another memory location.

Because C does not perform any sort of range checking when you access an element of an array, it is
essential that you, as a programmer, pay careful attention to array ranges yourself and keep within
the array’s appropriate boundaries. Unintentionally reading or writing outside of array boundaries
always leads to faulty program behavior.

1Compiled as following: clang -O0 example-overwrite.c -o example-overwrite. This particu-
lar example is sensitive to the compilation options and the compiler used.

46

CHAPTER 7. POINTERS POINTING TO THE SAME ADDRESS

Pointing to the Same Address

Here is an important aspect of C: Any number of pointers can point to the same address. For
example, you could declare p, q, and r as integer pointers and set all of them to point to i, as shown
here:

1 int i;
2 int *p, *q, *r;
3

4 p = &i;
5 q = &i;
6 r = p;

Note that in this code, r points to the same thing that p points to, which is i. You can assign pointers
to one another, and the address is copied from the right-hand side to the left-hand side during the
assignment. The variable i now has four names: i, *p, *q and *r. There is no limit on the number of
pointers that can hold (and therefore point to) the same address.

Using Pointers for Function Parameters

Variable parameters in functions are one of the most common uses of pointers in C. To understand
how variable parameters work, lets see how we might go about implementing a swap function in
C. To implement a swap function, what you would like to do is pass in two variables and have
the function swap their values. Here’s one attempt at an implementation – enter and execute the
following code and see what happens:

Listing 7.2: Using pointers for function parameters, I
1 #include <stdio.h>
2

3 void swap(int, int);
4

5 void swap(int i, int j)
6 {
7 int t;
8

9 t = i;
10 i = j;
11 j = t;

47

USING POINTERS FOR FUNCTION PARAMETERS CHAPTER 7. POINTERS

12 }
13

14 int main (void)
15 {
16 int a, b;
17

18 a = 5;
19 b = 10;
20 printf ("%d %d\n", a, b);
21

22 swap(a, b);
23

24 printf ("%d %d\n", a, b);
25

26 return 0;
27 }

When you execute this program, you will find that no swapping takes place:

1 5 10
2 5 10

The values of a and b are passed to swap, and the swap function does swap them, but when the
function returns nothing happens.

To make this function work correctly you can use pointers, as shown below:

Listing 7.3: Using pointers for function parameters, II
1 #include <stdio.h>
2

3 void swap(int *, int *);
4

5 void swap(int *i, int *j)
6 {
7 int t;
8

9 t = *i;
10 *i = *j;
11 *j = t;
12 }

48

CHAPTER 7. POINTERS POINTERS AND ARRAYS

13

14 int main (void)
15 {
16 int a, b;
17

18 a = 5;
19 b = 10;
20 printf ("%d %d\n", a, b);
21

22 swap(&a, &b);
23

24 printf ("%d %d\n", a, b);
25

26 return 0;
27 }

Now swapping works:

1 5 10
2 10 5

Pointers and Arrays

Arrays and pointers are intimately linked in C. To use arrays effectively, you have to know how to
use pointers with them.

Let’s start with a simple example of copying arrays:

Listing 7.4: Copy the content of an array
1 #include <stdio.h>
2

3 #define MAX 10
4

5 int main (void)
6 {
7 int a[MAX];
8 int b[MAX];
9 int i;

49

POINTERS AND ARRAYS CHAPTER 7. POINTERS

10

11 for (i = 0; i < MAX; i++)
12 {
13 a[i] = i;
14 }
15

16 /*
17 * copy arrays, a -> b
18 */
19 for (i = 0; i < MAX; b[i] = a[i], i++);
20

21 printf ("a:b\n");
22 for (i = 0; i < MAX; i++)
23 {
24 printf ("%d:%d\n", a[i], b[i]);
25 }
26

27 return 0;
28 }

To do the copy we need to use something like this:

1 for (i = 0; i < MAX; b[i] = a[i], i++);

(Simply writing a=b; would produce a compilation error.)

Variables a and b are not arrays themselves. Instead they are permanent pointers to arrays. a and b
permanently point to the first elements of their respective arrays – they hold the addresses of a[0]
and b[0] respectively. Since they are permanent pointers you cannot change their addresses. The
statement a=b; therefore does not work.

Because a and b are pointers, you can do several interesting things with pointers and arrays. For
example, the following code works:

Listing 7.5: Mixing arrays and pointers
1 #include <stdio.h>
2

3 #define MAX 10
4

5 int main (void)
6 {

50

CHAPTER 7. POINTERS POINTERS AND ARRAYS

7 int a[MAX];
8 int i;
9 int *p;

10

11 p = a;
12 for (i = 0; i < MAX; i++)
13 {
14 a[i] = MAX - i;
15 }
16

17 printf ("%d\n", *p);
18

19 return 0;
20 }

The statement p = a; works because a is a pointer. a points to the address of the 0th element of the
actual array. This element is an integer, so a is a pointer to a single integer. Therefore, declaring p
as a pointer to an integer and setting it equal to a works. Another way to say exactly the same thing
would be to replace p=a; with p=&a[0];. Since a contains the address of a[0], a and &a[0] mean
the same thing.

Now that p is pointing at the 0th element of a, you can do some rather strange things with it. The
a variable is a permanent pointer and can not be changed, but p is not subject to such restrictions.
C actually encourages you to move it around using pointer arithmetic. For example, if you say
p++;, the compiler knows that p points to an integer, so this statement increments p the appropriate
number of bytes to move it to the next element of the array. If p were pointing to an array of
100-byte-long structures, p++; would move p over by 100 bytes. C takes care of the details of
element size.

You can copy the array a into b using pointers as well. The following code can replace (for i=0;
i<MAX; a[i]=b[i], i++); :

1 p = a;
2 q = b;
3 for (i = 0; i < MAX; i++)
4 {
5 *q = *p;
6 q++;
7 p++;
8 }

51

POINTERS AND ARRAYS CHAPTER 7. POINTERS

You can abbreviate this code as follows:

1 p = a;
2 q = b;
3 for (i = 0; i < MAX; i++)
4 {
5 *q++ = *p++;
6 }

And you can further abbreviate it to:

1 for (p = a, q = b, i = 0; i < MAX; *q++ = *p++, i++);

What if you go beyond the end of the array a or b with the pointers p or q? C does not care – it
blithely goes along incrementing p and q, copying away over other variables with abandon. You
need to be careful when indexing into arrays in C, because C assumes that you know what you are
doing.

You can pass an array such as a or b to a function in two different ways. Imagine a function dump
that accepts an array of integers as a parameter and prints the contents of the array to stdout. There
are two ways to code dump:

1 void dump (int a[], int nia)
2 {
3 for (int i = 0; i < nia; i++)
4 {
5 printf ("%d\n",a[i]);
6 }
7 }

or:

1 void dump (int *p, int nia)
2 {
3 for (int i = 0; i < nia; i++)
4 {
5 printf ("%d\n",*p++);
6 }
7 }

52

CHAPTER 7. POINTERS POINTERS TO STRUCTURES

The nia (number_in_array) variable is required so that the size of the array is known. Note that only
a pointer to the array, rather than the contents of the array, is passed to the function. Also note that
C functions can accept variable-size arrays as parameters.

Pointers to Structures

It is possible to create a pointer to almost any type in C, including user-defined types. It is extremely
common to create pointers to structures.

1 struct point
2 {
3 double x;
4 double y;
5 char color;
6 } pt;
7

8 pt.x = 1;
9 pt.y = 1;

10 pt.color = ’b’;
11

12 struct point *p;
13 p = &pt;
14

15 printf ("%f %f %c\n", (*p).x, (*p).y, (*p).color);

The pointer p in the code above is a pointer to a structure. You deal with *p just like a normal
structure variable, but you have to be careful with the precedence of operators in C. If you were
to leave off the parenthesis around *p the code would not compile because the “.” operator has a
higher precedence than the “*” operator. Because it gets tedious to type so many parentheses when
working with pointers to structures, C includes a shorthand notation that does exactly the same
thing:

1 p->x = 5;

The p-> notation is exactly equivalent to (*p)., but takes two fewer characters.

53

POINTERS TO STRUCTURES CHAPTER 7. POINTERS

54

Part II

Programming Tools

55

Chapter 8

Makefiles

It can be cumbersome to type all of the gcc/clang lines over and over again, especially if you are
making a lot of changes to the code and it has several libraries. The make facility solves this
problem. You can use the following makefile to replace the compilation sequence above:

1 main: main.o util.o
2 clang -o main main.o util.o
3

4 main.o: main.c util.h
5 clang -c -g main.c
6

7 util.o: util.c util.h
8 clang -c -g util.c

Enter this into a file named makefile, and type maketo build the executable. Note that you must
precede all gcc lines with a tab. (Eight spaces will not suffice – it must be a tab. All other lines must
be flush left.)

This makefile contains two types of lines. The lines appearing flush left are dependency lines.
The lines preceded by a tab are executable lines, which can contain any valid UNIX command. A
dependency line says that some file is dependent on some other set of files. For example, main.o:
main.c util.h says that the file main.o is dependent on the files main.c and util.h. If either of these
two files changes, the following executable line(s) should be executed to recreate main.o.

Note that the final executable produced by the whole makefile is main, on line 1 in the makefile.
The final result of the makefile should always go on line 1, which in this makefile says that the file
main is dependent on main.o and util.o. If either of these changes, execute the line gcc -o main
main.o util.o to recreate main.

57

CHAPTER 8. MAKEFILES

It is possible to put multiple lines to be executed below a dependency line – they must all start with
a tab. A large program may have several libraries and a main program. The makefile automatically
recompiles everything that needs to be recompiled because of a change.

58

Chapter 9

Command Line Arguments

C provides a fairly simple mechanism for retrieving command line parameters entered by the user.
It passes an argv parameter to the main function in the program. argv structures appear in a fair
number of the more advanced library calls, so understanding them is useful to any C programmer.

Enter the following code and compile it:

1 #include <stdio.h>
2

3 int main (int argc, char *argv[])
4 {
5 int x;
6

7 printf ("%d\n",argc);
8 for (x = 0; x < argc; x++)
9 printf ("%s\n", argv[x]);

10 return 0;
11 }

In this code, the main program accepts two parameters, argv and argc. The argv parameter is an
array of pointers to string that contains the parameters entered when the program was invoked at
the UNIX command line. The argc integer contains a count of the number of parameters. This
particular piece of code types out the command line parameters. To try this, compile the code to
an executable file named aaa and type aaa xxx yyy zzz. The code will print the command line
parameters xxx, yyy and zzz, one per line.

The char *argv[] line is an array of pointers to string. In other words, each element of the array is
a pointer, and each pointer points to a string (technically, to the first character of the string). Thus,

59

CHAPTER 9. COMMAND LINE ARGUMENTS

argv[0] points to a string that contains the first parameter on the command line (the program’s
name), argv[1] points to the next parameter, and so on. The argc variable tells you how many of the
pointers in the array are valid. You will find that the preceding code does nothing more than print
each of the valid strings pointed to by argv.

Because argv exists, you can let your program react to command line parameters entered by the user
fairly easily. For example, you might have your program detect the word help as the first parameter
following the program name, and dump a help file to stdout. File names can also be passed in and
used in your fopen statements.

60

Chapter 10

Version control

61

CHAPTER 10. VERSION CONTROL

62

Chapter 11

Debugging

63

CHAPTER 11. DEBUGGING

64

Chapter 12

Detecting memory problems with valgrind

65

CHAPTER 12. DETECTING MEMORY PROBLEMS WITH VALGRIND

66

Part III

More C Programming

67

Chapter 13

Dynamic Data Structures

The operating system and several applications, along with their global variables and stack spaces,
all consume portions of memory. When a program completes execution, it releases its memory for
reuse by other programs.

Memory holds the executable code for the different applications currently running on the machine,
along with the executable code for the operating system itself. Each application has certain global
variables associated with it. These variables also consume memory. Finally, each application uses
an area of memory called the stack, which holds all local variables and parameters used by any
function. The stack also remembers the order in which functions are called so that function returns
occur correctly. Each time a function is called, its local variables and parameters are “pushed onto”
the stack. When the function returns, these locals and parameters are “popped.” Because of this, the
size of a program’s stack fluctuates constantly as the program is running, but it has some maximum
size.

As a program finishes execution, the operating system unloads it, its globals and its stack space
from memory. A new program can make use of that space at a later time. In this way, the memory in
a computer system is constantly “recycled” and reused by programs as they execute and complete.

Dynamic data structures are data structures that grow and shrink as you need them to by allocating
and deallocating memory from a place called the heap. They are extremely important in C because
they allow the programmer to exactly control memory consumption.

Dynamic data structures allocate blocks of memory from the heap as required, and link those blocks
together into some kind of data structure using pointers. When the data structure no longer needs a
block of memory, it will return the block to the heap for reuse. This recycling makes very efficient
use of memory.

69

STACK VS HEAP CHAPTER 13. DYNAMIC DATA STRUCTURES

To understand dynamic data structures completely, we need to start with the stack and the heap.

Stack vs Heap

So far we have seen how to declare basic type variables such as int, double, etc, and complex
types such as arrays and structs. The way we have been declaring them so far puts these variables
on the stack in C.

The Stack

What is the stack? It’s a special region of your computer’s memory that stores temporary variables
created by each function (including the main() function). The stack is a "FILO" (first in, last out)
data structure, that is managed and optimized by the CPU quite closely. Every time a function
declares a new variable, it is "pushed" onto the stack. Then every time a function exits, all of the
variables pushed onto the stack by that function, are released (that is to say, they are deleted). Once
a stack variable is released, that region of memory becomes available for other stack variables.

The advantage of using the stack to store variables, is that memory is managed for you. You don’t
have to allocate memory by hand, or free it once you don’t need it any more. What’s more, because
the CPU organizes stack memory so efficiently, reading from and writing to stack variables is very
fast.

A key to understanding the stack is the notion that when a function exits, all of its variables are
popped off of the stack (and hence lost forever). Thus stack variables are local in nature. This is
related to a concept we saw earlier known as variable scope, or local vs global variables. A common
bug in C programming is attempting to access a variable that was created on the stack inside some
function, from a place in your program outside of that function (i.e. after that function has exited).

Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of
variables that can be store on the stack. If the program tries to put too much information on the
stack, stack overflow will result. Stack overflow happens when all the memory in the stack has been
allocated – in that case, further allocations begin overflowing into other sections of memory.

Here is an example program that causes a stack overflow:

Listing 13.1: A program that causes a stack overflow
1 #define HUGE 100000000L
2

3 int main(void)

70

CHAPTER 13. DYNAMIC DATA STRUCTURES STACK VS HEAP

4 {
5 int stack[HUGE];
6 stack[0] = 1;
7

8 return 0;
9 }

This program tries to allocate a huge array on the stack. Because the stack is not large enough to
handle this array, the array allocation overflows into portions of memory the program is not allowed
to use. Consequently, the program crashes.

To summarize the stack:

• the stack grows and shrinks as functions push and pop local variables

• there is no need to manage the memory yourself, variables are allocated and freed automati-
cally

• the stack has size limits

• stack variables only exist while the function that created them, is running

The Heap

The heap is a region of your computer’s memory that is not managed automatically for you, and is
not as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To
allocate memory on the heap, you must use built-in C functions. Once you have allocated memory
on the heap, you are responsible to deallocate that memory once you don’t need it any more. If
you fail to do this, your program will have what is known as a memory leak. That is, memory on
the heap will still be set aside (and won’t be available to other processes). As we will see in the
debugging section, there is a tool called valgrind that can help you detect memory leaks.

Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious
physical limitations of your computer). Heap memory is slightly slower to be read from and written
to, because one has to use pointers to access memory on the heap.

Unlike the stack, variables created on the heap are accessible by any function, anywhere in your
program. Heap variables are essentially global in scope.

71

MALLOC AND FREE CHAPTER 13. DYNAMIC DATA STRUCTURES

Summary: Stack vs Heap

• Stack

– very fast access

– don’t have to explicitly de-allocate variables

– space is managed efficiently by CPU, memory will not become fragmented

– local variables only

– limit on stack size (OS-dependent)

– variables cannot be resized

• Heap

– variables can be accessed globally

– no limit on memory size

– (relatively) slower access

– no guaranteed efficient use of space, memory may become fragmented over time as
blocks of memory are allocated, then freed

– you must manage memory (you’re in charge of allocating and freeing variables)

– variables can be resized

Dynamic Data Structures. Malloc and Free

Let’s say that you would like to allocate a certain amount of memory during the execution of your
application. You can call the malloc function at any time, and it will request a block of memory
from the heap. The operating system will reserve a block of memory for your program, and you can
use it in any way you like. When you are done with the block, you return it to the operating system
for recycling by calling the free function. Then other applications can reserve it later for their own
use.

For example, the following code demonstrates the simplest possible use of the heap:

Listing 13.2: Simple example of using malloc and free
1 #include <stdio.h>
2 #include <stdlib.h>

72

CHAPTER 13. DYNAMIC DATA STRUCTURES MALLOC AND FREE

3

4 int main (void)
5 {
6 int *p;
7

8 p = (int *) malloc(sizeof(int));
9 if (p == NULL)

10 {
11 printf ("ERROR: Out of memory\n");
12 return 1;
13 }
14

15 *p = 5;
16 printf ("%d\n", *p);
17

18 free(p);
19

20 return 0;
21 }

Line 8 in this program calls the malloc function. This function does three things:

1. The malloc statement first looks at the amount of memory available on the heap and asks, “Is
there enough memory available to allocate a block of memory of the size requested?” The
amount of memory needed for the block is known from the parameter passed into malloc – in
this case, sizeof(int) is 4 bytes. If there is not enough memory available, the malloc function
returns the address zero to indicate the error (another name for zero is NULL and you will
see it used throughout C code). Otherwise malloc proceeds.

2. If memory is available on the heap, the system “allocates” or “reserves” a block from the heap
of the size specified. The system reserves the block of memory so that it isn’t accidentally
used by more than one malloc statement.

3. The system then places into the pointer variable (p, in this case) the address of the reserved
block. The pointer variable itself contains an address. The allocated block is able to hold a
value of the type specified, and the pointer points to it.

The program next checks the pointer p to make sure that the allocation request succeeded with the
line if (p == NULL) (which could have also been written as if (!p). If the allocation fails (if p is
zero), the program terminates. If the allocation is successful, the program then initializes the block
to the value 5, prints out the value, and calls the free function to return the memory to the heap

73

MALLOC AND FREE CHAPTER 13. DYNAMIC DATA STRUCTURES

before the program terminates.

There is really no difference between this code and previous code that sets p equal to the address of
an existing integer i. The only distinction is that, in the case of the variable i, the memory existed as
part of the program’s pre-allocated memory space and had the two names: i and *p. In the case
of memory allocated from the heap, the block has the single name *p and is allocated during the
program’s execution. Two common questions:

It is really important to check that the pointer is non-NULL after each allocation. Since the heap
varies in size constantly depending on which programs are running, how much memory they have
allocated, etc., there is never any guarantee that a call to malloc will succeed. You should check the
pointer after any call to malloc to make sure the pointer is valid.

When a program terminates, the operating system “cleans up after it,” releasing its executable code
space, stack, global memory space and any heap allocations for recycling. Therefore, there are
no long-term consequences to leaving few allocations pending at program termination. However,
“memory leaks” during the execution of a program are harmful, as discussed below.

The following two programs show two different valid uses of pointers, and try to distinguish between
the use of a pointer and of the pointer’s value:

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main (void)
5 {
6 int *p, *q;
7

8 p = (int *) malloc(sizeof(int));
9 q = p;

10 *p = 10;
11 printf ("%d\n", *q);
12 *q = 20;
13 printf ("%d\n", *q);
14

15 free (p);
16

17 return 0;
18 }

The final output of this code would be 10 from the first print statement and 20 from second one.

74

CHAPTER 13. DYNAMIC DATA STRUCTURES MALLOC AND FREE

1 10
2 20

The following code is slightly different:

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main (void)
5 {
6 int *p, *q;
7

8 p = (int *) malloc(sizeof(int));
9 q = (int *) malloc(sizeof(int));

10 *p = 10;
11 *q = 20;
12 *p = *q;
13 printf ("%d\n", *p);
14

15 free (p);
16 free (q);
17

18 return 0;
19 }

The final output from this code would be 20.

1 20

Notice that the compiler will allow *p = *q, because *p and *q are both integers. This statement
says, “Move the integer value pointed to by q into the integer value pointed to by p.” The statement
moves the values. The compiler will also allow p = q, because p and q are both pointers, and both
point to the same type (if s is a pointer to a character, p = s is not allowed because they point to
different types). The statement p = q says, “Point p to the same block q points to.” In other words,
the address pointed to by q is moved into p, so they both point to the same block. This statement
moves the addresses.

From all of these examples, you can see that there are four different ways to initialize a pointer.
When a pointer is declared, as in int *p, it starts out in the program in an uninitialized state. It
may point anywhere, and therefore to dereference it is an error. Initialization of a pointer variable
involves pointing it to a known location in memory.

75

MALLOC AND FREE CHAPTER 13. DYNAMIC DATA STRUCTURES

1. One way, as seen already, is to use the malloc statement. This statement allocates a block of
memory from the heap and then points the pointer at the block. This initializes the pointer,
because it now points to a known location. The pointer is initialized because it has been filled
with a valid address – the address of the new block.

2. The second way, as seen just a moment ago, is to use a statement such as p = q so that p
points to the same place as q. If q is pointing at a valid block, then p is initialized. The pointer
p is loaded with the valid address that q contains. However, if q is uninitialized or invalid, p
will pick up the same useless address.

3. The third way is to point the pointer to a known address, such as a global variable’s address.
For example, if i is an integer and p is a pointer to an integer, then the statement p=&i
initializes p by pointing it to i.

4. The fourth way to initialize the pointer is to use the value NULL. NULL is a special values
used with pointers:

1 p = NULL;

What this does physically is to place a zero into p. The pointer p’s address is zero.

Any pointer can be set to point to zero. When p points to zero, however, it does not point to a block.
The pointer simply contains the address zero, and this value is useful as a tag. You can use it in
statements such as:

1 if (p == NULL)
2 {
3 ...
4 }

or:

1 while (p != NULL)
2 {
3 ...
4 }

The system also recognizes the NULL value, and will generate runtime error message, e.g.
Segmentation fault, if you happen to dereference a NULL pointer, e.g. in the following
code:

Listing 13.3: Dereferencing of NULL pointer
1 #include <stdlib.h>

76

CHAPTER 13. DYNAMIC DATA STRUCTURES MALLOC AND FREE

2

3 int main(void)
4 {
5 int *p;
6

7 p = NULL;
8 *p = 5;
9

10 return 0;
11 }

The pointer p does not point to a block, it points to zero, so a value cannot be assigned to *p.

The malloc command is used to allocate a block of memory. It is also possible to deallocate a
block of memory when it is no longer needed. When a block is deallocated, it can be reused by a
subsequent malloc command, which allows the system to recycle memory. The command used to
deallocate memory is called free, and it accepts a pointer as its parameter. The free command does
two things:

1. The block of memory pointed to by the pointer is unreserved and given back to the free
memory on the heap. It can then be reused by later new statements.

2. The pointer is left in an uninitialized state, and must be reinitialized before it can be used
again.

The free statement simply returns a pointer to its original uninitialized state and makes the block
available again on the heap.

The following example shows how to use the heap. It allocates an integer block, fills it, writes it,
and disposes of it:

Listing 13.4: Using malloc and free
1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main (void)
5 {
6 int *p;
7

8 p = (int *)malloc (sizeof(int));
9 *p=10;

10 printf ("%d\n",*p);

77

MALLOC AND FREE CHAPTER 13. DYNAMIC DATA STRUCTURES

11

12 free(p);
13

14 return 0;
15 }

This code is really useful only for demonstrating the process of allocating, deallocating, and using
a block in C. The malloc line allocates a block of memory of the size specified – in this case,
sizeof(int) bytes. The sizeof command in C returns the size, in bytes, of any type. Using sizeof,
makes the code portable and more readable.

The malloc function returns a pointer to the allocated block. This pointer is generic. Using the
pointer without typecasting generally produces a type warning from the compiler. The (int *)
typecast converts the generic pointer returned by malloc into a “pointer to an integer,” which is what
p expects.

The second example illustrates the same functions as the previous example, but it uses a structure
instead of an integer.

Listing 13.5: Using malloc and free with structures

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 struct rec
5 {
6 int i;
7 double f;
8 char c;
9 };

10

11 int main (void)
12 {
13 struct rec *p;
14 p = (struct rec *) malloc (sizeof(struct rec));
15 (*p).i = 10;
16 (*p).f = 3.14;
17 (*p).c = ’a’;
18 printf ("%d %f %c\n", (*p).i, (*p).f, (*p).c);
19 free(p);
20

78

CHAPTER 13. DYNAMIC DATA STRUCTURES MALLOC AND FREE

21 return 0;
22 }

Note the following line:

1 (*p).i = 10;

Many wonder why the following doesn’t work:

1 *p.i = 10;

The answer has to do with the precedence of operators in C. The result of the calculation 5+3*4 is
17, not 32, because the * operator has higher precedence than + in most computer languages. In C,
the . operator has higher precedence than *, so parentheses force the proper precedence.

Most people tire of typing (*p).i all the time, so C provides a shorthand notation. The following
two statements are exactly equivalent, but the second is easier to type:

1 (*p).i = 10;
2 p->i = 10;

You will see the second more often than the first when reading other people’s code.

79

MALLOC AND FREE CHAPTER 13. DYNAMIC DATA STRUCTURES

80

Chapter 14

Strings

Strings in C are intertwined with pointers to a large extent. You must become familiar with the
pointer concepts covered in the previous articles to use C strings effectively. Once you get used to
them, however, you can often perform string manipulations very efficiently.

A string in C is simply an array of characters. The following line declares an array that can hold a
string of up to 99 characters.

1 char str[100];

It holds characters as you would expect: str[0] is the first character of the string, str[1] is the second
character, and so on. But why is a 100-element array unable to hold up to 100 characters? Because
C uses null-terminated strings, which means that the end of any string is marked by the ASCII
value 0 (the null character), which is also represented in C as ‘\0’.

Because C provides no explicit support for strings in the language itself, all of the string-handling
functions are implemented in libraries. The string I/0 operations (gets, puts, and so on) are
implemented in <stdio.h>, and a set of fairly simple string manipulation functions are implemented
in <string.h>.

Suppose you want to copy the contents of one string to another. In C you cannot simply assign one
array to another. You have to copy it element by element. The string library (<string.h> contains a
function called strncpy for this task. Here is a common piece of code to find in a normal C program:

1 char s[100];
2 strncpy(s, "hello", 100);

The following code shows how to use strncpy in C:

81

CHAPTER 14. STRINGS

Listing 14.1: Using strncpy

1 #include <string.h>
2

3 int main (void)
4 {
5 char s1[100], s2[100];
6 strncpy(s1, "hello", 100); /* copy "hello" into s1 */
7 strncpy(s2, s1, 100); /* copy s1 into s2 */
8

9 return 0;
10 }

strncpy is used whenever a string is initialized in C. You use the strncmp function in the string
library to compare two strings. It returns an integer that indicates the result of the comparison. Zero
means the two strings are equal, a negative value means that s1 is less than s2, and a positive value
means s1 is greater than s2.

Listing 14.2: Using strncmp

1 #include <stdio.h>
2 #include <string.h>
3

4 int main (void)
5 {
6 char s1[] = "abcde", s2[] = "pqrst";
7

8 if (strncmp(s1, s2, strlen(s1)) == 0) {
9 printf ("equal\n");

10 } else if (strncmp(s1, s2, strlen(s1)) < 0) {
11 printf ("s1 is less than s2\n");
12 } else {
13 printf ("s1 is greater than s2\n");
14 }
15 return 0;
16 }

The output of the program:

1 s1 is less than s2

82

CHAPTER 14. STRINGS PROGRAMMING EXERCISE

Other common functions in the string library include strlen, which returns the length of a string,
and strncat which concatenates two strings.

Most of the string functions return a string pointer as a result, and strncpy returns the value of s1 as
its result.

Using pointers with strings can sometimes result in definite improvements in speed. For example,
suppose you want to remove the leading blanks from a string. You might be inclined to shift
characters over on top of the blanks to remove them. In C, you can avoid the movement altogether:

Listing 14.3: Using pointers with string
1 #include <stdio.h>
2 #include <string.h>
3

4 int main (void)
5 {
6 char s[] = " asdf", *p;
7

8 p = s;
9 while (*p == ’ ’)

10 {
11 p++;
12 }
13 printf ("%s\n", p);
14

15 return 0;
16 }

This is much faster than the movement technique, especially for long strings.

Programming exercise

• Create a program that reads in a string containing a first name followed by a blank followed
by a last name. Write functions to remove any leading or trailing blanks. Write another
function that returns the last name.

• Write a function that converts a string to uppercase.

• Write a function that gets the first word from a string and returns the remainder of the string.

83

PROGRAMMING EXERCISE CHAPTER 14. STRINGS

84

Chapter 15

Operator Precedence, II

C contains many operators, and because of the way in which operator precedence works, the
interactions between multiple operators can become confusing.

1 x = 5 + 3 * 6;

x receives the value 23, not 48, because in C multiplication and division have higher precedence
than addition and subtraction.

1 char *a{[}10{]};

Is a a single pointer to an array of 10 characters, or is it an array of 10 pointers to character? Unless
you know the precedence conventions in C, there is no way to find out. Similarly, because of
precedence statements such as *p.i = 10; do not work. Instead, the form (*p).i = 10;must be used
to force correct precedence.

The following table from C Programming Language by Kernighan and Ritchie, shows the prece-
dence hierarchy in C. The top line has the highest precedence.

1 Operators Associativity
2 ([- . Left to right
3 ! - ++ -{- + * & (type-cast) sizeof Right to left
4 (in the above line, +, - and * are the unary forms)
5 * / % Left to right
6 + - Left to right
7 << >> Left to right
8 < <= > >= Left to right
9 == != Left to right

85

CHAPTER 15. OPERATOR PRECEDENCE, II

10 & Left to right
11 ^ Left to right
12 | Left to right
13 && Left to right
14 || Left to right
15 ?: Left to right
16 = += -= *= /= %= &= ^= |= <<= >>= Right to left
17 , Left to right

Using this table, you can see that char *a[10]; is an array of 10 pointers to character. You can also
see why the parentheses are required if (*p).i is to be handled correctly. After some practice, you
will memorize most of this table, but every now and again something will not work because you
have been caught by a subtle precedence problem.

86

Chapter 16

Advanced Pointers

You will normally use pointers in somewhat more complicated ways than those shown in some of
the previous examples. For example, it is much easier to create a normal integer and work with it
than it is to create and use a pointer to an integer. In this section, some of the more common and
advanced ways of working with pointers will be explored.

Pointer Types

It is possible, legal, and beneficial to create pointer types in C, as shown below:

1 typedef int *IntPointer;
2 ...
3 IntPointer p;

This is the same as saying:

1 int *p;

This technique will be used in many of the examples on the following pages. The technique often
makes a data declaration easier to read and understand, and also makes it easier to include pointers
inside of structures or pass pointer parameters in functions.

87

POINTERS TO ARRAYS CHAPTER 16. ADVANCED POINTERS

Pointers to Arrays

It is also possible to create pointers to arrays, as shown below:

1 int *p;
2 int i;
3

4 p = (int *)malloc(sizeof(int[10]));
5 for (i=0; i<10; i++)
6 p[i] = 0;
7 free(p);

or:

1 int *p;
2 int i;
3

4 p = (int *)malloc(sizeof(int[10]));
5 for (i=0; i<10; i++)
6 *(p+i) = 0;
7 free(p);

Note that when you create a pointer to an integer array, you simply create a normal pointer to int.
The call to malloc allocates an array of whatever size you desire, and the pointer points to that
array’s first element. You can either index through the array pointed to by p using normal array
indexing, or you can do it using pointer arithmetic. C sees both forms as equivalent.

This particular technique is extremely useful when working with strings. It lets you allocate enough
storage to exactly hold a string of a particular size.

Arrays of Pointers

Sometimes a great deal of space can be saved, or certain memory-intensive problems can be solved,
by declaring an array of pointers. In the example code below, an array of 10 pointers to structures
is declared, instead of declaring an array of structures. If an array of the structures had been
created instead, 243 * 10 = 2,430 bytes would have been required for the array. Using the array of
pointers allows the array to take up minimal space until the actual records are allocated with malloc

88

CHAPTER 16. ADVANCED POINTERS STRUCTURES CONTAINING POINTERS

statements. The code below simply allocates one record, places a value in it, and disposes of the
record to demonstrate the process:

1 typedef struct
2 {
3 char s1[81];
4 char s2[81];
5 char s3[81];
6 } Rec;
7 Rec *a[10];
8

9 a[0] = (Rec *)malloc(sizeof(Rec));
10 strcpy(a[0]->s1, "hello");
11 free(a[0]);

Structures Containing Pointers

Structures can contain pointers, as shown below:

1 typedef struct
2 {
3 char name[21];
4 char city[21];
5 char phone[21];
6 char *comment;
7 } Addr;
8 Addr s;
9 char comm[100];

10

11 gets(s.name, 20);
12 gets(s.city, 20);
13 gets(s.phone, 20);
14 gets(comm, 100);
15 s.comment =
16 (char *)malloc(sizeof(char[strlen(comm)+1]));
17 strcpy(s.comment, comm);

89

POINTERS TO POINTERS CHAPTER 16. ADVANCED POINTERS

This technique is useful when only some records actually contained a comment in the comment
field. If there is no comment for the record, then the comment field would consist only of a pointer
(4 bytes). Those records having a comment then allocate exactly enough space to hold the comment
string, based on the length of the string typed by the user.

Pointers to Pointers

It is possible and often useful to create pointers to pointers. This technique is sometimes called a
handle, and is useful in certain situations where the operating system wants to be able to move
blocks of memory on the heap around at its discretion.

1 int **p;
2 int *q;
3

4 p = (int **)malloc(sizeof(int *));
5 *p = (int *)malloc(sizeof(int));
6 **p = 12;
7 q = *p;
8 printf ("%d\n", *q);
9 free(q);

10 free(p);

Windows and the Mac OS use this structure to allow memory compaction on the heap. The program
manages the pointer p, while the operating system manages the pointer *p. Because the OS manages
*p, the block pointed to by *p (**p) can be moved, and *p can be changed to reflect the move
without affecting the program using p. Pointers to pointers are also frequently used in C to handle
pointer parameters in functions.

Pointers to Structures Containing Pointers

It is also possible to create pointers to structures that contain pointers. The following example uses
the Addr record from the previous section:

1 typedef struct
2 {
3 char name[21];
4 char city[21];

90

CHAPTER 16. ADVANCED POINTERS LINKING

5 char phone[21];
6 char *comment;
7 } Addr;
8 Addr *s;
9 char comm[100];

10

11 s = (Addr *)malloc(sizeof(Addr));
12 gets(s->name, 20);
13 gets(s->city, 20);
14 gets(s->phone, 20);
15 gets(comm, 100);
16 s->comment =
17 (char *)malloc(sizeof(char[strlen(comm)+1]));
18 strcpy(s->comment, comm);

The pointer s points to a structure that contains a pointer that points to a string.

In this example, it is very easy to create lost blocks if you aren’t careful. For example, here is a
different version of the AP example.

1 s = (Addr *)malloc(sizeof(Addr));
2 gets(comm, 100);
3 s->comment =
4 (char *)malloc(sizeof(char[strlen(comm)+1]));
5 strcpy(s->comment, comm);
6 free(s);

This code creates a lost block because the structure containing the pointer pointing to the string is
disposed of before the string block is disposed of, as shown to the right.

Linking

Finally, it is possible to create structures that are able to point to identical structures, and this
capability can be used to link together a whole string of identical records in a structure called a
linked list.

1 typedef struct
2 {
3 char name[21];

91

A LINKED STACK EXAMPLE CHAPTER 16. ADVANCED POINTERS

4 char city[21];
5 char state[21];
6 Addr *next;
7 } Addr;
8 Addr *first;

The compiler will let you do this, and it can be used with a little experience to create structures like
the one shown to the right.

A Linked Stack Example

A good example of dynamic data structures is a simple stack library, one that uses a dynamic list
and includes functions to init, clear, push, and pop. The library’s header file looks like this:

1 /* Stack Library - This library offers the
2 minimal stack operations for a
3 stack of integers (easily changeable) */
4

5 typedef int stack_data;
6

7 extern void stack_init();
8 /* Initializes this library.
9 Call first before calling anything. */

10

11 extern void stack_clear();
12 /* Clears the stack of all entries. */
13

14 extern int stack_empty();
15 /* Returns 1 if the stack is empty, 0 otherwise. */
16

17 extern void stack_push(stack_data d);
18 /* Pushes the value d onto the stack. */
19

20 extern stack_data stack_pop();
21 /* Returns the top element of the stack,
22 and removes that element.
23 Returns garbage if the stack is empty. */

92

CHAPTER 16. ADVANCED POINTERS A LINKED STACK EXAMPLE

The library’s code file follows:

1 #include "stack.h"
2 #include <stdio.h>
3

4 /* Stack Library - This library offers the
5 minimal stack operations for a stack of integers */
6

7 struct stack_rec
8 {
9 stack_data data;

10 struct stack_rec *next;
11 };
12

13 struct stack_rec *top=NULL;
14

15 void stack_init()
16 /* Initializes this library.
17 Call before calling anything else. */
18 {
19 top=NULL;
20 }
21

22 void stack_clear()
23 /* Clears the stack of all entries. */
24 {
25 stack_data x;
26

27 while (!stack_empty())
28 x=stack_pop();
29 }
30

31 int stack_empty()
32 /* Returns 1 if the stack is empty, 0 otherwise. */
33 {
34 if (top==NULL)
35 return(1);
36 else
37 return(0);
38 }

93

PROGRAMMING EXERCISE CHAPTER 16. ADVANCED POINTERS

39

40 void stack_push(stack_data d)
41 /* Pushes the value d onto the stack. */
42 {
43 struct stack_rec *temp;
44 temp = (struct stack_rec *) malloc(sizeof(struct stack_rec));
45 temp->data=d;
46 temp->next=top;
47 top=temp;
48 }
49

50 stack_data stack_pop()
51 /* Returns the top element of the stack,
52 and removes that element.
53 Returns garbage if the stack is empty. */
54 {
55 struct stack_rec *temp;
56 stack_data d=0;
57 if (top!=NULL)
58 {
59 d=top->data;
60 temp=top;
61 top=top->next;
62 free(temp);
63 }
64 return(d);
65 }

Programming exercise

• Add a dup, a count, and an add function to the stack library to duplicate the top element of
the stack, return a count of the number of elements in the stack, and add the top two elements
in the stack.

• Build a driver program and a makefile, and compile the stack library with the driver to make
sure it works.

94

CHAPTER 16. ADVANCED POINTERS PROGRAMMING EXERCISE

Note how this library practices information hiding: Someone who can see only the header file
cannot tell if the stack is implemented with arrays, pointers, files, or in some other way. Note also
that C uses NULL. NULL is defined in stdio.h, so you will almost always have to include stdio.h
when you use pointers. NULL is the same as zero.

95

PROGRAMMING EXERCISE CHAPTER 16. ADVANCED POINTERS

96

Chapter 17

Libraries

Libraries are very important in C because the C language supports only the most basic features
that it needs. C does not even contain I/O functions to read from the keyboard and write to the
screen. Anything that extends beyond the basic language must be written by a programmer. The
resulting chunks of code are often placed in libraries to make them easily reusable. We have seen
the standard I/O, or stdio, library already: Standard libraries exist for standard I/O, math functions,
string handling, time manipulation, and so on. You can use libraries in your own programs to split
up your programs into modules. This makes them easier to understand, test, and debug, and also
makes it possible to reuse code from other programs that you write.

You can create your own libraries easily. As an example, we will take some code from a previous
article in this series and make a library out of two of its functions. Here’s the code we will start
with:

1 #include <stdio.h>
2

3 #define MAX 10
4

5 int a[MAX];
6 int rand_seed = 10;
7

8 int rand(void)
9 /*

10 * from K&R - produces an integer random number
11 * between 0 and 32767.
12 */
13 {

97

CHAPTER 17. LIBRARIES

14 rand_seed = rand_seed * 1103515245 + 12345;
15 return (unsigned int)(rand_seed / 65536) % 32768;
16 }
17

18 int main (void)
19 {
20 int i, t, x, y;
21 /* fill array */
22 for (i = 0; i < MAX; i++)
23 {
24 a[i] = rand();
25 printf ("%d\n",a[i]);
26 }
27 /* bubble sort the array */
28 for (x = 0; x < MAX-1; x++)
29 {
30 for (y = 0; y < MAX-x-1; y++)
31 {
32 if (a[y] > a[y+1])
33 {
34 t = a[y];
35 a[y] = a[y+1];
36 a[y+1] = t;
37 }
38 }
39 }
40 /* print sorted array */
41 printf ("--------------------\n");
42 for (i = 0; i < MAX; i++)
43 {
44 printf ("%d\n",a[i]);
45 }
46 return 0;
47 }

This code fills an array with random numbers, sorts them using a bubble sort, and then displays the
sorted list.

Take the bubble sort code, and use what you learned in the previous article to make a function from

98

CHAPTER 17. LIBRARIES

it. Since both the array a and the constant MAX are known globally, the function you create needs
no parameters, nor does it need to return a result. However, you should use local variables for x, y,
and t.

Once you have tested the function to make sure it is working, pass in the number of elements as a
parameter rather than using MAX:

1 #include <stdio.h>
2

3 #define MAX 10
4

5 int a[MAX];
6 int rand_seed = 10;
7

8 /*
9 * from K&R - produces an integer random number

10 * between 0 and 32767.
11 */
12 int rand(void)
13 {
14 rand_seed = rand_seed * 1103515245 + 12345;
15 return (unsigned int)(rand_seed / 65536) % 32768;
16 }
17

18 void bubble_sort(int m)
19 {
20 int x, y, t;
21 for (x = 0; x < m-1; x++)
22 {
23 for (y = 0; y < m-x-1; y++)
24 {
25 if (a[y] > a[y+1])
26 {
27 t = a[y];
28 a[y] = a[y+1];
29 a[y+1] = t;
30 }
31 }
32 }
33 }

99

MAKING A LIBRARY CHAPTER 17. LIBRARIES

34

35 int main (void)
36 {
37 int i, t, x, y;
38 /* fill array */
39 for (i = 0; i < MAX; i++)
40 {
41 a[i] = rand();
42 printf ("%d\n",a[i]);
43 }
44 bubble_sort(MAX);
45 /* print sorted array */
46 printf ("--------------------\n");
47 for (i = 0; i < MAX; i++)
48 {
49 printf ("%d\n",a[i]);
50 }
51 return 0;
52 }

You can also generalize the bubble_sort function even more by passing in a as a parameter:

1 bubble_sort(int m, int a[])

This line says, “Accept the integer array a of any size as a parameter.” Nothing in the body of the
bubble_sort function needs to change. To call bubble_sort, change the call to:

1 bubble_sort(MAX, a);

Note that &a has not been used in the function call even though the sort will change a. The reason
for this will become clear once you understand pointers.

Making a library

Since the rand and bubble_sort functions in the previous program are useful, you will probably
want to reuse them in other programs you write. You can put them into a utility library to make

100

CHAPTER 17. LIBRARIES MAKING A LIBRARY

their reuse easier.

Every library consists of two parts: a header file and the actual code file. The header file, normally
denoted by a .h suffix, contains information about the library that programs using it need to know.
In general, the header file contains constants and types, along with prototypes for functions available
in the library. Enter the following header file and save it to a file named util.h.

1 /* util.h */
2 extern int rand();
3 extern void bubble_sort(int, int []);

These two lines are function prototypes. The word “extern” in C represents functions that will be
linked in later.

Enter the following code into a file named util.c.

1 /* util.c */
2 #include "util.h"
3

4 int rand_seed = 10;
5

6 /*
7 * from K&R - produces an integer random number
8 * between 0 and 32767.
9 */

10 int rand(void)
11 {
12 rand_seed = rand_seed * 1103515245 + 12345;
13 return (unsigned int)(rand_seed / 65536) % 32768;
14 }
15

16 void bubble_sort(int m, int a[])
17 {
18 int x, y, t;
19 for (x = 0; x < m-1; x++)
20 {
21 for (y = 0; y < m-x-1; y++)
22 {
23 if (a[y] > a[y+1])
24 {
25 t = a[y];

101

MAKING A LIBRARY CHAPTER 17. LIBRARIES

26 a[y] = a[y+1];
27 a[y+1] = t;
28 }
29 }
30 }
31 }

Note that the file includes its own header file (util.h) and that it uses quotes instead of the symbols
<and>, which are used only for system libraries. As you can see, this looks like normal C code.
Note that the variable rand_seed, because it is not in the header file, cannot be seen or modified by
a program using this library. This is called information hiding. Adding the word static in front of
int enforces the hiding completely.

Enter the following main program in a file named main.c.

1 #include <stdio.h>
2 #include "util.h"
3

4 #define MAX 10
5

6 int a[MAX];
7

8 int main (void)
9 {

10 int i, t, x, y;
11 /* fill array */
12 for (i = 0; i < MAX; i++)
13 {
14 a[i] = rand();
15 printf ("%d\n", a[i]);
16 }
17

18 bubble_sort(MAX, a);
19

20 /* print sorted array */
21 printf ("--------------------\n");
22 for (i = 0; i < MAX; i++)
23 {
24 printf ("%d\n",a[i]);

102

CHAPTER 17. LIBRARIES COMPILING AND RUNNING

25 }
26 return 0;
27 }

This code includes the utility library. The main benefit of using a library is that the code in the main
program is much shorter.

Compiling and running

To compile the library, type the following at the command line (assuming you are using UNIX)
(replace gcc with cc if your system uses cc):

1 gcc -c -g util.c

The -c causes the compiler to produce an object file for the library. The object file contains the
library’s machine code. It cannot be executed until it is linked to a program file that contains a main
function. The machine code resides in a separate file named util.o.

To compile the main program, type the following:

1 gcc -c -g main.c

This line creates a file named main.o that contains the machine code for the main program. To
create the final executable that contains the machine code for the entire program, link the two object
files by typing the following:

1 gcc -o main main.o util.o

This links main.o and util.o to form an executable named main. To run it, type main.

103

COMPILING AND RUNNING CHAPTER 17. LIBRARIES

104

Chapter 18

Text files

Text files in C are straightforward and easy to understand. All text file functions and types in C
come from the stdio library.

When you need text I/O in a C program, and you need only one source for input information and
one sink for output information, you can rely on stdin (standard in) and stdout (standard out). You
can then use input and output redirection at the command line to move different information streams
through the program. There are six different I/O commands in <stdio.h> that you can use with stdin
and stdout:

• printf - prints formatted output to stdout

• scanf - reads formatted input from stdin

• puts - prints a string to stdout

• gets - reads a string from stdin

• putc - prints a character to stdout

• getc, getchar - reads a character from stdin

The advantage of stdin and stdout is that they are easy to use. Likewise, the ability to redirect I/O is
very powerful. For example, maybe you want to create a program that reads from stdin and counts
the number of characters:

1 #include <stdio.h>
2 #include <string.h>
3

4 int main (void)
5 {

105

CHAPTER 18. TEXT FILES

6 char s[1000];
7 int count = 0;
8 while (gets(s))
9 {

10 count += strlen(s);
11 }
12 printf ("%d\n",count);
13 return 0;
14 }

Enter this code and run it. It waits for input from stdin, so type a few lines. When you are done,
press CTRL-D to signal end-of-file (eof). The gets function reads a line until it detects eof, then
returns a 0 so that the while loop ends. When you press CTRL-D, you see a count of the number of
characters in stdout (the screen). (Use man gets or your compiler’s documentation to learn more
about the gets function.)

Now, suppose you want to count the characters in a file. If you compiled the program to an
executable named xxx, you can type the following:

1 xxx < filename

Instead of accepting input from the keyboard, the contents of the file named filename will be used
instead. You can achieve the same result using pipes:

1 cat < filename | xxx

You can also redirect the output to a file:

1 xxx < filename > out

This command places the character count produced by the program in a text file named out.

Sometimes, you need to use a text file directly. For example, you might need to open a specific file
and read from or write to it. You might want to manage several streams of input or output or create
a program like a text editor that can save and recall data or configuration files on command. In that
case, use the text file functions in stdio:

• fopen - opens a text file

• fclose - closes a text file

• feof - detects end-of-file marker in a file

• fprintf - prints formatted output to a file

106

CHAPTER 18. TEXT FILES TEXT FILES: OPENING

• fscanf - reads formatted input from a file

• fputs - prints a string to a file

• fgets - reads a string from a file

• fputc - prints a character to a file

• fgetc - reads a character from a file

Text files: opening

You use fopen to open a file. It opens a file for a specified mode (the three most common are r, w,
and a, for read, write, and append). It then returns a file pointer that you use to access the file. For
example, suppose you want to open a file and write the numbers 1 to 10 in it. You could use the
following code:

1 #include <stdio.h>
2 #define MAX 10
3

4 int main (void)
5 {
6 FILE *f;
7 int x;
8 f = fopen("out","w");
9 if (!f)

10 return 1;
11 for(x = 1; x <= MAX; x++)
12 fprintf (f,"%d\n",x);
13 fclose(f);
14 return 0;
15 }

The fopen statement here opens a file named out with the w mode. This is a destructive write mode,
which means that if out does not exist it is created, but if it does exist it is destroyed and a new
file is created in its place. The fopen command returns a pointer to the file, which is stored in the
variable f. This variable is used to refer to the file. If the file cannot be opened for some reason, f
will contain NULL.

The fprintf statement should look very familiar: It is just like printf but uses the file pointer as its
first parameter. The fclose statement closes the file when you are done.

107

TEXT FILES: READING CHAPTER 18. TEXT FILES

Text files: reading

To read a file, open it with r mode. In general, it is not a good idea to use fscanffor reading: Unless
the file is perfectly formatted, fscanf will not handle it correctly. Instead, use fgets to read in each
line and then parse out the pieces you need.

The following code demonstrates the process of reading a file and dumping its contents to the
screen:

1 #include <stdio.h>
2

3 int main (void)
4 {
5 FILE *f;
6 char s[1000];
7

8 f = fopen("infile","r");
9 if (!f)

10 return 1;
11 while (fgets(s,1000,f) != NULL)
12 printf ("%s", s);
13 fclose(f);
14 return 0;
15 }

The fgets statement returns a NULL value at the end-of-file marker. It reads a line (up to 1,000
characters in this case) and then prints it to stdout. Notice that the printf statement does not include
\n in the format string, because fgets adds \n to the end of each line it reads. Thus, you can tell if a
line is not complete in the event that it overflows the maximum line length specified in the second
parameter to fgets.

Main function return values

This program is the first program in this series that returns an error value from the main program. If
the fopen command fails, f will contain a NULL value (a zero). We test for that error with the if
statement. The if statement looks at the True/False value of the variable f. Remember that in C, 0
is False and anything else is true. So if there were an error opening the file, f would contain zero,

108

CHAPTER 18. TEXT FILES MAIN FUNCTION RETURN VALUES

which is False. The ! is the NOT operator. It inverts a Boolean value. So the if statement could have
been written like this:

1 if (f == 0)

That is equivalent. However, if (!f) is more common.

If there is a file error, we return a 1 from the main function. In Linux, you can actually test for this
value on the command line. See the shell documentation for details.

109

MAIN FUNCTION RETURN VALUES CHAPTER 18. TEXT FILES

110

Chapter 19

Binary Files

Binary files are very similar to arrays of structures, except the structures are in a disk file rather than
in an array in memory. Because the structures in a binary file are on disk, you can create very large
collections of them (limited only by your available disk space). They are also permanent and always
available. The only disadvantage is the slowness that comes from disk access time.

Binary files have two features that distinguish them from text files:

• You can jump instantly to any structure in the file, which provides random access as in an
array.

• You can change the contents of a structure anywhere in the file at any time.

Binary files also usually have faster read and write times than text files, because a binary image of
the record is stored directly from memory to disk (or vice versa). In a text file, everything has to be
converted back and forth to text, and this takes time.

C supports the file-of-structures concept very cleanly. Once you open the file you can read a
structure, write a structure, or seek to any structure in the file. This file concept supports the concept
of a file pointer. When the file is opened, the pointer points to record 0 (the first record in the
file). Any read operation reads the currently pointed-to structure and moves the pointer down one
structure. Any write operation writes to the currently pointed-to structure and moves the pointer
down one structure. Seek moves the pointer to the requested record.

Keep in mind that C thinks of everything in the disk file as blocks of bytes read from disk into
memory or read from memory onto disk. C uses a file pointer, but it can point to any byte location
in the file. You therefore have to keep track of things.

The following program illustrates these concepts:

111

CHAPTER 19. BINARY FILES

1 #include <stdio.h>
2

3 /* random record description - could be anything */
4 struct rec
5 {
6 int x, y, z;
7 };
8

9 /*
10 * writes and then reads 10 arbitrary records
11 * from the file "junk".
12 */
13 int main (void)
14 {
15 int i, j;
16 FILE *f;
17 struct rec r;
18

19 /* create the file of 10 records */
20 f = fopen("junk", "w");
21 if (!f)
22 {
23 return 1;
24 }
25 for (i = 1; i <= 10; i++)
26 {
27 r.x = i;
28 fwrite(&r, sizeof(struct rec), 1, f);
29 }
30 fclose(f);
31

32 /* read the 10 records */
33 f = fopen("junk", "r");
34 if (!f)
35 {
36 return 1;
37 }
38 for (i = 1; i <= 10; i++)

112

CHAPTER 19. BINARY FILES

39 {
40 fread(&r, sizeof(struct rec), 1, f);
41 printf ("%d\n", r.x);
42 }
43 fclose(f);
44 printf ("\n");
45

46 /* use fseek to read the 10 records
47 in reverse order */
48 f = fopen("junk", "r");
49 if (!f)
50 {
51 return 1;
52 }
53 for (i = 9; i >= 0; i--)
54 {
55 fseek(f, sizeof(struct rec)*i, SEEK_SET);
56 fread(&r,sizeof(struct rec), 1, f);
57 printf ("%d\n", r.x);
58 }
59 fclose(f);
60 printf ("\n");
61

62 /* use fseek to read every other record */
63 f = fopen("junk", "r");
64 if (!f)
65 {
66 return 1;
67 }
68 fseek(f, 0, SEEK_SET);
69 for (i = 0; i < 5; i++)
70 {
71 fread(&r, sizeof(struct rec), 1, f);
72 printf ("%d\n", r.x);
73 fseek(f, sizeof(struct rec), SEEK_CUR);
74 }
75 fclose(f);
76 printf ("\n");
77

113

CHAPTER 19. BINARY FILES

78 /* use fseek to read 4th record,
79 change it, and write it back */
80 f = fopen("junk", "r+");
81 if (!f)
82 {
83 return 1;
84 }
85 fseek(f, sizeof(struct rec)*3, SEEK_SET);
86 fread(&r, sizeof(struct rec), 1, f);
87 r.x = 100;
88 fseek(f, sizeof(struct rec)*3, SEEK_SET);
89 fwrite(&r, sizeof(struct rec), 1, f);
90 fclose(f);
91 printf ("\n");
92

93 /* read the 10 records to insure
94 4th record was changed */
95 f = fopen("junk", "r");
96 if (!f)
97 {
98 return 1;
99 }

100 for (i = 1; i <= 10; i++)
101 {
102 fread(&r, sizeof(struct rec), 1, f);
103 printf ("%d\n", r. x);
104 }
105 fclose(f);
106 return 0;
107 }

In this program, a structure description rec has been used, but you can use any structure description
you want. You can see that fopen and fclose work exactly as they did for text files.

The new functions here are fread, fwrite and fseek. The fread function takes four parameters:

• A memory address

• The number of bytes to read per block

• The number of blocks to read

114

CHAPTER 19. BINARY FILES

• The file variable

Thus, the line fread(&r,sizeof(struct rec),1,f); says to read 12 bytes (the size of rec) from the file
f (from the current location of the file pointer) into memory address &r. One block of 12 bytes
is requested. It would be just as easy to read 100 blocks from disk into an array in memory by
changing 1 to 100.

The fwrite function works the same way, but moves the block of bytes from memory to the file.
The fseek function moves the file pointer to a byte in the file. Generally, you move the pointer in
sizeof(struct rec) increments to keep the pointer at record boundaries. You can use three options
when seeking:

• SEEK_SET

• SEEK_CUR

• SEEK_END

SEEK_SET moves the pointer x bytes down from the beginning of the file (from byte 0 in the
file). SEEK_CUR moves the pointer x bytes down from the current pointer position. SEEK_END
moves the pointer from the end of the file (so you must use negative offsets with this option).

Several different options appear in the code above. In particular, note the section where the file
is opened with r+ mode. This opens the file for reading and writing, which allows records to be
changed. The code seeks to a record, reads it, and changes a field; it then seeks back because the
read displaced the pointer, and writes the change back.

115

CHAPTER 19. BINARY FILES

116

Index

address operator, 12
array, 29

Boolean expression, 15

comma operator, 20
compiled language, 3
compiler, 3
computer memory, 45

Fahrenheit to Celsius conversion, 20
function prototypes, 27

heap, 69

if statement, 15
Incremental operators, 8

library, 5
logical expression, 15

Operator precedence, 8

printf, 9
programming language, 3

RAM, 45

stack, 69

type, 6
typecasting, 7
typedef, 7

variables, 6

117

	I Basics of C
	C programming
	What is C?
	The simplest C program, I
	Spacing and indentation
	Compilation and run
	The simplest C program, II
	Variables and variable types
	Operators

	Input and output
	printf
	scanf
	Programming exercise

	Branching and looping
	if statement
	Boolean expressions
	Boolean: = vs ==
	while loop
	do-while loop
	for loop
	Looping: an example
	Programming exercise

	Functions
	Function prototypes

	Arrays
	Programming example: sorting arrays

	Structures
	Pointers
	Pointers: why?
	Pointer Basics
	Understanding Memory Addresses
	Pointing to the Same Address
	Using Pointers for Function Parameters
	Pointers and Arrays
	Pointers to Structures

	II Programming Tools
	Makefiles
	Command Line Arguments
	Version control
	Debugging
	Detecting memory problems with valgrind

	III More C Programming
	Dynamic Data Structures
	Stack vs Heap
	Malloc and Free

	Strings
	Programming exercise

	Operator Precedence, II
	Advanced Pointers
	Pointer Types
	Pointers to Arrays
	Arrays of Pointers
	Structures Containing Pointers
	Pointers to Pointers
	Pointers to Structures Containing Pointers
	Linking
	A Linked Stack Example
	Programming exercise

	Libraries
	Making a library
	Compiling and running

	Text files
	Text files: opening
	Text files: reading
	Main function return values

	Binary Files
	Index

