20

21

22

23

24

25

26

27

Comparing performace of different implementations of matrix
multiplication

Last modified: October 20, 2015

The following function implements multiplication of two n X n matrices:

Cij =Y AwBi;
k=1

b S S

X * o

*

*/

Naive implementation of matrix multiplication c += ab,
where a is m x n, b is n x p, and ¢ is m x p, in column-major order.

The physical sizes of a, b, and ¢ are lda x n, ldb x p, and ldc x p,
but only the first m/n/m rows are used, respectively.

c_{ij} += \sum_{k=0}"{n-1} a_{ik} b_{k7j}

a_{ij} <> a[i + jxlda] <- column-major order

void matmul_naive (const double =*a, const double xb, double =*xc, const int m,

const int n, const int p, const int 1lda, const int 1db, const int 1dc)

for (int i = 0; 1 < m; 1i++)
{
for (int j = 0; J < p; J++)
{
double sum = 0.0;

for (int k
{

0; k < n; k++)

sum += af[i + 1lda * k] *~ b[k + 1db x j];
}

c[i + 1ldc % Jj] += sum;




w

© o 9 O wu A

Computational Physics

Matrix multiplication

The graph in Fig. 1 compares the CPU performance, in MFLOPS, vs. matrix size n achieved during matrix
multiplication by two different implementations - the naive one shown above and the state of the art implementation

in OpenBLAS library.

32768

Matrix multiplication

16384

8192 |

4096

1024

performance (MFLOPS)

512

256

2048 -

Figure 1: Perforamnce of two implementations of matrix multiplication: the code above (dotted line) and dgemm

100 200

300 400 500

matrix size

function from the OpenBLAS library (solid line). Notice the logarithmic vertical axis.

set term pdf mono lw .5
set o "performance.pdf"

unset key

set title "Matrix multiplication"

set xlabel "matrix size"

set ylabel "performance (MFLOPS)"
set logscale y 2
p [:] [:] "naive.res" u 1:2 w d,

"dgemm.res" u 1:2 w 1

Figure 2: Gnuplot script that produced Figure 1.

Page 2 of 2



