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Comparing performace of different implementations of matrix
multiplication

Last modified: October 20, 2015

The following function implements multiplication of two n X n matrices:

Cij =Y AwBi;
k=1

b S S

X * o

*

*/

Naive implementation of matrix multiplication c += ab,
where a is m x n, b is n x p, and ¢ is m x p, in column-major order.

The physical sizes of a, b, and ¢ are lda x n, ldb x p, and ldc x p,
but only the first m/n/m rows are used, respectively.

c_{ij} += \sum_{k=0}"{n-1} a_{ik} b_{k7j}

a_{ij} <> a[i + jxlda] <- column-major order

void matmul_naive (const double =*a, const double xb, double =*xc, const int m,

const int n, const int p, const int 1lda, const int 1db, const int 1dc)

for (int i = 0; 1 < m; 1i++)
{
for (int j = 0; J < p; J++)
{
double sum = 0.0;

for (int k
{

0; k < n; k++)

sum += af[i + 1lda * k] *~ b[k + 1db x j];
}

c[i + 1ldc % Jj] += sum;
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Computational Physics

Matrix multiplication

The graph in Fig. 1 compares the CPU performance, in MFLOPS, vs. matrix size n achieved during matrix
multiplication by two different implementations - the naive one shown above and the state of the art implementation

in OpenBLAS library.
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Figure 1: Perforamnce of two implementations of matrix multiplication: the code above (dotted line) and dgemm
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function from the OpenBLAS library (solid line). Notice the logarithmic vertical axis.

set term pdf mono lw .5
set o "performance.pdf"

unset key

set title "Matrix multiplication"

set xlabel "matrix size"

set ylabel "performance (MFLOPS)"
set logscale y 2
p [:] [:] "naive.res" u 1:2 w d,

"dgemm.res" u 1:2 w 1

Figure 2: Gnuplot script that produced Figure 1.
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