
Physics 2200 HW 7 Due: Nov 2015

Name:

Date:

Question: 1 2 Total

Points: 20 65 85

Score:

Representation of floating point numbers

1. You are developing a new standard for floating point arithmetic for microchips. It proposes
to store floating point numbers in 14 bits, in a manner similar to IEEE754 standard: one bit
for the sign, five bits for the exponent, and (one plus) eight bits for the fractional part of the
number. You are not reserving special values of the exponent for zero, infinity, and NaN.

(a) (5 points) What is the smallest positive floating point number in your system?

(b) (5 points) What is the largest floating point number?

(c) (5 points) Approximately, how many floating point numbers are in your system?

(d) (5 points) What is machine ε in your system?

Programming

2. Earlier in the semester we consider the following integral:

In =

∫ 1

0

xne−xdx, (1)

where n is integer non-negative parameter, n = 0, 1, 2, . . .

Looking for an elegant and numerically efficient way to evaluate integrals Eq. (1), we derived
the following recurrence relation for In:

In = n In−1 −
1

e
, (2)

Page 1 of 3



Physics 2200 HW 7 Due: Nov 2015

and supplemented it by the “initial” condition:

I0 =

∫ 1

0

e−xdx = 1− 1

e
. (3)

Unfortunately the program based on Eq. (2), (3) failed. It calculated In for small n correctly
but produced meaningless results for n % 18.

As discussed in class on Oct 29, we now understand the reason for a failure of the original
program as well as the origin of the number 18 above.

Now, your task is to adapt the recurrence relation such that it can be used to produce accurate
results for any n, write a function that calculates a set of integrals for 1 ≤ n ≤ 100, and
compare the performance of your algorithm with the performance of a good-quality general
integration program.

(a) (5 points) rewrite Eq. (1) to act in the stable direction of the recursion, and supplement it
by an initial condition

(b) (5 points) Write a function with the following declaration

1 void integral_recur(int nmin, int nmax, double vals[]);

that uses your new algorithm, calculates In for nmin ≤ n ≤ nmax, and stores the results
into the user-provided array vals.

(c) (10 points) Write a function with the following declaration

1 void integral_gen (int nmin, int nmax, double vals[]);

that uses a high quality general integrator, calculates In for nmin ≤ n ≤ nmax, and stores
the results into the user-provided array vals.

As a general integrator, the function gsl integration qag from GSL library is
recommended. Use ε = 10−9 for both the absolute and the relative error.

In your main program allocate the storage for the array values as following:

1 #define NMAX 100
2

3 double vals1[NMAX + 1], vals2[NMAX + 1];

(d) (10 points) write a program that compares the results of integral recur and
integral gen, thus validating your code.

(e) (15 points) Refactor your program by adding code that measures the time per function call
of the two functions. To increase the precision of the time measurements repeat functions
calls multiple times such that the total running times for each algorithm is between 1 and 2
seconds.

You are welcome to recycle the code your developed for Midterm I project.

Page 2 of 3



Physics 2200 HW 7 Due: Nov 2015

Record time per function call for both algorithms, trecur and tgen, as well as the ratio
tgen/trecur (rounded to the nearest integer).

tgen: trecur: tgen/trecur:

(f) (10 points) Your C code should be well commented, written elegantly, and properly and
consistently formatted.

(g) (10 points) Prepare README.md file and upload the standard set of files for your project
to GitHub to the folder named hw07. Provide the link to the project:

https/github.com/

Page 3 of 3


