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Introduction

This course is intended to serve several purposes, e.g., the students should

(i) become accustomed to a modern computer environment of UNIX workstations,

(ii) learn to use a higher programming language such as Fortran90 or C/C++,

(iii) learn numerical methods, algorithms to solve problems in physics,

(iv) learn how to evaluate measured data, either experimental data or from a numerical
simulation.

There are several fields in physics that could be included in a course of Computational
Physics:

1. Numerical Analysis

The physical principles to solve a problem are known and lead to equations for the
relevant quantities. If these equations cannot be solved analytically, they may be solved
numerically.

Examples: Calculate the oscillation frequencies of a complicated molecule; calculate the
trajectory of a rocket flying from the earth to the moon, etc.

2. Symbolic Formula Manipulation

This deals mostly with the conversion, simplification, and graphical representation of
mathematical formula. In a limited way also the numerical solution of equations is possible.
Common programs for this kind of computer-algebra are: Maple, Mathematica, or Reduce.

3. Numerical Simulations

Natural processes are modeled in a computer experiment with the aim to understand the
physical origin of observed phenomena and/or to make predictions for real experiments.

Example: Is an alloy consisting of 50% iron and 50% copper still magnetic? How does
the magnetism depend on temperature, concentration?
Advantage over a laboratory experiment: It is possible to look at ideal systems, to turn off
interfering side effects such as friction, and to tune parameters that may not be accessible
in an experiment. In this way it is possible to make a connection with the real world and
simplified systems that can be analyzed theoretically.

4. Control of Experiments

An experiment sends signals to a computer that in turn adjusts the experimental param-
eters and analyses the data.

Comparison:
Laboratory Experiment | Computer Simulation
sample model
measuring apparatus computer program
calibration test of the program for special cases
measurement simulation
data analysis data analysis

In this course only problems that belong to the categories 1. and 3. will be discussed.
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1. Preliminaries

1.1 Introduction to Computer Hardware

a) Computer Types

1) PC (IBM or Apple)
Computer Power 2) Workstation
3) Mainframe

b) Usage

1) PC: usually single user (“personal” computer). Therefore, no special access protection
for files. If the computer “hangs up” you may turn it off and on again and the PC
reboots.

2) Workstation: Multi-user system. You do not have to sit in front of the workstation
in order to use it, e.g., you can connect over a network. You also can start programs
running in the background and disconnect and the programs will continue to run.
Therefore: Never ever switch off a workstation !

You can destroy many hours of work of your fellow students and, without a proper
shutdown, it can be difficult to restart the system. Even if the system does not appear to
work properly it may be possible to resolve the problems from a remote machine without
a shutdown. A shutdown and restart can only be performed by the system manager.
Workstations are today’s most modern computers at scientist’s workplaces.

3) Mainframes: Large multi-user machines that serve a university, a whole region or even
a whole country. You usually have to write a proposal before you get an account on these
machines. You may also have to pay for the computer time.

¢) Computer Structure and Operation

Input
CPU
central main
processing | [« memory
unit)

Output



Input occurs usually over the keyboard or the mouse, but also over data or command
files. Output is either displayed on the monitor or sent to the printer, but may also stored
in files on the hard disk or on a diskette.

Mode of Operation: All components of a computer respond to two states of electrical
voltage ( called 0 and 1 ). Input and output are coded in a sequence of zeros and ones
(binary code). The amount of information that can be obtained by a yes-no question is
called a bit. The commands, i.e., the program, that the computer is to execute as well as
the data the computer has to read in, compute, and output are stored as binary code at
distinct addresses in the memory. The size of the memory is given in bytes, 1 byte = 8 bits.
A PC has usually 4 to 16 MB, the Workstations in the Physics Computing Laboratory
have 64 MB (64 M B = 64x (2'%)? byte, 2'° = 1024 ~ 103). The CPU reads the commands
out of the memory and executes them one after the other.

1.2 Basic Software Components

“Software” is nothing else than a program. However, in order to write and execute your own
programs, a minimum of software components must already be present on the computer.

a) The Operating System
This is a program that controls all basic features of the computer: It controls input and
output, e.g., sends your keyboard input to the correct memory addresses, etc., it controls
the disk drives (hard disk and diskettes), it controls the reading of commands and data
out of the main memory, etc. Without an operating system the CPU is “dead”.

Common operating systems:
DOS, 0OS/2 and Apple for PCs
UNIX for workstations and mainframes
(UNIX is also available for IBM-PCs, and it is even
public domain: “Linux”)

Today, most operation systems include a window manager that enables you to work with
several windows on the screen, to use the mouse, etc. In the UNIX environment this graphical
interface is called “X-Windows”.

b) Editor
To write the source code of a program you need an editor. This program allows you
to enter text over the keyboard and save the text as a file on the hard disk. There are

many different editors, under UNIX two common editors are “vi” and “emacs” (emacs
also available for OS/2).

c) Compiler
This program is needed to translate the source code of a program, which is a text file,
into an executable file: Depending on the programming language there are F77, F90, C,
C++, etc., compilers.



2. Introduction to UNIX

Filesystem

Similar to DOS, Apple UNIX uses a hierarchical file system: files can be combined into
directories, which in turn can be combined again into directories, etc. The directory on the
highest level is simply called “/”. Any directory may contain files and subdirectories.

Example:
/

N

Jusr /home /Adir /Bdir

/home/a_user /home/b_user /home/c_user

/home/b_user/data /home/b_user/programs /home/b_user/filel /home/b_userf/file2

T~

/home/b_user/programs/f1.f /home/b_user/programs/f2.f

The directory /usr and its subdirectories contains most of the system software, programs,
etc. Every user has a “home” directory, where she/he can create own files/subdirectories.
This directory should not be confused with the directory /home, in fact, on most UNIX
machines the home directory of the user xy is /home/xy. This can be abbreviated as "xy,
your own home directory is simply ~.

Commands

e man <command> online manual of the UNIX system, explains the command syntax of
command, e.g., man man explains the syntax of the man command.

e cd <directory> change directory, e.g., assuming that you are in the directory "b_user
the command cd programs changes to the directory “b_user/programs. It is not neces-
sary to type the full path name, the relative path name suffices.

e 1s lists the contents of the current directory. This command has many options, see man
1s.

e cp<filel> <file2> or cp <filel> <dirl> copies filel to file2, resp. copies filel
into the directory dirl (with the same name).

o mv <filel> <file2> or mv <filel> <dirl> moves files, same as cp, but the original
filel is deleted after the process.

e mkdir <directory> creates a directory

e rmdir <directory> removes a directory (works only if the directory is empty).

e rm<file> removes a file. Be careful, especially if you use wildcard characters such as
*. UNIX does not ask, whether you really want to do this, e.g., rm * deletes all files in
the current directory and there is no undelete on the UNIX system.
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3. Introduction to Programming

3.1 From Algorithms to Machine Code
An algorithm is a method to solve a particular problem. A program is an implementation
of an algorithm according to the rules of a programming language.

Example: Find the largest of N numbers aq,as, ..., ay.
Algorithm: Find the larger number of a; and as. Compare this number with a3, etc.

/enter al,...,aN/

I

maximum = a;

Flowdiagram:

a; > marimum

ﬁ)rint mazximum /

maximum = a;

no

1 —>1+1 end




Program:
program maximum

allocatable a(:) ! declare a as an one-dimensional array
read*,n ! read number of elements
allocate (a(n)) ! allocate storage for array elements
read*, (a(i),i=1,n)
rmax=a(1) ! set initial value for maximum
do i=2,n ! do loop

if (a(i) > rmax) rmax=a(i) ! if a(i) > maximum set maximum=a(i)
end do
print*,rmax ! output
end

Finally the compiler (here F90) will generate from the source code an executable program.

3.2 Number Representation, Rounding Errors

In any programming language there are different types of variables, such as integer, real,
double precision, complex, character, etc. To estimate the rounding errors of a computation
one has to know how these variables, in particular those that represent numbers, are stored
on a computer. Although there is no general standard, most workstations and PCs use the
same number representation, i.e., most machines that work with 32 bit words (number of bits
used for a single precision real number or for an integer) comply with the IEEE convention
that will be explained in the following.

Integer
Any integer variable occupies 32 bits of storage. Because of that an integer ¢ can take
values —23! = —2147483648 < i < 23! — 1 = 2147483647

31 g 0
31 bits
Examples: 1:20:‘ 0 0 1‘
0=|0 0|
57T=20 420428 4+20=| 0 0111001
21 -1=|01 1]

For negative integers the highest, i.e., the 31st bit is 1. But you do not obtain the negative
value of an integer by just changing the 31st bit from 0 to 1. Rather the negative value is
obtained by flipping all bits and then adding 1. Thus:

_1:‘1 1‘
-2 =110 0|




There is no integer overflow: by subtracting, resp. adding, multiples of 232 the result of any
integer operation is converted into an integer within the interval [—231 231 — 1]. This is
simply done by discarding the highest bits.

2147483647 + 1 = —2147483648 = —23 or —1+1=0.

Real (single precision)

A single precision real number also occupies 32 bits of storage.

s e f

A A
N N

31 30 23 22‘
8 bits 23 bits
s sign bit, e exponent, f mantissa
The value of the real number is determined as

\ O

xTr = (_1)5 X 267127 X 1.f22f21 v fo .

Here, e is given in binary form, e.g., e = 0111110 — e = 126 and 1.f55f5 -+ fo means
T4+ foo2 P+ f212 24+ f02 B =1+ 32, fo3_;27% (If e contains only zeros the meaning
is Sllghtly different: x = (—]_)s x 27127 % [f2220 + f21271 + 4 f02722].)

Examples: (i) 1.0 =[0011111110---0]; s =0, e = 127, f = 0.
(ii) The largest real number is rya, = (0111101 -1~ 3.4 x 10%® not !
Infinity is represented by [0111110---0], all “larger” numbers represent, so-

called floating point exceptions. These are results of invalid mathematical
operations such as division by zero.

(iii) The smallest positive number is[0---01] =271 ~ 1.4 x 10~

(iv) Negative numbers have s = 1.

(v) What is the smallest number 1 + ¢ that is larger than 17 Answer: 1+ ¢ =
(001111110 ---01}; e = 2723 ~ 1.192x 107" is the computer accuracy for single
precision real numbers: Any single precision real number has 7 significant
digits. Thus, 5.5 + 1077 is equivalent to 5.5. The relative rounding error of
a real number is therefore

% ~ 1077 . (1)

Double Precision

Double precision numbers are composed of two computer words, thus occupy 64 bits of
storage. The representation is very similar to that of real numbers:

s e f
L[] | [ ] | |

63 62 52 5l
11 bits 52 bits

\ O
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and
Tr = (—]_)s X 28_1023 X ]_.f51f50 . 'f() .

Infinity corresponds to e =1---1 and f = 0---0. The largest number is rp,, ~ 1.8 x 103%,
The computer accuracy € (again 1 + € is the smallest number larger than 1) for double
precision numbers is € = 2752 ~ 2.22 x 1076, thus the relative rounding error for double
precision real numbers is

— 10716 (2)

thus there are 16 significant digits.
Complex variables are pairs of either real (F77, F90) or double precision (F90) variables.
Unsigned integers (C, C++) can take values within a range of 0 to 2%? — 1.

Care must be taken if different types of variables are mixed in a computation. If a
real /double precision variable or expression is assigned to an integer variable the noninteger
part is simply cut off. If a real variable that is larger than 23! is assigned to an integer
the result is unpredictable! If a double precision variable is converted to single precision the
variable is rounded to the closest single precision number.

4. Numerical Differentiation

Mathematically the derivative of a function f is defined as

ﬁ = f'(r) = lim fle+h) = f@) .

dz h—0 h

If possible, we will calculate derivatives analytically and use that function f'(x) in the
computer program. Only under rare circumstances, e.g., if f is very complicated and the
formula for the derivative is difficult to calculate analytically, will we calculate the derivative
numerically using finite differences of the function f. In any case this will need more computer
time than the analytical method, thus if CPU-time is a problem, the time you need to
calculate a derivative analytically is well spent. Furthermore, numerical accuracy is a real
problem when a derivative is calculated numerically as we will see below.

To derive an approximation for the derivative of an arbitrary function f let us first look
at the Taylor expansion of that function:

F@+h) = f(@) + f@)h+ L @ + L@k + ... = i L@ . (3)

From (3) we get f(z + h) — f(z — h) = 2hf'(z) + O(h*). The symbol O(e") means that
this term behaves as € as € approaches zero, more accurately, O(e")/€" is finite in the limit
€ — 0. Thus we obtain

fla+h)— flz—h)

f'w) = » +O(?) ()

11



This symmetric difference formula is better than f'(z) = [f(z + h) — f(x)]/h + O(h) or
f'(z) = [f(z) = f(x — h)]/h+ O(h). The term O(h?) specifies the systematic error we make
when using Eq. (4). Because of the finite accuracy of real numbers on the computer there
will be an additional rounding error: Using (1) we obtain

Aa Ab B
A(a—1b) = |a|m + |b|W ~ (la| + |b]) x 1077 .

Consequently, the relative error A(a — b)/|a — b| can be enormous, if |a — b < |a| + |b].
Therefore it is not a good idea when calculating derivatives numerically to make h as small
as possible. Instead, there exist an optimal value for h that depends on the function f(z)
that minimizes the systematic error in (4) and the rounding error.

Estimation of the rounding error:

A feth)  fla=-n] | @]
& =A TR e 00 (5)

Here, € is the accuracy with which f is calculated. This may be comparable to machine
precision, i.e., € ~ 1077 for single and € ~ 1076 for double precision, but it can be larger,
if f is very complicated. The truncation error of the Taylor series (3) after neglecting all
terms after the quadratic is

Ry = Lf"(z + ah)h?

where « lies between 0 and 1. Thus the systematic error made by using (4) is approximately
= 2" (@)1 (6)

The optimal value for A is obtained by minimizing the sum €, + ¢, with respect to h with

the result
he~eBr, with z,=|f(x)/f"(x)]"? . (7)

— — — rounding error

e | systematic error
I
2 — total error
[}
©
Q
s
©
S
5 N
S~
optimal ? h
choice
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x. is a typical length scale that specifies how fast f changes in the neighborhood of z. It
can be hard to estimate, especially if you do not know very much about the function f. In
such cases you may take x. of the same magnitude as x itself. In any case it is a good idea
to check the result for the derivative by using a different value for h, e.g., 2h or h/2. The
relative error of the derivative (4) for the value of h given by (7) is

(€5 + )| (@) ~ €% .

Thus, it is impossible to reach the machine precision € when calculating a derivative numer-
ically using finite differences. If you need a higher accuracy, it is possible to calculate the
derivative for several different values of h and then extrapolate to h — 0, see Numerical
Recipes, Chap. 5.7.

Higher order derivatives such as f”(x) or 0*f(z,y)/0x0y can be calculated in a similar
way, also starting from the Taylor expansion. Quite generally, symmetric formulas should
be used because of the higher accuracy, e.g.,

f'(@) =[f(z +h) = 2f(2) + f(z = h)]/P* + O(h?) .

5. Numerical Integration

5.1 One-Dimensional Integrals

The (Riemann) integral of a function f over the interval [a,b] is defined as

N-1

[:/abd$f(l"):}1big[l]jz%hf($j) with N =(b—a)/h and z;=a+jh. (8)

/|

/

f(x)

a X, X, X\1 b

The error that is made when (8) is used with some finite value for h can be estimated again
using the Taylor expansion for f:

f@) = fz) + (z = 25) f'(25) + (@ — ;)" (25) + 3 (@ = 2;)* fO2;) + O((w — 2;)") . (9)



Therefore [;7*' dz f(x) = hf(z;) + sh?f'(z;) + O(h?), and the error made in the interval is
~ 1h*f'(z;). Since there are N = (b — a)/h intervals the total error is of the order O(h).

We get a much better approximation, if linear interpolation in each interval is used to
approximate the function f, f(z) ~ f;+(z—x;)(fj+1—f;)/(x;4+1—x;), where the abbreviation
f; = f(z;) has been introduced. This leads to the trapezoidal rule

I~Ip(h) =h[Lfo+ fit fot o+ fyoa+ 3fn] (10)

The error is estimated using again Eq. (9) and the corresponding formulae for the derivatives,
ie.,

F(x5) = [fimr = fil/h = 5" (x5) — 02 fD(25) + O(B?)
and
f'(25) = [f (wj51) = f'(@))/h = 5hf O (25) + O(R?) .
Thus, by integrating Eq. (9) we find
[T du @) = hf SR a) + R )+ ) )+ O(R)
= hfj+ 5h(fin = ;) = 50" () = 50" f O (5) + O(°)
= hfi+ 5h(fie = 1) = R (@) = f'(@5)] + O(R°)
and therefore
I = Ir(h) = 5h*[f'(xn) = f'(w0)] + O(hY) . (11)
Surprisingly, the term proportional to h? cancels! In fact, it can be shown that the correction

terms in Eq. (11) contain only even powers of h. Indeed, (11) shows nothing but the first
terms of the Euler-Maclaurin summation formula (see Abramowitz, Stegun, p. 886).

We can use (11) to obtain a formula with even higher accuracy by combining Ir(h) and
I7(2h) so that the term ~ h? drops out as well:

I =1Ig(h)+O(h*) with Is(h)=2Ir(h) — 1Ir(2h) . (12)

This approximation is known as Simpson’s rule,

Is(h) = th(fo+4fi +2fs+4fs +2fs+ 4+ 2fn_o + 4fno1 + fn] - (13)

Some remarks:
(i) Do not calculate (13) directly, use (10) and (12).

(ii) Start with a fairly large h (small N) and then iterate (12) by reducing h by a factor
of 2 in each iteration until some specified degree of accuracy has been achieved, i.e.,
until the difference between Is(h) and Ig(2h) is smaller than some desired accuracy e.
Since in each iteration you can use the results of the previous iteration, the number of
function evaluations is kept to a minimum:

Ir(h) = 5Ip(2h) + h(fi+ fs+ fs+ ...+ [ns+ [vo1) -

14



(iii) Sometimes it is a good idea to make a substitution of the integration variable before
doing the numerical integration in order to reduce roundoff errors, e.g., the transforma-
tion

W:/lmooo do flz) "2 /11 dz f(1/2)/22

/10000

reduces the interval of integration and, depending on the function f, may lead to much
faster convergence. This transformation also works if @ = —o0 or b = c.

(iv) If the function f has an integrable singularity at one of the endpoints a or b (13)
can not be used since fy or fy can not be calculated. In these cases other (so-called
open) formulas have to be used that are very similar to (13) but avoid the function
evaluations at the endpoints (see Numerical Recipes, Chap. 4.4). However, quite often
the singularity can be removed analytically, e.g., consider the following integral with a
function g that is non-singular at 1:

W:/Oldx\/%.

At x =1 the factor 1/v/1 —2? = 1/y/1+z-1/y/1 — z diverges, but this singularity is

integrable: [, dzv/+/1 — x = —2y/1 — 2|} = 2. The substitution z = /1T — 2 converts the
integral into a form that can be evaluated using (13):

1 2
W:/di 1 22) .
o Pt

(v) If the integrand f is strongly peaked in some part of the integration interval it may be
worth-while to split the interval into several parts and evaluate them separately.

(vi) Under certain circumstances, e.g., if the integrand f is very irregular, has singularities
within the interval of integration, etc., the problem can be reformulated into the prob-
lem of solving a differential equation: y(z) = [ dz f(z) = v = f(x) and solve this
differential equation with a method that uses a variable step size. This will be discussed
later in this course.

5.2 Multidimensional Integrals

There are several problems connected with the evaluation of multidimensional integrals.
First, if you need M function evaluations to calculate a one-dimensional integral, you will
need of the order of M¢ evaluations to do a d-dimensional integral with the same accuracy.
Second, the region of integration can be complicated, i.e., the boundaries of the inner integrals
may depend on the variables of the outer integrals:

T2 y2(z) z2(z,y)
I:/ da:/ dy flz,y, ) .
T y1(x) z

1(m,y)

Such integrals can be evaluated by repeatedly doing one-dimensional integration, but
there is another possibility, namely Monte-Carlo integration. The idea is based on the fact
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that the integral over some function f is equal to the mean value of that function averaged
over the region of integration times the volume of integration,

[= /Vddxf(x) —V{f) . (14)

The idea of the Monte-Carlo integration is to choose points x; randomly within the volume
V and compute the average as (f) = + XN, f(x;). The error can be estimated by the
statistical error AT = V[(f2) — (f)?]"/2/N. If the integral is to be calculated over some
complicated region W, define a region V' that can be easily calculated and encloses W as
closely as possible. Furthermore, define f(x) = 0 for x outside W. Now Eq. (14) can be
applied to this modified function f within the volume V.

The problem remains how to choose the points x; in a random way. For this we need
random numbers, the generation of which is discussed in Sec. 10 later in this course.

6. Minimization and Root Finding

6.1 Root Finding in one Dimension
6.1.1 Bisection

We want to find the solution of the equation f(x) = 0. Assume that we know two points
and xo so that f(x;) > 0and f(z3) <O0or f(z;) < 0and f(xg) > 0. Thus, if f is continuous
(we will require this for all of this section) there must be a zero between x; and z5. Under
these preconditions the zero can be found by bisection: Let us assume that z; < x5. Then
calculate f at the midpoint of the interval zg3 = (21 + z2)/2. If f(x3) has the same sign
as f(z1) make z3 your new z, otherwise make x3 your new x,. Then iterate the process
until xy — 2 is smaller than some desired accuracy or until f(x3) is of the order of machine
precision. Bisection will always converge, there are methods that converge faster under
certain conditions, in other cases they may also be slower. For example, you can choose x3
by interpolating linearly between xy and xo, 23 = [f(z1)x2 — f(x2)z1]/[f(22) — f(x1)], and
choose the new interval depending on the sign of f(z3) as above (“regula falsi”).

f(x)

o ’ —~
é X X ,,,9/ / é X
l } X X X X X X )é X X
_— - 5 4 2 77 - - 2 1 0
a) b) c)

Tlustration of different methods of root finding: a) bisection, b) regula falsi ¢) Newton’s method
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6.1.2 Newton’s Method

Newton’s method uses only information at one point x in order to approximate the zero of
the function f by extrapolating to the zero along the tangent to f at x. The first two terms
of the Taylor expansion of f are f(Z) ~ f(z) + (T — x)f'(x). Solving for T with f(z) =0
leads to the iteration scheme

f(zn)

Tn+1 T, f’(a?n) .
Newton’s method converges much faster than the methods mentioned in Sec. 6.1.1, if your
starting point xy is close enough to the zero. Otherwise the method may fail completely.
Thus, it is important that you know in which regime the zero can be found, and it is
essential that you check after each iteration whether |f(x,)| actually has decreased. If not,
discard the step and switch to a different method, e.g., to bisection, and switch back to
Newton afterwards.

(15)

f(x)
x
f(x)
\

Two situations in which Newton’s method fails.

6.2 Minimization in one Dimension

Finding the minimum of a nonlinear function of a single variable is very similar to root
finding in one dimension, since the position of the minimum of a function f(z) is determined
by the equation f’(x) = 0. Thus, Newton’s method reads

f'(xn) (16)

In case f(xp11) > f(z,) we again discard the step and switch to a different method. Bisec-
tion, however, is not such a good idea for minimizing a function, at least not if you do not
want to calculate the derivative f’. The reason is the following: assume we have three points
x1 < Ty < xz with f(xe) < f(z1), f(z3). In order to proceed we have to choose a new point
either (z1 + 23)/2 or (x9 + x3)/2. Approximately half of the time we will choose the wrong
interval. Therefore, too many function evaluations will be done. The better alternative is
the so-called golden section search. Let us assume we are looking for the minimum of the
function f in the interval [a,b]. For the moment we will set @ = 0 and b = 1, the generaliza-
tion to an arbitrary interval is straightforward. We start by calculating the function f at two
inner points of the interval 0 < 7 < 7 < 1. We will choose 71 and 7 so that the distances
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71 and 1 — 7 from the interval boundaries are the same. If f(77) < f(72) the minimum has
to be in the interval [0, 75]. In order to proceed we have to know the function f at two inner
points of this new interval [0, 72]. However, we already know f(71). We now choose 77 and
75 = 71 and require that 7 = 7,/ and 7 = 75 /7 in order to keep the points, where the
function is to be evaluated, always at the same fractions of the current interval. Thus, we
must have 7, = 7. The symmetry requirement 7, = 1 — 7, guarantees that in the case of
f(m1) > f(m2) we can choose |11, 1] as the new interval and 7 = 7 in exactly the same way.
The two conditions, 7y = 72 and 7, = 1 — 7, lead to a quadratic equation with the result

Ty = %(\/5 - 1) and T =75 . (17)

The number 3(v/5 — 1) is known as the golden mean, hence the name golden section search.
Note that in a golden section search the function f is never evaluated at the endpoints of
the interval.

For an arbitrary interval [a, b] the points at which the function has to be calculated are
1 =a+7(a—0>) and zy = a+ 1(a —b). If f(z1) < f(xs) set b — xo, x5 — x1, and
1 — a+ 11(b— a), otherwise set a — 1, £1 — x9, and x5 — a + 75(b — a). These steps are
to be iterated until b — a < €1, or the reduction of f in two consecutive iterations is smaller
than e, for some predescribed values of €7, €.

6.3 Minimization of a Function of Several Variables

There are several methods of minimizing a nonlinear function of several variables (steepest
descent, conjugate gradient methods, etc., see Numerical Recipes, Chaps. 10.4-10.6). Here,
we only discuss the Newton-Raphson method which is the generalization of Newton’s method
to higher dimensions. It has the advantage that it can be generalized to solving sets of
nonlinear equations as well.

An extremum of the function f(x), x = (x1, ..., 2,), is characterized by the condition
0
VF=0 or ai:o,z':l,...,n. (18)

The Taylor expansion of f around some point x reads

f(x+s) = f(x)+s-Vf(x)+38ds+... (19a)

and
Vflx+s) = Vf(x)+A4s+..., (19b)
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where the symmetric matrix A with elements

32
[A] /

= 2
~ 81‘281'] ( 0)

has been introduced. Setting V f(x) = 0 in (19b) leads to the Newton-Raphson method
As=-Vf (21)

and the iteration scheme
Xyt+1 = Xy +s. (22)

Eq. (21) defines a set of linear equations that have to be solved for s. The solution of
linear equations will not be discussed in this course. This is in fact a very difficult numerical
problem, however almost every numerical library contains routines for the solution of linear
equations. Thus, it is a waste of time to program it yourself. Instead, we will learn how to
use these libraries, in particular the NAG library, on the UNIX system. The NAG library
contains FORTRAN routines of all kinds, thus C programmers have to learn how to use
these programs. This is almost essential since there are basically no libraries for C available.

In the neighborhood of a minimum A is positive definite, i.e., sAs = —V fs > 0. There-
fore, the vector s is in a direction that reduces f. However, if we are still far away from
the minimum there is no guarantee that A is positive definite, thus the Newton-Raphson
method in its pure form (21,22) will probably not converge for quite similar reasons as
in the one-dimensional case. Hence, again, we have to check after each iteration whether
f(xp41) < f(x,). If this is the case, the step is accepted, if not we replace Eq. (22) by

Xpyt+1 = Xy + S (23)

and minimize f(x, + As) with respect to A. Since this is now a problem of finding the mini-
mum in one dimension we can use a golden section search that was discussed in the previous
section. The question remains, within which interval should we look for the minimum? The
upper limit is clear: b = 1 which is the full Newton-Raphson step (22). If we choose a = 0
we will run into trouble if sV f > 0, since all values for A\ will lead to an increase of f.
This can be avoided by choosing A\; = a + 7(1 — a) = 0 and determine the lower boundary
of the interval as a = —71/(1 — 1) = —7». Since we already know f for A = 0 we only
have to calculate f(x, + Ags) with Ay = —75 + 7»(1 + 1) = 71 in order to start the golden
section search. The golden section search will be performed until two consecutive values of
A differ by less than €,. Do not choose €, too small; the golden section search is only needed
to approach the minimum, close to the minimum the pure Newton-Raphson step (22) will
always be accepted. €, = 1072, e.g., is a reasonable choice.

Under very rare circumstances the golden section search will yield a result A = 0 or
A = +ey. This is extremely unlikely since it means that by chance a direction s was found
that is orthogonal to the gradient. In these cases it may be worthwhile to take a step in
the direction of the gradient, x,.; = x, — AV f, again by minimizing f with respect to .
However, result A = 0 obtained from the golden section search is by far more likely to occur,
if there is a programming mistake in the routines that calculate the function f and/or the
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derivatives and the step s. Thus, in the case of A = 0 one should carefully check these
routines for errors.

The combination of the Newton-Raphson method with the golden section search also
allows to treat problems, where some or all of the parameters are confined within certain
bounds, e.g., if the function f contains terms like Inz; for some value of i, the iteration
procedure must stay within a regime x; > 0. If the Newton-Raphson step violates these
conditions the golden section search is used and the search interval is limited so that the
restrictions on the parameters are satisfied. This can be done by treating all points x,
that violate the constraints as if they correspond to points with f(x,) = +oo. The same
approach is used if one wants to restrict the search for the minimum within some limited
area in parameter space. To take into account constraints in this way is a good method, if
the location of the minimum Xmin does not lie on the boundary of the area D for which f is
defined. If X, does lie on the boundary of D the method probably will still work, but is very
inefficient: In these case the minimum of f is located at a point with V f(Xxin) # 0, therefore
the Newton-Raphson step will almost certainly fail to reduce f even in the vicinity of the
minimum and the minimization is done exclusively by the golden section search. For such
cases methods that proceed along the gradient of f, like the steepest descent and conjugate
gradient methods, are likely to be more efficient.

The Frenkel-Kontorova Model

In this section an application of the minimization method described above will be discussed.
Consider the surface of some crystalline material, e.g., iron. We will assume that the surface
is perfect, i.e., there are no defects, no steps, no holes, etc., and that the atoms at the surface
form a perfect periodic lattice with a lattice constant a. We now deposit a small amount of
a different material onto this surface with a different lattice constant b. The surface atoms
provide a potential for the deposited atoms, also called adatoms, that has the periodicity a
of the underlying lattice. Hence, if all adatoms will be positioned at the minimum of this
periodic potential they cannot maintain their preferred distance b, but will be compressed
(if b > a). If the strength of the periodic potential is very large and the misfit b — a is
not too big this will be nevertheless the preferred state. However, for larger misfits and/or
weaker potentials a preferable configuration of the adatoms consists of regimes in which the
adatoms are compressed, but these regimes are separated by defects, so-called dislocations.
These are lattice sites, where no adatom is located at a site that corresponds to a minimum
of the periodic potential (in the case of b < a dislocations correspond to sites, where there
are two adatoms located close to a minimum of the periodic potential), see the figure below.
The question that has to be answered is: What is the distance between these dislocations
depending on the misfit b — a and the strength u of the periodic potential?

The Frenkel-Kontorova model studies the one-dimensional version of this problem. The
interaction between the adatoms is modeled by harmonic springs with an equilibrium length
b and a spring constant k. The periodic potential is taken to be a simple cosine function.
Hence, the total energy of the system can be expressed in the following way:

V=[5 (g — 25— 0)* = 50" + (1 cos(2ma;/a))] (FK 1)
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where z; is the position of the j-th adatom and the sum runs over all adatoms. The zero
of the energy scale in (FK 1) is set so that the state z; = ja, where all particles sit in
the minimum of the periodic potential, has energy V' = 0. The model (FK 1) contains 4
parameters a, b, k, u. However, two parameters, a and x, can be eliminated by changing the
length and energy scales. It is also advantageous to introduce new variables ¢; = 27 (z;/a—j)
that measure the position of the j-th particle relative to the j-th minimum of the periodic
potential. After these changes the total energy depends only on two parameters, the strength
of the potential u and the misfit A = 22(b — a),

V= Z [% Qis1 — 05— A)? — 1A+ u (1 — cos goj)] : (FK 2)

The stable configurations of the Frenkel-Kontorova model correspond to sets of variables
¢; that minimize the total energy V' (FK 2). These are the ground states of the model. If
u and A are changed, in general the ground state will change as well. The phase diagram
specifies the ground state of the Frenkel-Kontorova model for each pair of values (u, A). Two
extreme cases can be specified immediately: For v = 0 the distances between the particles
will be equal to the length of the springs, i.e., ¢;11 — ¢; = A. On the other hand, for large
strengths u of the potential all particles will sit at the minimum of the potential, ¢; = 0. For
other values of v and A the ground states have to be calculated numerically by minimizing
the total energy V.

In a numerical calculations it is impossible to study infinite lattice sizes. For finite lattices,
however, boundary conditions have to be specified. Two cases are of interest:
a) free boundary conditions: The two particles at the ends of the chain have only one
neighbor, thus there are N particles, but only N — 1 springs. The total energy in this

case is
N

2_)[ i1 — 0 — M) — 1A?] + Z (1—cos ;)] . (FK 3)

This kind of boundary conditions model an island of adatorns on the surface of a crystal.

b) periodic boundary conditions: We assume that after a finite number N of adatoms the
whole sequence of positions ¢; will repeat itself, e.g., if particle 1 sits exactly in the
minimum of the periodic potential, then particle N + 1 sits at the minimum as well.
In this case we can identify particle 1 and particle N + 1, thus we close the chain by
connecting particle 1 and particle N with a spring as well. However, we must specify
how many minima N + p of the periodic potential are spanned by a chain of length N,
since this will determine the boundary conditions: ¢n1 = 1 + 27p, p being an integer.
The total energy for periodic boundary condition is therefore given by

N-1
V= Lpigr — @ — A —2A? 4 (1 — cos g,
2 (2 (0ja1 — 0 — A - 4 ( ;)] (FK 1)
+2(e1+2mp—on —A) =LA +u (1 —cospy) .
The only solution for p = 01is ¢; = 0, 7 = 1,..., N, ie., all particles sit at adjacent
minima of the periodic potential. Periodic boundary conditions model a situation, where
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the surface is completely covered with adatoms. For a fixed pair of parameters (u, A) the
minimization of (FK 4) will give a result that depends on the ratio p/N with 27p/N being
the average value for ;.1 — ¢; for that particular solution. To determine the absolute
minimum of V' one has to calculate V' for several values of p/N and plot the energy per
particle V/N as a function of p/N. The minimum of that curve gives the preferred value
for p/N that characterizes the ground state of the model for the given values of u and A.

The so determined states for periodic boundary conditions all have rational wavenumbers
p/N, these states are called commensurate solutions, since the periodicity of the solution is
commensurate with the periodicity of the lattice. In a numerical calculation no other states
can be determined. However, one may ask whether there exist so-called incommensurate
ground states, i.e., ground states with an irrational wave number p/N. For the Frenkel-
Kontorova model it has been proven analytically that below a certain critical strength u.(A)
of the potential there do exist incommensurate ground states, and furthermore the commen-
surate ground states do not fill up the phase diagram (the number of points (u, A) for which
the ground states are incommensurate, form a set of measure larger than zero). It is clear
that such states must exist for u = 0, however, it is nontrivial that incommensurate states
still exist for u > 0. For u > u.(A) these incommensurate solutions cease to exist, or, more
precisely, the number of points (u, A), where the ground state is incommensurate, form a
set, of measure zero. It is possible to approximate incommensurate states by commensurate
solutions with a large periodicity N. Such a typical solutions is shown in the figure below:
For fairly large regimes the values of ¢; are close to multiples of 27. These regimes are
separated by defects or dislocations, where the values of ¢; changes by 27 over only a few
values of j. For u < u.(A) the distance of these dislocations is determined by the wave
number p/N, and there are no preferred locations for the defects on the lattice. However,
for u > u.(A) the dislocations get pinned to the lattice, i.e., the center of the dislocation
always is at a lattice site or exactly between two lattice sites. Consequently, the periodic-
ity of such a solution must be commensurate with the periodicity of the lattice. For these
reasons the transition at u.(A) is called a pinning transition. One may ask, whether there
exist any other solutions. In particular, are there ground states for which the positions of
the dislocations form a chaotic sequence? This question can be answered again analytically:
there are no such ground states; all ground states of the Frenkel Kontorova model are either
commensurate or incommensurate (the spectrum of the fourier transform is discrete).

For small values of A the ground state is the trivial solution ¢; =0, 7 =1,...,N. At
some value A for a given fixed value of u this state will no longer be the ground state of
the Frenkel-Kontorova model. What is the wave number p/N of the first commensurate
state with ¢; # 0 for at least some j between 1 and N? Answer: As A is increased the
wave number that characterizes the ground state runs through all rational numbers p/N !
This behavior is called “devil’s staircase”. For u > u.(A) the staircase is called complete,
otherwise incomplete.
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6.4 Solution of a Set of Nonlinear Equations

Finding a solution to a set of nonlinear equations
F(x)=0 with F=(F,....,F), x=(x1,...,2,) (24)

is a much harder problem than finding the minimum of a nonlinear function. In case the
Newton-Raphson step (22) was not successful we always could do a line search in order to
reduce the function f. When looking for the solution of a nonlinear set of equation such
criteria do not exist. We can collapse the set of equations (24) to a single nonlinear function

f= %F -F, (25)
but then the solutions F = 0 correspond to the absolute minimum of f and not just some
local minimum usual minimization routines will converge to. Thus, there is no guarantee
that we will actually find solutions of (24) by minimizing (25). In practice the best way is
to solve (24) by the Newton-Raphson method

As = —F(x) with [A]; = 250 (26a)
~ ~ a])j
Xp+1 = Xy +s (26b)

and use a golden section search x, 11 = x, + As aimed at minimizing f only if the Newton-
Raphson step (26b) fails to reduce f. Thus, we are still trying to solve (24), we are not
using a Newton-Raphson method to minimize f. In fact the golden section search is simpler
than in the previous section since the vector s obtained from (26a) will always point in a
direction along which f is reduced: Vf-s = (FA) - (—A7'F) = —F? < 0. Thus, we can
limit the golden section search to the interval [0,1]. Nevertheless, the resulting program is
very similar to that of the previous section.

6.5 Other Methods

There are many different methods that can be used to find the minimum of a nonlinear
function of several variables, in particular, methods that do not require the calculation of
second derivatives, e.g., steepest descent and conjugate gradient methods. We also did not
discuss the problem of linear optimization, where the function f is a linear function of the
variables, the values of which are restricted by several constraints. See Numerical Recipes,
Ch. 10.8 for details on these methods. A totally different method called “simulated anneal-
ing” uses a relaxation scheme that is similar to methods used in Monte-Carlo simulations
that are discussed later in this course. In short, the function to be minimized corresponds
to the energy in a Monte-Carlo simulation, and one introduces ‘temperature’ as an artificial
parameter. At higher ‘temperatures’ the system can explore the full parameter space by
jumping over the energy barriers that separate different minima. Then the temperature is
reduced step by step so that less and less transitions between minima occur until one finally
at zero temperature ends up (hopefully) in the absolute minimum of the energy landscape.
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7. Data Analysis

In this section we will be concerned with the problem of extracting information from a set of
data points regardless of whether the data were obtained in a real experiment or a computer
simulation. Thus, we assume that somebody gave us a set of data x1,xs,...,zy. The prob-
ability density p(x) describes the occurrence of a particular value z in such a measurement:
p(x)dz is the probability of finding a value T € [z,2 + dz]. From this probability density
all quantities of interest can be calculated, e.g., the mean value u = (z;) = [*°_ dzxp(z) or
the variance 02 = (2?) — (x;)? = [*0_dx (2® — p?)p(z); in general (f(z;)) = [°° dz f(x)p(z).
Since the probability density is usually unknown, these quantities have to be estimated from
the measured data. There are two mathematical theorems, the law of large numbers and the
central limit theorem, that provide the necessary information.

7.1 Central Limit Theorem

Let x1,x9, ...,z N be a sequence of independent random variables with a common probability
distribution p(z) and expectation values (x;) = u. Let Sy = SN | ;.

Law of large numbers: For all € > 0 the probability of Sxy/N — p being larger than e ap-
proaches 0 in the limit N — oo.

In other words: The average Sy/N converges to the mean p of the probability distribution
p(x) for large N.

An even stronger statement can be made, if we additionally assume that the variance o2
is finite:
Central Limit Theorem: In the limit N — oo the probability
Sy —N 1 X
pr|2Y— H x| —/ dye™¥’? = P(X)
U\/ﬁ \/ﬁ —00

converges for all X to the normal or Gaussian distribution P(X).

This theorem gives an estimate for the probability that the discrepancy |Sx/N — ul is larger
than o/v/N. Furthermore it states that for large N the mean p and the variance o2 fully
determine the probability density of the average T = Sy /N

N(z—p)2
pw) 2oy YN @0
oV 2
i.e., regardless of the probability density p(z) of the individual variables z;, the average
T = Sy/N follows in the limit of large N a Gaussian probability distribution with mean
1 =T and variance o?/N.
Examples:
(a) Rolling the die: z; =i,i=1,...,6
= (r;))=p=35,02=(12+...+6%)/6 — (3.5)> = %
Central limit theorem:

1 «
Pr||Sy — 3.5N] < a\/SSN/12] ~ P(a) — P(~a) = 2—/ dye V2
T J—a
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N =1000, a =1 : Pr[3446 < Sy < 3554] ~ 0.68; a = 2 : Pr[3392 < Sy < 3608] ~ 0.95
(in other words: the measured value of T = Sy /N will fall within £20 of the true value p
95% of the time).

(b) Sampling: Suppose that in a population of M families there are M), families with exactly
k children, £ = 0,1,... and Y}, My = M. For a family chosen at random, the number of
children is a random variable which assumes the value v with probability p, = M,/M. We
now make a measurement by selecting randomly N families. Then the sample average Sy /N
is likely to be near u = N vp, = N vM, /M, namely the population average. If it is
desired that there be a probability of 0.99 or better that the sample average Sy/N differs
from the unknown mean g by less that 1/10, then the sample size N should be such that
Pr[|(Sy — Nu)/N| < 1/10] > 0.99 . From P(z) — P(—z) = 0.99 we obtain = ~ 2.58, hence
N should satisfy 2.580/\/N < 1/10 or N > 66602%. Thus, this result depends crucially on

an estimate of the variance o?.
How do we estimate ;1 and o2, and what is the error of the estimate of ;7
Result:

T~u, (28a)
(7 — ()2 = m > (a2 —7%) = %02 | (28b)

The first equation follows from the law of large numbers. The variance of T is obtained from

<T2> = /O:del---/o:od:er(:cl)><---><p(g;N) <%§:xz>

o0 00 1 1
= /_oodxl---/_oodep(xl) X o X p(ry) [msz%—i—mfo‘
N(N - 1) N

Al N
Y (2 -7) =N+ 1) = Ni* =0* = (N-1)0” = S S (at-7") |
=1 :

and therefore

N
N2 TSN T S SN S 1 2 _ =2
Var(zZ) = (") — (T)° = p + 50 M_NU_N(N—l);<xi x>
(Quote from Numerical Recipes: “If the difference between N and N —1 ever matters to you,
then you are probably up to no good anyway — e.g., trying to substantiate a questionable
hypothesis with marginal data.”). The derivation above did not make use of the central limit
theorem and is therefore valid for all probabilities p(z) with mean p and variance o2.
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7.2 Least-Squares Fits

In this chapter we are dealing with the problem that we made a measurement (experiment or
computer simulation) and we want to compare the data with a theory or model that depends
on some parameters. We want to verify whether the theory applies to our experiment and,
if that is the case, what are the parameters? Since the data are not exact because of “noise”
they will never fit the theory exactly. Thus, we need some criteria for answering the question
“How good is the fit?”. Hence, the fitting procedure should provide (i) the parameters,
(ii) error estimates on the parameters, and (iii) a statistical measure of the goodness of the
fit.

Suppose we are fitting N data points (z;,y;), ¢ = 1,..., N, to a model with M parameters,
ai,...,ap. Thus the model provides some function f(x;aq,...,ay) that predicts, in which
way the measured data y; should behave as a function of x. Now, suppose that each data
point y; has a measurement error that is independently random and is Gaussian distributed
with variance o7 around the true model f(z;a), where all the parameters have the correct
values a. Then the probability or likelihood of measuring this data set is the product of the
probabilities of measuring each data point,

. T (vi — f(w2))° L& (= f(ia))?
L= i) = exp | —-Z = =c,exp |—= = 29
I = 1o [ g o oo | 3 (M) | e
with ¢, = [IX, — 127r. By maximizing the probability (29) we obtain the most likely set of

parameters. Since ¢, does not depend on a, maximizing L is equivalent to minimizing the
argument of the exponential,

XQZZlyi—f(xi;al,...,aM)r | (30)

=1 Oi

with respect to the parameters ay, ..., ay;. The minimization of (30) is called a least-squares
fit. From the previous section we know that any probability distribution of an average will
converge to a gaussian distribution, if the number of measurements is large. However, in real
life the assumption of a Gaussian distribution may not be justified, e.g., sometimes you have
outliers in your experimental data that are way off the theoretical curve. These outliers will
completely spoil the least-squares fit. This must be kept in mind when estimating the size
of errorbars for parameters obtained from a least-squares fit.

The method of minimizing (30) is very similar to the Newton-Raphson method discussed
in Sec. 6.3, but because of the special form of the function x? and the random contributions
to x? stemming from measurement errors the algorithm used for least-squares fits, called
Levenberg-Marquardt method, differs in some points from the Newton-Raphson method.
The gradient of x* with respect to the parameters a = (ay, ..., ayr) is given by

O gl ) 9 )

pu— 2 ;
oa, o; oa,

n=1,...,M, (31)

=1
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and the matrix containing the second derivatives is

ox? N o1 [0f(zs;a) Of (245 Q) 0% f(zi;a)
=2 — — Y — i) 32
da,,0a,, ; o? da,y, Oa,, i = flwi;a)] da,,0a,, (32)
It is convenient to remove the factors of 2 by defining
10x? 1 0%\
bn = 2 0a, and mn = 2 0amday, (33)

The matrix « is called the curvature matrix. Thus, the change da of the parameters in an
iteration of the Newton-Raphson method is obtained by solving the set of linear equations

M
Z O = B (34)
m=1

In the Levenberg-Marquardt algorithm the second derivatives in Eq. (32) are neglected in the
definition of the matrix (o). The reason is that these terms are multiplied by y; — y(z;; a),
i.e., for a reasonable model this is just the measurement error of the i-th data point. Since
these errors should be random, the terms containing the second derivatives should cancel
when summed over i. Thus, we will use the simpler form

N iaf(ib'z, a) 8f(a;l, a)

amn:Z 2

— o Oap Jay,

(35)

Furthermore, the Newton-Raphson step (34) has to be replaced by something else as long
as we are far away for the minimum. The problem is that, e.g., the gradient used in the
steepest-decent methods

da, = const. X 3, (36)

does not provide information about the factor const. that determines the size of the step.
The Levenberg-Marquardt algorithm combines the steepest-descent method and the Newton-
Raphson method to achieve a better convergence. It estimates the constant in (36) using
the diagonal elements a,,, and some overall constant A,

1

Ay

B - (37)

ooy,

We now are able to combine the two methods (34) and (37) by defining a modified matrix

(ol ) with
r [+ Nay, forn=m
Cmn = { mn for n #m (38)
and then use
M
Y W0 = B - (39)
m=1

For A > 1 this corresponds to the steepest-descent method (37), whereas for small \ it
crosses over to the Newton-Raphson method (34). In principle you can fiddle around with
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the matrix (o), since the final set of parameters is determined by the condition 3, = 0
independently of the definition of a,,. The iteration now proceeds in the following way:

(i) make an initial guess of the parameters a and calculate x*(a),
(ii) set A to 107 (or something like that),

(iii) solve the linear equations (39) and compute x*(a + da),

(

iv) if x*(a+ da) > x*(a), increase \ by a factor of 10 and go back to (iii); if x*(a + da) <
x%(a), decrease A by 10, update the parameters a + da — a, and go back to (iii).

(v) iterate (iii), (iv) until |6x?|/x*(a) < €, and |B| < eg for some desired accuracies €,,
eg and 0x? = x?(a + da) — x*(a). Numerical Recipes tells you that you should not
terminate the iteration after a step with 6x? > 0. Following that advice is probably
not a good idea. If you happen to choose €, too small the iteration will converge to
the minimum of x? without satisfying the condition |[dx?|/x* < €,. In the following
iterations the algorithm will then always increase the value of \ since x? can no longer
be reduced. This results in a huge value for A that seems to indicate that the algorithm
did not converge. Therefore, even in the case of §x* > 0 check whether |8| < 5. If it
is, terminate the iteration and return the old values a and y?(a) as the solution.

(vi) Set A = 0 and compute the covariance matrix ¢ in order to calculate standard deviations
of the parameters, correlations, etc., see below. The covariance matrix c is the inverse
of the curvature matrix a.

It does not make sense to iterate these equations until machine precision is reached since

x? is not determined to that accuracy because of measurement errors. Thus you may well

stop as soon as x? does not decrease significantly anymore. Usually, relative changes |x?*(a+

6a) — x*(a)|/x*(a) that are less than €, ~ 107 are hardly significant.

This brings us to the questions “what is a good fit?” and “what are the errorbars on
the calculated parameters?” If each of the data points y; is distributed according to a
Gaussian probability distribution with variances o2, it can be shown (see section 7.2.2) that
the probability of obtaining a result x2,, from the least- -squares fit with x2. < x? is given
by the so-called x?-probability function with v degrees of freedom

P(lv) = [QV/QF 1//2 / dyyzte V/? (40)

with v = N — M. This statement is correct under the assumption that the measurement
errors are sufficiently small so that at the minimum of x? the deviations of the parameters
a from the true values a are so small that the fitting function can be replaced by the linear
approximation

a 3
Floia) = o) + 3 (on — a) 2002

that neglects higher order terms in the Taylor expansion of f. The probability function
P(x?|v) depends on only one parameter v. In particular, the mean of this distribution is v
itself and the variance is 2v; in the limit of large v P(x?|v) becomes the Gaussian distribution:
P(x?|v) = P(x) with = (x®> — v)/v/2v. Since the mean of the x? distribution function is

~

a=a
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v = N — M this fact can be used as a criterion for the goodness of the fit: a reasonable
fit should have x2. ~ N — M. However, the validity of this criterion depends crucially on
the estimates of the variances o2. If the o? are poorly estimated or even arbitrarily set to
1, the value of x2;, is meaningless. In these cases you can use the relation x2;, = N — M
to determine an overall factor of the o7: If the least-squares fit using variances 67 yielded a
result Y2, the variances 0? = [y?/(N — M)]6? would give a result of x> = N — M. If these
values for o2 turn out to be unreasonable, this is an indication that the quality of the fit is

not very good. Clearly, this method prohibits a direct evaluation of the goodness of the fit.

However, quite often you will be able to obtain a good fit to your data, but the parameters
a still fluctuate quite strongly without changing the value of x? significantly. This occurs if
the minimum of x? sits in a very flat valley, so that by changing the parameters in a particular
way you wander around in that valley without changing x2. This kind of degeneracy is an
indication that the model contains too many parameters, or, conversely, your data set is not
sufficient to determine all the parameters independently. A trivial example: Assume that
somebody tries to fit a set of data y; to the function f(x;;a1,as,a3) = aj exp|—aqsz; + ag).
Naturally, he will not be able to determine a; and a3 independently, since all fits with the
same value for a;e® will give the same x2. Unfortunately, these degeneracies will occur even
if they are not built into the fitting function f(z;a) in such an obvious way. In these cases
the number of parameters must be reduced, or you have to concede that the available data
do not allow to determine the parameters with the desired accuracy.

Mathematical predictions for the errorbars on the parameters a; can only be derived if
several preconditions apply (see the following subsection). Most importantly, it is assumed
that only statistical errors are present. Quite often this is incorrect. Systematic errors appear
because the “true fitting function” is unknown. For example the chosen fitting function f
is not a perfect model for your data y; over the full range of the z;. So-called crossover
effects are a typical example that cause such systematic errors. Also the assumption that
the measurement data y; are Gaussian distributed may not be valid. If systematic errors are
more important than statistical errors, the standard deviations of the parameters that are
derived in the following subsection are meaningless. Indications for systematic errors can be
obtained from the residuals R; = y; — f(x;;a). If only statistical errors are present, the R;
are randomly distributed around zero. If systematic errors are dominant, there are intervals
in x, where all R; are positive, followed by an interval, where all R; are negative, i.e., the R;
have an oscillatory behavior as a function of z.

For practical purposes you can estimate the errorbars on your parameters by changing
the initial guesses for a and compare the results after the changes in x? are smaller than e, .
You can also fix some of the parameters and minimize x? only with respect to the remaining
parameters. To test how sensitively the parameters depend on the model one can make
“supposedly insignificant” changes to the function f and repeat the least-squares fit. The
obtained differences in the parameter values yield in many cases by far better (most often
larger!) error estimates of the parameters than the formulae presented in Sec. 7.2.1. In fact,
if this leads to large changes in the parameters your model is either ill-defined or your data
set, is too small. In any case it is a good idea to perform the least-squares fit under various
conditions in order to get a feeling for the accuracy of the parameter estimates.
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Although the formulae for the variances of the parameters derived in the following subsec-
tion are not valid, if systematic errors are present, the results for the correlation coefficients

Ckl

vV CkkCil

are still helpful to judge the quality of your fit. Here the matrix c is the inverse of the cur-
vature matrix «. If only statistical errors are present, c,, turns out to be the variance of the
parameter a,,, whereas cg; are the covariances of the parameters a, and a;, see Sec. 7.2.1. The
correlation coefficients ry; take values between —1 and 1 and indicate correlations between
the parameters a; and a;: |rg| = 1 implies a linear relation between the parameters a; and
ap. If 1,y = 1 a; increases with ag, whereas for rp; = —1 it decreases. Hence large values of
|7 2 0.9 indicated degeneracies in your model as discussed above. In this case you cannot
fit all parameters independently and therefore the number of parameters should be reduced.

Tkl = (41)

If your data y; are spread out over a large interval of several orders of magnitude it may
be a good idea to fit the logarithms Iny; to the fitting function In f(x;a). A direct fit of
y; to f would be dominated by the largest values of y; since already small relative errors
|(y; — f(z;;a))/y;| will give large contributions to x?. Typical examples are power law fits
with f(x;aq,a9,a3) = a2 + a3. Thus, if the absolute errors Ay; are all of the same order
of magnitude then the y; should be directly fitted to the fitting function f, if the relative
errors Ay; /y; are of the same order of magnitude you may consider fitting Iny; to In f. These
considerations also elucidate that it is very important to have good estimates of the variances
o? that serve as weight factors in order to get a reliable fit to your data.

7.2.1 Estimating the Uncertainties of Least-Squares Fit Parameters
(see, J. R. Wolberg, Prediction Analysis, Van Nostrand Company, Princeton, 1967, ch. 3.10)

In this section we assume that the following preconditions apply:

(1) The measured values y; are Gaussian distributed around the true values g; with variances

2
O-i.

(2) The measurement errors Ay; = y; — y; are uncorrelated.
(3) The data are fitted to a model y = f(x;a). The true model obeys 3; — f(z;;a) = 0. It is
assumed that f(x;;a) can be approximated around a by the following expansion:

M

Ofi . .
i Tia) === 3 90 ay — a4) + Of(ax — a8)?) (42)
k=1 Y%k

where the notation 0f;/0ay has been used as a short hand for 0f (z;;a)/0ax|,_5.
(4) Only statistical errors are present.

At the minimum of x* we have 3, = 0. Thus, setting the left-hand side of Eq. (42) to zero,
multiplying the equation by %i—’? and summing over all data points we obtain

N lafZ N M lafzaf, ~ M R
> 70 = 2 22 7 s g 04— 80 = D =)
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By introducing the inverse ¢ = a~! of the matrix a so that Z%zl QpmCmi = 0jj, We can solve
for the errors of the parameters

M N 10 ;
ap — ag = chz Z Ji
=1

i=1

—Ay; .
0'280,[ Y

From this equation we obtain

~ ~ Ay; terms containing
o= (38 £ ][] s

=1 7,

Since the measurement errors are assumed to be uncorrelated the terms ~ Ay;Ay; with
i # j will be zero on average. Thus, if the measurement would be repeated many times the
“mean value” or, more accurately, the most probable value

((ar, —ap)(ar —ar)) = {<<Ayl> > > ChmChn 1.2 %22} (43)

=1 n,m=1

is obtained. If o7 is the variance of the measurement of y; then the ratio ((Ay;/0;)?) = 1.
However, in practice o; can be estimated at most, quite often the factors o7 are nothing but
weight factors that have no direct relation to the variances. Thus, the expectation value
((Ay;/0;)?) may not be a constant but depend on 4. In order to proceed we approximate
this expectation value by its average over i,

Ayi\? 1 X /Ay
()G
g; N i—1 o;
Since we allow ((Ay;)?) to differ from o the average @ must be estimated in a different way

later on. Using the definition of the matrix « (35) we obtain the following result for the
correlations of the ay

<(Clk - ak)(al - az)) = Qc (44)
and, specifically, the estimated variances of the parameters
<(ak - ak)2> = Qe - (45)

It remains to estimate ). Using Eq. (42) and the definition R; = y; — f(z;; @) of the residuals
we find

M 0f; 0f;
8 ay (ax = @) + Pyt Oay, Oa;

(Ayl) R2 + 2R Z (ak — ak)(al — al) .

The term linear in a, — a will be zero on average. By summing over 7 we obtain

N | R? N 1 M of; Of;
ve=3-(5)+ (53 o

2
o; k=1 8ak 6al

(ar — ) (a — al)> .
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The first term on the right-hand side is nothing but the minimized 2, the second term can
be evaluated using (35) and (44) with the result M Q). Hence, we finally obtain

0 (452} 5%y

=1

and the variances

<(ak - ak)2> = X Ckk (47)

as well as the covariances

(ak = ) (o — @) = 57700 - (48)

The results (47), (48) explain why the matrix ¢ is called the covariance matrix. From Eq. (47)

one obtaines the standard deviation of the parameters Aay = \/ckaZ/(N — M).

Some final remarks: As already mentioned in Sec. 7.2 x? is distributed according to the
x-probability function P(x?|v) that has a mean value of v = N — M. Thus, if o7 is the
correct variance of the measurement of y; Eq. (46) gives 1 on both sides of the equation.

Otherwise, one can use the condition y? = N — M to estimate an overall common factor
of the o} as already mentioned in the previous section. The final result (47) depends on
several assumptions and approximations and for a particular experiment it may not be clear
whether these assumptions are valid. Therefore, an independent estimate of the errors along

the lines indicated at the end of the previous section is essential in almost every case.

7.2.2 The x2-Distribution

In this section the result (40) for the x2-distribution function will be derived. It is obtained
under the condition that the measured data are independently Gaussian distributed,
1 (y; — f(zj;0)°

p(yj):\/%aiexl) - 5.7 , j=1,...,N, (x>1)
J J

see (29). Furthermore, x? depends on the y; through (30) and its distribution is constrained
by the gradient conditions

N L .
an]y] f(x]’a):()’ n:]')"'7M7 (X2_2)

j=1 gj

with by o= L2AER) 1y — 1 M j=1,...,N. The probability density of x? is therefore
given by

) =TT [ dupt)] (Xz B UEICEY ) it (i bm) |

j=1 9j j=1 9
(x*-3)
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where the constraints have been taken into account through the products of d-functions. The
constant ¢ is determined by the normalization condition [;°dx?p(x?|v) = 1. Substituting
n; = (y; — f(zj;a))/o; and using [Dn = ;v:l [°5, dn; /27 as a short hand, we find that

2) = ¢ [ Dne 3T [ (2 - 2| T 5 S b
p(X°|v) =c | Dne >4 X2=Y i TL6 [ D bwgmy | -
j=1 n=1 j=1

Using the representation d(x) = [, 5 dq e " the J-functions can be expressed through in-
tegrals as well. Therefore, the probablhty density function can be written as a product of
Gaussian integrals,

00 ; 2 2\ M 0o . .
o) = ¢ [ St [ S 0) ff [ ()

—o0 2T i o0 2T

—c[oy D¢ [ —exp{ ;i[(l—%q)?ﬁ-%mf(Uijbnjcnﬂ}ei""z,

j=1 n=1

where [ D¢ = [TM | [* %. Now all the integrals can be calculated: the integrals over the
n variables are obtained using [ j—i e (0a?=262)/2 — =F/(20) |, /oy Thus,

27

2
1 it
POC1) _C/Dc/oo%r 22q)N/2 {_2(1 2iq) & lz Cn ”Jl } '

M
- D / n-nmsm 7ZqX Y
C/ ¢ o0 27T 1—2zq)N/2€p{ 2(1 2zq n%:CCY C}e

where oy, = EN b,jbm; are the elements of the curvature matrix. Since « is real and
symmetric there exists an orthogonal transformation D such that the matrix M = DTaD is
diagonal. Setting & = D¢ the argument of the exponential becomes —= Zn 17= 2,q§2 Here,
A, are the eigenvalues of the curvature matrix. Since det D = 1 there is no Jacobian involved
in the transformation from ¢ to £ Thus, the integration over ¢ reduces to a product of usual

Gaussian integrals [ 2% exp[— ﬁ 2%] = (1 — 2ig)"/?/\/2m \. Hence,
2 00 dq 1 1 _iqx2
v)=c — _ e
POX1) /,oo 21 (2m)M/2\/deta (1 — 2ig)"2

with deta = Hﬁil An being the determinant of the curvature matrix and v = N — M is
the number of degrees of freedom. It remains to calculate the Fourier transform I,(x) :=
I 22(1 — 2ig)~#e~ of p(q|v) = (1 — 2iq)™"/? with pu = v/2. Using partial integration it
is shown that these integrals obey the recursion relation [,(x) = ﬁ[wl(x) for p > 1. Tt
therefore suffices to calculate I;(x) and I 5(x). I, (x) can be calculated by closing the path
of integration in the complex plane and using the law of residues: for x > 0 the path of
integration is taken to be along the real axis and closed along a half circle in the lower half
plane, where Im(q) < 0 so that the contribution of the half circle goes to zero as its radius

approaches oo. Similarly, for x < 0 the path must be closed in the upper half plane where
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Im(q) > 0. Since the integrand has a pole at ¢ = —i/2 we see immediately that p(x*|v) =

for x* < 0 as it has to be. For z > 0 we find I1(z) = —i Resg=_;jo[e " /(1 — 2iq)] = Le /2,

where the leading minus sign accounts for the fact that the path of integration is in the
1 1 —xz/2

1
clockwise direction. Consequently, for integer p the integral I,(z) = 3 (%)u e

To calculate I1/(x) we use the relation 1//z = \/% J2% ds exp[—Z2s?] valid for Rez > 0.
Hence,

_ dq e—iq:v _ 1 1(1-2iq)s? —iqx
hya(w) = /oo o1 (1— 2ig)/2 (277)3/2/ dq/ dse” ‘

dse” 3/2/ dq e** %) / dse 1%§(s* — z) .
27T 3/2/ \/271'

Again, for x < 0 we find that I;5(x) = 0. For z > 0 we use that §(s*> — z) = [6(s — \/z) +
(s +/x)]/(2y/) and arrive at I, o(z) = e7%/%/\/27wz. Thus,

1
- = opl —z/2
ﬂ(aj) - Q“F(u)x € )

x>0,

valid for all ;o > 0. Here, I'(x) is the Gamma function with I'(» + 1) = 2I'(2), I'(1) = 1, and
['(1/2) = /7. Putting everything together we now have (for x? > 0)

v/2—1
~ 1 X2 N2
2 —e—— [ & X*/2

with ¢ = ¢/[(27)/?\/det a]. Normalization requires 1 = [;° dz p(z|v) = &p(q = 0|v) = .
Thus, the final result for the y2-probability density function is

1 v/2—-1 _ >
p(X°|v) = WIT(1)2) (XZ) e™X2 for x2>0 (x*-4)

and p(x?|v) =0 for x* < 0.
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8. Numerical Integration of Differential Equations

8.1 Equation of Motions in Physics

Probably the first example that comes to your mind are the classical equations of motion,
i.e., Newton’s equations (here for N particles in three dimensions)

mii'izﬂ(l'l,l'g,...,l'g]v), 7::]_,...,3N, (49)

or, using the Lagrange formalism for a system with f degrees of freedom and the generalized
coordinates ¢;, i = 1,..., f,

— ===, (50)

These are sets of second order ordinary differential equations: the variables z;, resp. ¢;
depend only on time and the highest derivative that appears in these equation is of second
order. Hamilton’s equations (p; is the conjugate momentum to ¢;)

OH and oH
n pi = — )

opi ' 0q;

instead form a set of 2f ordinary first order differential equations. Generally, a set of f

second order differential equations for the variables x; can be written as a set of 2f first
order differential equations by introducing the derivatives &; as new variables.

i=1,...,f

Problems in quantum mechanics are described by Schrodinger’s equation

oY (r, ) h?
ih— = = |——V? + V(r,t)| ¥(r,1) . 51
N V()| b1 61)
Here, the wavefunction ¢ depends not only on time but also on space r. Schrédinger’s
equation is a partial differential equation, which are usually much harder to solve than
ordinary differential equations. However, Schrodinger’s equation is a linear equation, which
are generally much easier to solve than nonlinear equations.

Another example for a differential equation is the “coffee cooling” problem
dr
dt

where T is the temperature of the coffee inside your cup and T, is the room temperature; «

is a constant that describes how fast heat is transferred from the cup to the surrounding air.
The same equation describes the decay of atomic nuclei and similar decay phenomena.

—a(T—T,), (52)

An obvious generalization of Eq. (52) leads to the diffusion equation

9p(r,1)
ot
that describes the spreading of some density p in space and time. This is again a partial

differential equation that can be quite hard to solve, especially if nonlinearities are added to
the right-hand side of the equation (53).

= DV?p(r, 1) (53)
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A further generalization leads to stochastic differential equations or Langevin equations
that have a stochastic term on the right-hand side that models random forces due to the
surrounding environment, e.g., gas atoms, thermal excitations, etc. Such Langevin equations,

% = DV2(x, 1) + flplr,0)] + n(r.1) | (54)

where f[p] is some nonlinear function and 7 is the random noise, are one of the most difficult
differential equations to be solved numerically.

In this course we will mainly discuss ordinary differential equations with some remarks
about partial differential equations. Langevin equations will not be discussed because of the
difficulties involved in their simulations, although these kind of equations are very important
in describing dynamical processes in, e.g., condensed matter physics.

8.2 Euler Method

The simplest method to integrate differential equations is the Euler method. Although it is
rarely used in practice (with the exception for Langevin equations, where it is in some cases
the only method that works) it is conceptually important because of its simplicity. Consider
the differential equation

In order to evaluate the derivative time has to be discretized:

tn = to +nAt . (56)

Assume that we have an approximation x,, for z(t,). The Euler method simply extrapolates
linearly from one time step to the next, (z,11 — x,)/At + O(At) = f(zy, t,), or

Tpt1 = Tp + Atf(xna tn) + O[(At)Z] ~ x(thrl) : (57)

The term O[(At)?] specifies the error that is may in every time step. The total error after n
steps at time ¢, is
z(t,) — z, = nO[(At)’] = O(AY) (58)

since n = (t, —to)/At. An algorithm is called to be of v-th order if the total error is of order
O[(At)”]. Thus, the Euler algorithm is of first order.

Example: The coffee cooling problem (52): The Euler scheme gives

Here, the constant 7). has been eliminated by choosing the temperature difference T'— T,. as
the new variable 7. The exact solution to the coffee cooling problem is

T, = Tye "2 = T, [1 — aAt + % (aAt)2 - .. ]n )
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Hence the Euler method is a reasonable approximation only if At < 1/a. For 1/a < At <
2/« the Euler method yields an oscillatory decay, whereas for At > 2/« the oscillations even
increase exponentially. Generally, if there are several times scales in the problem, always
the shortest time scale limits the step size At. It is interesting to look at the results of a
modified Euler method that evaluates the right-hand side of (55) not at time ¢,, but at time
41 resulting in the scheme

Tt = Tn + Atf (Tnyr, tnyr) + O[(AL)?] . (59)

This is now an implicit equation for xz,; that requires the solution of a nonlinear equation,
if f is nonlinear. The scheme (59) is called fully implicit because the function f is only
evaluated at time t,1. Since the time derivative dz/dt ~ (2,41 — ,)/At is centered around
tn + At/2 it is natural to center the right-hand side of the equation in the same way in order
to obtain an algorithm of second order, i.e.,

Puis =+ S s tass) + £, )] + 0180 (60

This again is an implicit scheme. For the coffee cooling problem the function f is linear,
therefore we can again solve for T},

1

1—%@At "
- 1—}—%04At 0

=T (15 faat
Now we have exponential convergence for all time steps Atf, therefore this scheme always
converges to the correct asymptotic state, although an accurate description of the time
evolution is again obtained only if At < 1/a. The property of absolute stability is makes
implicit methods superior to explicit ones. This is especially important for partial differential
equations, where this property even outweighs the disadvantage of having to solve a set of
nonlinear equations at each time step.

Example:

J 0?
yg;’ b_ D% + fy; 2, 1) (61)

with some function f(y;x,t) that has a nonlinear dependence on y. The discretization scheme
that corresponds to (60) now reads

yi(t + At) :yi(t)ﬂLg{ D

5 T 1 ()~ 200 + i)
+ yir1 (t+ At) — 2y;(t + At) + yi (t + At)}

+ f(yi(t); i, 1) +f(y,~(t+At);x,~,t+At)} , i=1,...,L,

(62)
where the spatial variable x has been discretized as well, + — z;, ¢ = 1,..., L, and the
abbreviation y;(t) = y(z;,t) has been used. Eq. (62) defines a set of nonlinear equations
that has to be solved for y;(t + At), i = 1,..., L in each time step using, e.g., the method
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discussed in section 6.4. The scheme (62) is called Crank-Nicholson method and is one of
the most important methods for partial differential equations. Although the solution of the
nonlinear equations requires much more cpu-time than a simple Euler step, the stability
of the method allows the use of a much larger time step At so that the Crank-Nicholson
method is usually by far superior to the Euler method, in particular, if one is interested in
the late-time asymptotics of differential equation. For ordinary differential equations usually
other higher order methods are used that avoid the solution of nonlinear equations, see the
next sections.

8.3 Leapfrog Algorithm

The Euler method uses the first order approximation dx/dt ~ (x,4+1 — ©,)/At + O(At). A
better, second order algorithm is obtained, if we use the approximation dz/dt = (2,41 —
Tn_1)/(2At) + O[(At)?] that leads to the algorithm z, 1 = x,_1 + 2At f (2, t,) + O[(AL)3].
This two-point formula (z, 11 depends on z,, and z,,_;) forms the basic idea for the leapfrog
algorithm. This algorithm is mainly used to integrate second order differential equations like
Newton’s equations .
P= mF(r,v,t) :

It calculates the positions r for ty, ts, ..., 19, and the velocities v =1 at t,t3,...,t,_1. An
initial Euler step is needed to calculate the velocities at ¢1: vi = vy + %F(ro, Vo, tg). Then
the leapfrog algorithm is implemented in the following way

r, = T, o+ 2Atv, |+ O[(At)?] (63a)
2A
Vosr = Vooi+ WtF(rn, Vi) + O[(A1)] . (63b)

This algorithm can be readily implemented, if the forces do not depend on the velocities:
F = F(r,,t,). If they do, however, an additional equation is needed to calculated the velocity
v, in Eq. (63b). There are several possibilities:

(1) Linear interpolation: v,, = 3(Va41 + v,,) + O((At)?). This leads to an implicit scheme

2At Vil + Voo
Vi1l = Vp—1 + F(I‘n, L !
m 2

that is a good choice, if the function F depends linearly on v so that the equation can
be solved for v, analytically.
Example: linear friction: ~F = g — av (mg gravitational force)

1 —aAt 2At 3
T oA 8T Fant | O((A1)")

= v, 1 — 2At1 — aAt)(g — av) + O((At)?) .

,tn) + O((At)?)

= Vp41 =V

(2) Use Euler: v,, = vip_1 + 2LF (v, Vo1, tae1) + O((At)?); strictly speaking r, instead of
r,,_1 must be used in the argument of F, but the error is of order O((At)?) only.

At
= Vipt1 = Vp—1 + EF(rna Vp-1 + %F(I‘n, Vp-1, tn—l)a tn) + O((At)a) .
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This method requires two evaluations of the forces for each time step of 2At.
(3) Use a Taylor expansion for F:

At  OF;
= E(rnavnatn) = E(rna V-1, tn) + E Z aT(rnaVn—latn)ﬂ(rnavn—latn) + O((At)Q) .
j J

The accuracy of the leapfrog algorithm is still not very good, thus, if accuracy is your
main concern, a higher order algorithm such as the fourth-order Runge-Kutta algorithm
(see Sec. 8.5) should be used. However, the leapfrog algorithm has a property that makes
it sometimes even superior to these higher order algorithms: At least in its original form
(63) the algorithm is time reversal invariant. Because of this symmetry the algorithm con-
serves the total energy of the system. There are still fluctuations of order At, but there
is no systematic drift in the total energy [for details, see: H. Frauenkron, P. Grassberger,
Int. J. Mod. Phys. C 5, 37 (1994)]. Thus, if energy conservation is more important than
accuracy, as it is, e.g., in the calculation of Poincaré maps of Hamiltonian systems (see next
section), the leapfrog algorithm may very well be the method of choice.

8.4 Poincaré Maps and Chaotic Systems

The deterministic description of physical systems through nonlinear (!) differential equations
may result in irregular or “chaotic” behavior: deterministic chaos (Poincaré 1892). This phe-
nomenon results from an exponential separation of trajectories in phase space as a function
of time and not from external noise, roundoff errors, infinite number of degrees of freedom
(continuum mechanics), quantum mechanical uncertainties, etc. However, the accuracy of
the initial conditions is of crucial importance, a typical problem for, e.g., weather forecasts
[phase space for a system with f degrees of freedom: generalized coordinates ¢;, i = 1,..., f;
conjugate momenta p; = 0L/0q;; a point in the 2f dimensional phase space is specified
through all coordinates ¢; and conjugate momenta p;: (q1,...,q7,p1,---,Df)]-

The dynamics of low-dimensional chaotic systems are best studied by plotting their tra-
jectories in phase space. In this course only Hamiltonian systems with conserved total energy
are discussed.

Example for trajectories in phase space: pendulum with total energy H =
cos ), where p, = ml?*¢ is simply the angular momentum.

2nlzl2pé +mgl(1l -

i Plot of the phase space trajectories of a

pendulum, p, = mil%¢ is the conjugate
momentum of the coordinate . The dif-
ferent lines correspond to different ener-
gies £ = erlzﬂpé + mgl(1 — cosp). The
dashed line is the separatrix.
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An integrable or non-chaotic system has as many constants of motion as there are degrees of
freedom. Hence there is no chaos in Hamiltonian systems with one degree of freedom since
there is always energy conservation. This is no longer the case for two degrees of freedom.
For such a system the phase space is four dimensional, therefore it is hard to plot the
trajectories directly. Instead one studies the so-called Poincaré map: This map is obtained
by a cut through the 2 f dimensional phase space along a 2f —1 dimensional hyperplane, e.g.,
the trajectory is plotted every time it crosses through the plane z; = 0. For Hamiltonian
systems energy conservation can be used to eliminated one more variable, e.g., p;. For a
two-dimensional system (2f = 4) the Poincaré map is therefore a 2f — 2 = 2 dimensional
plot pa(x2): Choose some energy E = const., integrate the differential equations, and add
a point to the plot py(x2) every time the trajectory (z1,pi, z2, p2) crosses the plain z; = 0.
This Poincaré plot still contains the full information of the current state of the system: p;
is determined via E(x; = 0,29, p1, p2) = const.

As an example let us look at the two dimensional harmonic oscillator with the mo-

menta p; = mid1, pp = Moy, potential V(zy,z2) = swiz? + twiz3, and total energy
E = 5-p] + 5205 + V(21,25). This is still an integrable system since both energies
E; = 5—p? + swiz}, i = 1,2 are conserved separately. The solutions of the equations

of motion are easily written down: z(t) = z\” sin(wit + ¢1), 2(t) = 2 sin(wat + o),

pa(t) = Mowszy) cos(wat + ¢3). The constants xio), @i, i = 1,2, are determined by the
initial conditions. The Poincaré plot is obtained by plot-
ting po, x for times ¢, = (nm — 1) /wy, see figure to the

right. If wy/wy is an irrational number, the correspond-

P,
>\+ X2
J+

ing trajectory appears as an ellipse in the Poincaré plot, +

the size of the ellipse depends on the initial conditions K

or, equivalently, in which way the total energy is dis- &
+

tributed between E; and E,. However, these ellipses
have nothing to do with the ellipses that appeared in
the plot of the phase-space trajectories of the pendulum
shown above: In the latter case the curves show a true
evolution of the system: As time proceeds the system moves along one of those ellipses. The
Poincaré plot gives a stroboscopic picture instead: consecutive points are generally not close
to each other. In fact, if the ratio wy/w; is rational, say 1/N, the Poincaré map shows only
N disjunct points, since after N points the system will be at its initial point again. Such
trajectories are called fixed points of period N of the Poincaré map. A fixed point of period
4 is indicated by crosses in the Poincaré map of the two-dimensional harmonic oscillator.
Only for irrational frequency ratios the trajectories will eventually run through

A more general Poincaré map of an integrable system is shown in the figure below. It
shows elliptic (or stable) fixed points labeled “E”, hyperbolic (or unstable) fixed points
labeled “H”. In the neighborhood of elliptic fixed points we find the same kind of elliptical
trajectories that appeared in the Poincaré map of the two-dimensional harmonic oscillator,
thus the name “elliptic fixed point”. Trajectories that come close to hyperbolic fixed points
do not remain in the neighborhood of the fixed point, instead the system moves away from
the fixed point and the trajectory reaches points in phase space that are far way from the
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Poincaré map of an integrable system. E indi-
cates an elliptic fixed point, H a hyperbolic fixed

x, point. The dotted lines are separatrices labeled
S. The behavior of the map close to two of the
fixed points is indicated by arrows

hyperbolic fixed point. The behavior of the system close to the fixed points is indicated
by the arrows that also explain why the fixed points are called “elliptic” and “hyperbolic”.
Hyperbolic fixed points are connected by separatrices, these are trajectories that separated
the regimes that belong to different elliptic fixed points.

What happens if a small perturbations is added to an integrable system? There are two
possibilities: (1) the system remains integrable; this is the non-generic case, (2) it becomes
chaotic. The way the system becomes chaotic, when the strength of the perturbation is
increased, is described by the famous KAM theorem (Kolmogorov, Arnold, Moser):
Trajectories with irrational frequency ratios become distorted, but they still exist up to a
certain strength of the perturbation. The statement of the theorem will be given her for the
special case of f = 2 degrees of freedom. It is valid for higher dimensions as well, but the
general statement is more complicated (see, e.g., M. Rasetti, Modern Methods in Equilibrium
Statistical Mechanics, World Scientific, Singapore 1986). Generally, any trajectory of an
integrable system with 2 degrees of freedom can be characterized by two frequencies wy, ws
that describe the periodicity of the two coordinates in complete analogy to the example of
the two-dimensional harmonic oscillator mentioned above. In the more general case these
frequencies are obtained by a transformation to action and angle variables that will not
be discussed here, but that can be found in many books on classical mechanics. The KAM
theorem specifies how much the frequency ration w; /w, must differ from all rational numbers
r/s (r, s integers) so that the corresponding trajectory still exists for a certain strength of

the perturbation:
c

= g2+

w1 r

w9 S

(64)

where ¢ and ¢ are arbitrary constants. The trajectories, for which (64) is true, are called
KAM trajectories. It is interesting to see, whether there are at all irrational numbers that
do obey the inequality (64). To show that, we add up all intervals of width ¢/s**? around
all rational numbers r/s within the interval (0, 1). For each denominator s there are at most
s of these rational numbers. Therefore the total length of all these intervals together is at
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Thus, for small ¢ and large ¢ this length is smaller than 1, hence there is a remaining
Cantor set of measure larger than zero that is covered by irrational numbers for which the
statement (64) is true. Small ¢ and large § require that the strength e of the perturbation
is small (clearly, for ¢ = 0 we must have ¢ = 0). Thus, for small perturbations there exist
many KAM trajectories and the fraction of phase space, where regular motion is observed, is
large. These KAM trajectories can be found in the neighborhood of the elliptic fixed points
of the unperturbed system, whereas KAM trajectories in the neighborhood of hyperbolic
fixed points disappear, in particular a separatrix does no longer exist. Instead the regime
in the neighborhood of the separatrix becomes chaotic, i.e., a single trajectory now covers a
whole area of the Poincaré plot, no longer only a single line as it was the case for integrable
systems. As the strength of the perturbation increases, more and more KAM trajectories
disappear and the chaotic regime in phase space becomes larger until the last KAM trajectory
is destroyed and one single chaotic trajectory fills the whole phase space: this is state called
fully developed chaos (see, e.g., the Henon-Heiles system for the energy £ = 1/6).

8.5 Runge-Kutta Method

In this chapter a higher order algorithm for the integration of differential equations will be
discussed, namely the fourth-order Runge-Kutta method. As an introduction to the Runge-
Kutta methods, however, first the second order Runge-Kutta method will be introduced that
is also called midpoint method. The starting point is again the central difference scheme

Tpi1 = Tnoy + Atf (2, 1) + O((AE)?) (65)

for the differential equation (55). The midpoint method is obtained by approximating z,
using the Euler method,

Tp = Tp—1 + A/th(xn—latn—l) + O((Avt)2) .

The final form of the second order Runge-Kutta method is obtained by introducing the new
step size At = 2At, i.e.,

ki = Atf(xp,t,) (66a)
ky = Atf(zy,+ 5ki,t, + A1) (66b)
Toyr = Ty + ke + O((AL)?) . (66¢)

Here, the x, have been redefined as well so that z, again corresponds to ¢, = ty + nAt.
Whereas the Euler method uses the derivative 2’ at time £, to extrapolate to z,,;, the
algorithm (66) first calculates x at the midpoint of the interval in order to use the derivative
at this new point to extrapolate from z, to x,,.;. Consequently this algorithm now needs
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two function evaluations per time step. A third order Runge-Kutta algorithm (rarely used)
is obtained using (66a) and (66b) together with

ks = Atf(z, — ki + 2ko, tn + At) (67a)
Top1 = Ty + 2(ki+4ks + k3) + O((A1)*) (67b)

This formula can be derived with the help of Simpson’s rule (13):
Tpi1 = Tp + /;n+1 dt f(x(t),1)
= a4 B [F(@nstn) + 4f (@1, tn + 3A1) + f(@ni1,tagn)] + O((AD))
The formula for ks can be inferred from the expansion
Tnp1 = Tn — sALT], + Atx:wr% + O((A1)?) .

The fourth-order Runge-Kutta method again uses Eqs. (66a) and (66b), but a different
formula for kj:

ks = Atf(z, + $ho,tn + 3AL) (68a)
ky = Atf(xy,+ ks, t, + At), (68b)
Tni1 = Tn+ 5(k1 + 2k + 2ks + ka) + O((AL)°) . (68c)

Eq. (68) requires 4 function evaluations per time step, once at the initial point, twice at
trial midpoints, and once at a trial endpoint. Therefore, this method is only superior to the
second order method, if it allows for a time step that is at least twice as large as the one that
can be used for (66) for the same accuracy. For most problems this turns out to be correct,
however, this is not necessarily true in all cases. The fourth order Runge-Kutta method is
the last algorithm in this sequence that requires p function evaluations with p being also
the order of the algorithm. Higher order Runge-Kutta methods require even more function
evaluations and are therefore rarely used.

Adaptive Step-Size Control for the Fourth-Order Runge-Kutta method

It is exactly the implementation of the fourth-order Runge-Kutta algorithm in connection
with an adaptive step-size control that makes this method superior to other methods in many
cases. The reason is easily understood by looking at the problem of launching a rocket from
the earth towards the moon: On the long way from the earth to the moon the rocket flies on
an almost straight trajectory, therefore a relatively large time step is acceptable. However,
on its way around the moon the curvature of the rocket’s path becomes large and a small
step size is necessary. It is inconvenient and often impossible to vary the time step from the
outside, rather the algorithm itself should determine a time step so that the overall error is
kept below a certain bound. To implement an adaptive step-size control in, e.g., the leapfrog
algorithm is almost impossible because positions and velocities are never calculated at the
same time, hence changing the time step requires a change in the algorithm. There are many
different ways to implement an adaptive step-size control in Runge-Kutta-type algorithms.
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For example you can use the difference in the results for say x,,o that are obtained by
starting at x,, and use (i) two steps of size At or (ii) one step of size 2At to keep the error
of x,,12 smaller than some accuracy e. Here, we will compare the results of the second-order
Runge-Kutta algorithm with those of the fourth-order method to estimate the accuracy of
the algorithm. A different, more accurate, but also more complicated method is presented
in the Numerical Recipes.

In order to compare the two methods it is helpful to rewrite Eq. (68c) slightly to make
the similarity to the midpoint method more apparent:

2" order: xfﬁl = 2, + ko + O((A?)?)
4™ order: xfﬁl =2, + ko + 5 + O((At)?)
with (5 == %(kl — 4]€2 + 2]€3 + k4) .

The difference xfﬁl — xﬁl ~ § between the two methods can be used to control the errors

made in each time step. Let k = |§/ko| ~ (At)?; for a system of M first-order differential

equations set k = max|5(m)/k§m)| for m = 1,..., M with k{™ = 0. We then require that

k < € in order to keep the relative error made in each step* below €. Since k is proportional

to At the relative error of the integration routine can be kept below € by implementing the

following idea: If the error in a step of size At is k, the error made using At = &\/6/7 is
approximately €. Hence we arrive at the following algorithm:

(i) Choose an overall accuracy € and initial step size At.

(ii) Calculate 0, x and

e\ 1/2
Atpeyw = 0.8Atgq <E> . (69)
The factor 0.8 is for safety reasons.

(iii) If k > €, discard the step and choose the new step size At = max(Atmin, Atnew ). If Alpew
becomes smaller than the prefixed At,,;, the program should probably warn about the
loss in accuracy.

(iv) If k < € the step is accepted and the time step At = min(Atmax, Alnew) is chosen for
the next step of the iteration.

(v) Tterate (ii), (iii), and (iv).

In principle this algorithm uses the fourth order Runge-Kutta method to estimate the
error of the second-order method. This may not be very accurate. In the Numerical Recipes
a fifth-order algorithm is used to estimate the error of the fourth-order Runge-Kutta method.

*It is also possible to keep the absolute error below some bound ez ,ax. In that case set k = xyax/At. Both
expressions for x attempt to keep the global error below ¢; if only the error per time step is to be kept
below €, k can be multiplied by At and the time step is scaled with (e/x)'/? instead of \/e/k.
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9. Molecular Dynamics

(Reference: M. P. Allen, D. J. Tildesley: Computer Simulations of Liquids, Oxford University
Press, Oxford, 1990)

Molecular dynamics typically deals with dynamical problems of classical many particle sys-
tems, such as gases, fluids, membranes, sand, etc. A molecular dynamics simulation consists
of the numerical integration of the equations of motion of all particles simultaneously. To
get realistic results the number of particles has to be as large as possible. Naturally one is
not interested in the individual trajectories of the particles, but in more global expectation
values that could also be measured in a corresponding laboratory experiment. Examples
of these quantities of interest are the kinetic energy that is related to the temperature of
the system, the total energy, and various correlation functions, such as the pair distribution
function function (p is the average particle density)

0(0) = % (Sate)ste, — 1)) = 1 (St - ) (70

i#j i#j

or its fourier transform, the structure factor that can be measured in scattering experiments,
the velocity autocorrelation function

1 N
con(t) = (v(O)v(®)) = 7 2_ (vi(0)vi(1)) (71)
i=1
that contains information about, e.g., the diffusion coefficient, and many more. These quan-
tities of interest are obtained by summing over all particles and by time averaging as well,
e.g., the average (...) in (71) contains an additional time average

<VZ(O)VZ(t)> = % ’_OZA <Vz(t’)V1(t+t’)> .

Examples:

a) 1. MD simulation: B. J. Alder, T. E. Wainright (1957): Simulation of a gas of hard
spheres (— contact interaction). Result: the velocity autocorrelation function decays
algebraically instead of exponentially as it was expected: c,, () ~ t~4/2.

b) Membranes: Does a crumpling transition exist for two-dimensional objects embedded
in three-dimensional space? Answer: If the particles of the membrane form a fluid
(fluid membranes), the membrane is always crumpled, whereas for tethered membranes
there is no crumpled phase, the membrane is always flat [F. F. Abraham, W. E. Rudge,
M. Plischke, Phys. Rev. Lett. 62, 1757 (1989)], i.e., the fluctuations in the direction of
the overall surface normal scale as L™ with n < 1. In MD simulations it was found that
n ~ 0.8.

¢) Granular material (sand): Friction forces are of crucial importance, hence an algorithm
has to be used that allows velocity dependent forces. However, energy conservation is
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no longer a problem, since these are driven systems, e.g., sand flow through vertical
pipes or through a hopper under the influence of gravity. Other phenomena include heap
formation and size segregation in a container with an oscillating bottom.

Discussion of MD simulations of gases

The total energy of a gas of N identical particles is

M= mv? +
=1 1,_J<
7

™M=

Vij - (72)

N[

1

<.

Here, Vj; is the pair potential that describes the interaction between two particles. For gases
one usually uses the Lennard-Jones or 6-12 potential

o\ 12 ..\ —6
Vij:zkl(@) —(T—J> ] with
o o

The term proportional to T%G corresponds to the van

der Waals interaction of the gas molecules, whereas the
first term on the right-hand side of (73) describes the
repulsion of particles at small distances. The typical 101
form of the potential is shown in the figure to the right.
The characteristic time scale in the simulation is set by
7 = [mo?/€]*/2. Typical numbers for, e.g., Argon are: 00
m ~ 6.6 x 107%kg, 0 ~ 3.4 x 107m, e ~ 1.7 x 10721]
that give a time scale of 7 ~ 2.2 x 10~'?s. The equations
of motion can be cast into a dimensionless form using

the transformations ¢t/7 — ¢, r;/0 — r;, vy7/0 — v;,
and Vj;/e — Vj;. In this units the equations of motion, i.e., Newton’s equations read

= |r; — 1y . (73)

<
&

2.0

V(r)le

-1.0-

d?r. N N
f=-VY V=) F;=F; (T4a)
dt? j=1 j=1
#i J#i
. 2 1

The differential equations (74) describe a microscopic ensemble: the total energy is conserved
as well as the number of particles.

Since the computation of the forces is the most time consuming part (~ N? in general) in
the numerical integration of the equations of motion (74), it is essential to use an algorithm
that requires only one force calculation per time step. Furthermore, energy conservation is
very important, whereas high accuracy is of minor importance: the system is fully chaotic,
the accuracy is lost within a few time steps anyway. Therefore, MD simulations usually use
the leapfrog algorithm or algorithms that are equivalent to the leapfrog algorithm. Clearly
the Runge-Kutta algorithm is a bad choice for MD simulations. If the forces depend on
the velocities, so-called predictor-corrector algorithms are used. One example is the Gear
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algorithm, a description of which can be found in many books on molecular dynamics, but
it will not be discussed in this lecture.

A disadvantage of the leapfrog algorithm (63) is the fact that positions and velocities
are calculated at different time steps. However, many quantities of interest, e.g., the total
energy, require the knowledge of the positions and velocities at the same time. Therefore the
leapfrog algorithm is rewritten in an algebraically equivalent form that calculates velocities
and positions at the same times:

ri(t+ At) = r;(t) + Atvi(t) + (At)a(t) | (75a)

vi(t+At) = vi(t) + At [ay(t) + a;(t + At)] . (75b)

The algorithm (75) is called the “velocity form of the Verlet algorithm” and is the standard

integration method in molecular dynamics. In the dimensionless units mentioned above the

accelerations are identical to the forces a;(t) = F;(¢). The Verlet algorithm (75) requires the

storage of r;(t), v;(t), and a;(t) for all particles i = 1,..., N. These are 9N numbers for

three spatial dimensions. The algorithm (75) is implemented in the following way:

(i) compute r;(t + At) according to (75a).

(i) calculate v;(t + $At) = v;(t) + ALF;(2).

(iii) compute the forces F;(t + At); since we do not discuss velocity dependent forces they
depend only on r;(t + At).

(iv) calculate v;(t + At) = v;(t + LAt) + LALF; (t + At).

Remarks:

(a) Use periodic boundary conditions, x;, 1, (t) = z;(t), analogously for the other coordinates
with L being the linear size of the system, i.e., L? is the volume of the system under
investigation. This minimizes boundary effects.

(b) Because of (a) the range of the potential must be smaller than L/2 otherwise particles
can interact with themselves. Therefore, a potential cutoff must be introduced: V(r;;) =
0 for rj; > r.. For the Lennard-Jones potential the choice r. = 2.50 is quite common.
The cutoff should be smooth, i.e., the force should be continuous at r. otherwise spurious
instabilities can occur in the numerical integration.

(c) Use neighborhood tables (Verlet tables). For each particle create a list of neighbors that
are located within a sphere of radius r; > r. around that particle. Only particles that
are listed in the Verlet table of particle ¢ are needed to compute the force F;. Thus, the
force calculation becomes much faster. However, updating the tables is time consuming.
Therefore, the radius r; is chosen so large that the same tables can be used for several
time steps (10-20): r; — r. must be larger than the maximum displacement within that
time interval. However, if 7, is chosen too large, the force computation makes the
algorithm again less efficient. The optimal value for r;, depends on the specific problem.
For the Lennard-Jones potential with a cutoff at r. = 2.50 a value of r; = 2.70 led to a
speed-up by a factor of more than 2 for a system of 500 particles.

(d) If the formulae for the forces are complicated, the forces can be tabulated for some
values of r;;. Then cubic spline interpolation is used to obtain the force for values r;;
that lie between the tabulated values.
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10. Random Numbers

Random numbers are needed for many applications. Here is just a short list of problems
that have been discussed in this course that require the computation of random numbers:

(i) Simulation of stochastic processes: brownian motion, Langevin equations.

(ii) Pick elements randomly out of an ensemble: Monte-Carlo Integration, points are chosen
at random within the volume of integration.

(iii) Set a random initial configuration: Molecular dynamics simulation, the initial state
should not be completely ordered. The initial positions and velocities of the particles
should fluctuate around some average values.

(iv) Most importantly: Monte-Carlo simulations, see next chapter.

10.1 What are Random Numbers?

Computers are deterministic machines, therefore any sequence of numbers is deterministic
and randomness in the strict sense does not exist. The following may nevertheless serve as
a working characterization:

“Definition”: Random numbers (better: pseudo random numbers) are deterministic se-
quences of real numbers that are sufficiently uncorrelated, i.e., the way the numbers are
generated must not influence the results of the simulation.

From this definition it is already clear that “good” and “bad” depends very much on
the application, for which the random numbers are needed. A random number generator
that is good enough for one application, e.g., to generate a random initial configuration for
a molecular dynamics simulation, may be extremely bad for another, e.g., a Monte-Carlo
simulation. However, there are several criteria a good generator has to obey. Here, only
RNG that generate uniformly distributed random numbers will be discussed, because they
are most important for applications in physics. Different distributions can be generated
using a uniformly distributed random numbers, see Numerical Recipes.

(i) Since the number of bits in a computer word is finite, any random number generator
(RNG) has a finite period. This period of the RNG must be much larger than the
number of random numbers that is used in the program.

(ii) Correlations must be small, i.e., not only must the random numbers be uniformly dis-
tributed in the interval [0,1) (even the worst random number generators do not fail
in this respect), but also pairs of random numbers (z,, x,_s), s = 1,2,3,... should be
uniformly distributed within the square [0,1) x [0, 1).

(iii) A RNG must be fast: in some Monte-Carlo simulations up to 40% of the cpu-time is
spent for the generation of random numbers.
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10.2 Random Number Generators

Linear congruential RNGs

Linear congruential random number generators are the most common RNGs. They gen-
erate random numbers according to the following formula:

LCG(a,c,m) : I,=(aln 1+ )mod m - (76)

I,,, a, ¢, and m are integers; m is called the modulus, a is the multiplier, and ¢ the increment.
Almost all system supplied RNG are linear congruential RNG. Furthermore, the worst RNGs
also belong to this group. From this one can already conclude that on should never use the
system supplied RNG, but for the simplest applications. Since the next random number of
the sequence generated from (76) depends only on the previously generated random num-
ber, it is immediately clear that the maximum period of the generator LCG(a, ¢, m) is m.
However, a and ¢ have to be chosen very carefully in order to reach this maximum period.
An example for such a generator is LCG(69069, 1,23?) that has a period of m = 232. This
is also the maximum period that can be reached using a linear congruential RNG using
integers on a 32 bit computer. Furthermore, using m = 232 has the advantage that it is
not necessary to implement the modulo operation in (76), since the usual integer overflow
arithmetic discussed in chapter 3.2 is equivalent to an operation modulo 232. Therefore, the
LCG(a,c,23?) can be programmed as I, = a I, | + ¢ and the conversion to a real number
between 0 and 1 is obtained through 7, = I, /rmax + 0.5 with ry. = 2.0%2

Why are Linear Congruential RNGs so Bad?

Beside the small period of maximum m = 232, that is easily reached on today’s worksta-
tions, linear congruential RNGs have large correlations: They show the so-called Marsaglia
effect: Points (rpi1,7nt2,-- -, mra) are not distributed uniformly within the d-dimensional
unit cube, but lie on at most m'/¢ hyperplanes of dimension d — 1. Thus, for d = 2 the
square [0,1) x [0, 1) is not filled uniformly, but parallel lines running across the square are
obtained. Between those lines no pairs (7, 7,41) can be found, see the figure below.

At least the numbers of linear congruential generators should be shuffled: First generate
an array of random numbers, x; = LCG(a,c,m), i = 1,..., L with, e.g., L = 97. Then draw
an additional random number y. Convert y to an integer between 1 and L, n = int(Ly) + 1.
Use x,, as the result of the RNG, replace z, by the next number from the generator, x, =
LCG(a, ¢, m), and use the same random number to update y as well. This new value of y is
then used to compute a new n, etc. This shuffling algorithm does not change the period of
the LCG, it only changes the sequence of the random numbers. A better way of destroying
correlations in a linear congruential RNG uses a second LCG to shuffle the numbers of the
first generator: x; = LCG(ay, ¢, my) and y = LCG(ag, ¢2, mo). Again, y is used exclusively
to determine the element of the array (z;,xs,...,2) that then is used as the result of the
combined generator. The array is filled up using the first generator as before. However, now
two random numbers have to be computed per returned random number. Consequently the
random number generator will be slower, and in most cases it is more reasonable not to use
a linear congruential generator at all, but use one of the better generators that are discussed
in the next paragraph.
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Correlations in linear congruential random number generators: The left figure shows pairs (r,,—2,7,) of ran-
dom numbers generated from the LCG(69069, 1, 232) generator. All 232 random numbers were computed.
The Marsaglia planes are clearly visible. If pairs (r,—1,7,) are plotted the picture is even worse: The
planes are not filled: The pairs appear at regularly spaced discrete x values [see, K. G. Hamilton, Com-
put. Phys. Commun. 75, 105 (1993)]. For comparison the left graph shows the result for the combination
generator F(2,1,x) and F(3,1,—) for 232 generated random numbers. No distinct pattern is visible in this
case.

Better Random Number Generators
[Reference: G. A. Marsaglia, in Computer Science and Statistics: The Interface, L. Billard
(ed.), (Elsevier, Amsterdam, 1985), p. 3]

A large class of random number generators are called lagged Fibonacci generators
F(r,s,®) : In=7+®IL1 §)mod m (with r > s) , (77)

where ® is one of the operators 4+, —, %, or @ [bitwise exclusive-or (xor)]. The maximum
period of these generators is much larger than 232, the maximum period that can be obtained
for linear congruential generators. It can be shown that for m = 2", n integer, the period is
(2" — 1)m/2 for + and —, (2" — 1)m/8 for * on odd integers, and 2" — 1 for &.

One example of such a generator is the Kirkpatrick-Stoll generator [Kirkpatrick, Stoll,
J. Comp. Phys. 40,517 (1981)]

Iy = In—250 ® In-147 - (78)

Lagged Fibonacci generators that use the exclusive-or operation & are also called shift
register or Tausworthe generators. The period of the generator (78) is extremely large:
22°0 — 1 ~ 10™. To initialize the generator 250 random integers are needed. A linear
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congruential generator like LCG(69069, 1,23%) can be used to accomplish this task. The
Kirkpatrick-Stoll generator is very popular in the physics community. It is very fast and
only recently reports have been published that hint at hidden correlations in this generator
[W. Selke et. al., JETP Letters, 58, 665 (1993)]. One has to be careful when implementing
lagged Fibonacci generators using @: For small lags r the generators F(r, s, ®) are extremely
bad, see Marsaglia’s article.

Better generators can also be obtained by combining two generators. See Numerical
Recipes for a combination generator of two LCGs. The disadvantage of that generator is
its very slow speed. Here I give a combination generator of the two Fibonacci generators
F(2,1,%) and F(3,1,—) that has a period of ~ 10, is very fast, and needs only 5 integers
to initialize:

I, = (In_o % In_1)modq 222 on odd integers
Jn — (Jnf?) - Jnfl)mod 230_35 (79)
K, = (In - Jn)mod 232 .

The returned random integer is K, that lies between —23! and 23! —1 and can be transformed
to a real number within [0, 1) in the usual way. A faster, however machine dependent method
of transforming an integer to a real number between 0 and 1 pastes the random integer to
the mantissa of a floating point number and adjusts the exponent part of the floating point
number so that the result lies between 0 and 1. For machines that conform to the IEEE
convention this is done by copying the random integer to the second word of a double
precision number. Since the mantissa of a double precision number is 52 bits long, a 32 bit
integer leaves 20 bits empty. Therefore, the mantissa of the double precision number is of
the form 14145272 44302722 +. . . +ip2 "2, where i), are the bits of the random integer. Thus
by setting the exponent value of the double precision number to e = 20 the double precision
number attains the value 22° + r, with r lying between 0 and 1. Subtracting 2?° from this
number gives the desired random number r. For an implementation of this method see the
programs randv.C or randv.f90, resp.
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11. Monte-Carlo Simulation

11.1 The Ising Model (E. Ising, 1925)

Consider a system of spins S; = +1 on a d-dimensional simple cubic lattice, i = 1,..., L%
This can be regarded as a model for a magnet with a large anisotropy so that all spins point
preferably in the 4+ or — z direction. But this model also describes the binary alloy that was
investigated in assignment #3: The density p; is defined to be p; = 1, if there is an A atom
at site ¢, and p; = 0 otherwise. Consequently, the quantity S; = 2p; — 1 takes only values +1,
thus the binary alloy is described by the Ising model as well. In general any system, where
the microscopic variables can take only two values, can be mapped to the Ising model.

The energy of the Ising model for a specific configuration of spins is given by

(i,) i

Here, (i, j) denotes a summation over all nearest-neighbor pairs (dL? pairs in total) and h is
an external magnetic field. If A = 0 and J > 0 a parallel alignment of spins is energetically
favorable, thus J > 0 describes a ferromagnet. J < 0 is a model for an antiferromagnet: If
the lattices is subdivided into two sublattices analogous to a checker board lattice so that all
neighbors of a spin are located in the other sublattice, then the preferred configuration has
the spins of one sublattice pointing into the opposite direction than the spins of the other
sublattice. This discussion is correct at zero temperature 7' = 0. For higher temperatures
there will be thermal excitations so that for .J > 0 not all spins point into the same direc-
tion. Thus, the questions Monte-Carlo simulations are trying to answer are: Given a finite
temperature 7" and possibly an external field A, what is the state of the system? What is
the magnetization, the energy? What is the magnetic susceptibility and the specific heat?

11.2 Thermodynamic Equilibrium, Master Equation, Detailed
Balance

Let C = (Sy,...,Sy), N = L% be a configuration of spins. In the thermodynamic equilibrium
the probability of finding the configuration C is given by the Boltzmann distribution
1
Pu(€) = 5O B= (81)
with kp ~ 1.38 x 1072 J/K being Boltzmann’s constant. Z = ¢y e #*©) is the partition
function and the sum 3 ey = 3¢ 41 2,41+ - gy 41 runs over all 2V configurations. If Z is
known , many quantities of interest can be calculated, e.g., expectations values such as the
average energy

(H) = _é >3 S FHE) = —JkBT% log Z .
{c} (id)
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Since 2% is a huge number Z cannot be calculated directly not even with the best computers.
Therefore, different numerical methods must be used to calculate expectation values.

In a Monte-Carlo simulation a sequence of configurations C; — Co — C3--- is gener-
ated that allow an approximate evaluation of the sum over the configurations. The idea is
that only those configurations have to be considered that have a large Boltzmann weight
e~ PHE) _ Most of the 2V configurations in fact will have a very small probability so that
their contribution can be safely neglected, e.g., at low temperatures and J > 0 most of the
spins in a typical configuration will still be parallel aligned, therefore configurations with
many antiparallel spin pairs can be neglected. In a Monte-Carlo simulation the transition
rates that determine, which configuration C’ can be reached from the current configuration
C, are constructed so that only those typical configurations are generated in the sequence of
configurations that are important to estimate the quantities of interest.

In order to determine reasonable transition rates, first the dynamical evolution of the
system has to be defined. There are two physically different situations:
(i) Glauber dynamics or spin-flip dynamics: In an elementary time step a spin at site i is
flipped: S; — —S;. For this kind of dynamics the total magnetization is not conserved.
(ii) Kawasaki dynamics or spin-exchange dynamics: In an elementary time step a spin at
site ¢ is exchanged with one of its neighbors at site j: S; <+ S;. Consequently, the total
magnetization >_; S; remains constant. This type of dynamics is the correct description
for the simulation of, e.g., binary alloys, since in that case the concentration of A and
B atoms has to remain constant.

These are the microscopic mechanisms that lead to changes from one configuration to
another. Still one has to determine reasonable transition rates for these changes. Consider
an equation of motion for the time-dependent probability distribution P(C,t). The dynamics
must converge to the Boltzmann distribution, i.e., lim;_,,, P(C,t) = Peq(C). If the transition
rate from configuration C to C' is called w(C — C') the equation of motion for the probability
distribution takes the form

D pe,t) = =S w(C = CYPEC 1)+ T w(C — C)P(C 1) . (82)

ot %! %!

Eq. (82) is called a master equation. The first, negative term on the right-hand side describes
transitions that destroy the configuration C due to transitions to any other configuration C’.
This is the lost term. The second, positive term describes transitions that lead from any

configuration C’ to the configuration C, this is the gain term. In the limit ¢ — oo we must
have 0P, (C)/0t = 0 and therefore

ST w(C = C)Pug(C)= 3" w(C' — C) Py (C') . (83)
{c'} {c'}

Eq. (83) is a constraint the transition rates w have to obey, if the generated configurations
in the simulation are to relax to the correct equilibrium state. In the simulation of nonequi-
librium dynamics the system may relax to a steady-state that may not have anything to do
with the equilibrium state. In these cases the constraint (83) does not apply and there are
many more choices for the transition rates.
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A sufficient, but not necessary, condition for the transition rates w in order to satisfy
Eq. (83) is the condition of detailed balance

w(C = C')Pog(€) = w(C' — C)Pu(C) . (84a)

For most configurations we have w(C — C') = 0 = w(C" — C). For those configurations C,
C' with w(C" — C) # 0 the Egs. (81) and (84a) lead to the requirement

w(C — C")

w(@ o) = e {BHE) — RO} - (84b)

Transition rates that obey (84b) will generate the Boltzmann distribution (81). In principle
the condition (84b) constrains the transition rates much more than the weaker condition
(83). However, for almost all models it is impossible to prove that transition rates that do
not obey the detailed balance condition (84b) nevertheless obey the more general constraint
(83). Most likely transition rates that do not obey (84b) will in fact not satisfy the constraint
(83). Therefore, in Monte-Carlo simulations the transition rates are almost always chosen
to obey the stricter constraint of detailed balance (84b).

An additional property the transition rates must have is the property of ergodicity: from
any initial configuration it must be possible to reach any other allowed configuration.

11.3 Metropolis Algorithm

The Metropolis algorithm uses the following choice for the transition rates, if the transition
C — C' is allowed:

1 if 7(C") < H(C)

exp {—B[H(C") —H(C)]} if H(C") >H(C) ° (85)

w(c—~¢)={
Detailed balance (84b) is trivially obeyed. If AE = H(C') — H(C) denotes the change in
the energy due to the transition the metropolis rates take the simple form w(C — C') =1
if AE <0 and w(C — C') = e PAF otherwise. Hence, any transition that lowers the energy
of the system is accepted with probability 1, whereas transitions that increase the energy
occur with a much lower probability that decreases rapidly with decreasing temperature 7.

A different possibility for the transition rates w are the Glauber rates
1 1 BAE
n_ — (1=
w(C—>C)—1+6ﬂAE—2<1 tanh 5 )

(86)

that use the same formula for AE > 0 and AE < 0. The relaxation towards the equilibrium
state for the Glauber rates (86) is not as fast as for the Metropolis rates (85), however, the
dynamical evolution is modeled more realistically, e.g., a transition between two states with
the same energy occurs with probability 1/2. Thus, if only equilibrium properties shall be
studied, one usually uses Metropolis rates, whereas for investigations of dynamical evolutions
one may consider to use the Glauber rates.
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Depending on the physics of the problem at hand one still has to decide on the kind of
dynamics that must be used: Either nonconserved dynamics (Glauber or spin-flip dynam-
ics) that are appropriate for, e.g., magnetic systems, or conserved dynamics (Kawasaki or
exchange dynamics) that are appropriate for, e.g., binary alloys. In both cases two consec-
utively generated configurations C and C' differ in the values of only one (Glauber) or two
(Kawasaki) spins. For all other configurations the transition rates w(C — C') are zero.

Calculation of Averages

The statistical average of a quantity A is given by

()=~ > atege (87)

as explained above. For, e.g., the magnetization (A = M) we have M(C) = ¥, S;. In the
Monte-Carlo simulation a “Markov chain” of configurations is generated, C; — Cy — C3 —
-+ -, however, the transitions from one configuration to the next occur with the probability
e PAE therefore the configurations that are generated in the simulation do not occur with
the same probability, but with a probability of e #*(¢). This is the whole idea of importance
sampling in the Monte-Carlo method. Only those configurations that carry a large weight
in the sum in Eq. (87) are generated. Furthermore, since these configurations are generated
with a probability of e #*(€) the calculation of expectation values reduces to the calculation

of mean values | =
(4) =~ =3 A(C) , (88)

=1
where C; is one particular configuration occurring in the Markov chain. Usually not all
configurations that are generated in a simulation are taken into account in the summation

(88) because of correlations, see below.
Implementation of a Monte-Carlo Simulation

The basic Monte-Carlo step consists of two parts:
(i) propose a new configuration C'.
(ii) accept or reject the transition C — C'.

The full transition rate wy(C — C’) is therefore the product of two parts
wiot (C = C") = w,(C'|C) w(C — C') . (89)

The factor w,(C'|C) is the probability that the configuration C" is proposed, if the current
configuration is C, and w(C — (') is the probability that the transition is accepted as
described above. Thus, the detailed balance condition becomes

w,(C'C) w(C — ') _BAE

wy(C|C") w(C"— C)

For Glauber and Kawasaki dynamics w,(C'|C) = w,(C|C’), e.g., consider Glauber dynamics
and the two configurations that differ only in the value of one spin at site i: w,(C'|C) = L%
since the probability that a spin is proposed for a flip is the same for all spins. Therefore
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the detailed balance condition reduces to (84b) for these algorithms. The decision to accept
the transition C — C’ is made by drawing a uniformly distributed random number z out of
the interval [0,1). If 2 < e PAF the transition is accepted.

The Swendsen-Wang algorithm is a cluster-flip algorithm that proposes a new configu-
ration according to the probability w,(C'|C) = e™#2F. In that case the acceptance of the
transition is trivial, but detailed balance is satisfied nevertheless.

Even for Glauber and Kawasaki dynamics the sequence, in which the spins are flipped/ex-
changed, must still be determined. There are several possibilities:

(i) Randomly: In each step another random number ¢ is drawn. The spin S; that is
proposed for the spin flip is determined by i = int(L%() + 1. This is the only correct
method, if one is interested in the dynamical evolution of the system.

If only equilibrium properties are to be studied, there are other possibilities that avoid the

computation of additional random numbers.

(i) Sequential: The spins are selected in a deterministic sequence, i = 1,2,3,..., L4

(iii) Sublattice updates (only for Glauber dynamics): Divide the lattice into two sublattices
according to the checker board rule: all nearest neighbors of a spin lie in the other
sublattice. Therefore, all spins belonging to one sublattice can be updated in parallel.
This is the preferred algorithm on vector machines or machines that allow parallel
processing. This method also allows for a fast implementation of the periodic boundary
conditions (see next paragraph) even on a single-processor workstation.

One also has to decide, which boundary conditions to use: free, periodic, or helical
boundary conditions. This choice influences the finite-size effects, i.e., the corrections in the
expectation values due to the finite size of the system. Most often periodic boundary condi-
tions are used since they minimize finite-size effects. Free boundary conditions are in almost
all cases not a good choice. Helical boundary conditions, e.g., for a two-dimensional lattice
use S; 41 = Siy1,1 instead of Sj 41 = S; 1, which is the correct choice for periodic boundary
conditions, are very fast on the computer, since they allow to store a two-dimensional field
S;,j in an one-dimensional array S(;_1)74; and the boundary conditions on j are implemented
automatically. For the ¢ direction periodic boundary conditions are used. However, the size
dependence of the finite-size corrections (see, Sec. 11.4) is not completely clear.

Example: Ising model with J > 0, h = 0, Glauber dynamics with Metropolis rates, periodic

boundary conditions, sequential updates.

(i) Choose an initial configuration. It has turned out that the best choice is usually a com-
pletely ordered 7" = 0 configuration, even for simulations at high temperatures, where
disordered configurations are more important. Using an ordered 7" = 0 configuration,
e.g.,S; =1foralli=1,..., L% avoids the formation of several large domains of plus and
minus spins. Such configurations correspond to metastable states that are very hard
to destroy, since it is necessary to flip a whole domain of spins in the process, which is
unlikely to occur especially at low temperatures. Therefore the simulation can get stuck
in one part of the configuration space and important contribution from other states are
missed so that the calculated expectation values can be severely biased and inaccurate.

(ii) Set the magnetization M = 3=, S; and the energy £/ = —J > ; »» SiS; to the values that
correspond to the initial configuration.
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(iii) The basic Monte-Carlo step: For a spin S;, i = 1,..., L¢ calculate the energy change

that is obtained if the spin would be flipped,

AE=H(C)—H(C)=2JS5>5; . (90)
(4):

Here the sum runs over all nearest neighbors (j); of the spin at site i. Determine the
Boltzmann factor e #2F. Draw a random number z. If z < e #2% flip the spin: S; —
—S; and update the magnetization and the energy E. If z > e #2F leave everything
unchanged. Perform this step consecutively for all sites i = 1,..., LY. One run through
the whole system, i.e., one attempt per spin, is called a Monte-Carlo step (MCS).
Starting from the initial configuration perform A\q Monte-Carlo steps without calculating
averages. It takes a certain time to relax to the equilibrium state. This time in fact
depends on the temperature and even diverges if T' is close to the critical temperature
T. (critical slowing down, see next section).
Perform nA more MCS. After each A MCS the averages of the quantities of interest are
updated, e.g.,

1 n

n EE: |]¥4}| )

=1
where M is the actual magnetization after A\g+/A MCS. The number \ of MCS between
two updates must be large enough so that the configuration after A MCS is sufficiently
uncorrelated with the configuration that was used for the previous update of the av-
erages. Again, reasonable values for A depend on the temperature and the size of the
system: A must be larger the closer 7T is to the critical temperature 7, and the larger
the system size L.

(M)

Remarks
Most of the computing time is spent in the basic Monte-Carlo step, point (iii) above. There-
fore, special care should be taken to program this step as efficient as possible.

(a)

For many models the number of values that are obtained for AFE is finite, hence the
transition rates w(C — C') can (and should) be calculated before the start of the simu-
lation and stored in an array, e.g., the energy change AE (90) for the two-dimensional
Ising model can be written as

AFE = 2Jn,(C,1i) with — n.(C,i) =5, S; = —4,-2,0,2,4 .
(9)i

Thus, the Boltzmann weights e #2F can be calculated beforehand and stored in an

array by, | = —4,...,4 so that in the actual simulation only n.(C, ) has to be calculated
in order to determine the transition rates b, (c,;)-

The periodic boundary conditions should not be implemented using if statements or
modulo operations. Instead, one can use buffer layers or use auxiliary arrays that hold
the indices of the nearest neighbors of each spin. The first method is implemented in,
e.g., two dimensions with i = (x,y) by enlarging the lattice artificially so that z and
y run from 0 to L + 1. The lattice is subdivided into two sublattices according to the
checker board rule and all spins belonging to one sublattice are updated first. Every
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time before the spins of the other sublattice are updated the boundary spins of the
current sublattice Sy, S;1, Sry, and S, are copied to Spi1y, Sgr+1, Soy, and Sp .
The spins S, , for z,y = 1,...L can then be updated without problem. The second
method uses integer fields that hold the coordinates of the neighboring sites, e.g., set
pr =a+1for 1 <z <L and p;, =1. Then 5,4, can be accessed as S,, .

11.4 Phase Transitions, Critical Exponents, Finite-Size Scaling

At low temperatures the preferred state of the Ising model is an ordered state: almost all
spins are aligned in one direction. The magnetization M = ZZ'LL S; is nonzero. At high
temperatures the fluctuations due to thermal excitations become so large that the order is
destroyed and the magnetization is zero. In any case the system is in a state that minimizes
the free energy F' = F — T'S, thus at small 7' this minimum is reached by minimizing the
energy. At high temperatures the system prefers disordered states since the number of these
states is much larger and therefore the entropy S is increased. Between these two regimes
there is a sharp phase transition at a certain temperature T, so that [M| > 0 for T < T,
and M = 0 for T" > T,. The magnetization is called the order parameter of the phase
transition. One distinguishes two types of phase transitions: first-order transitions, where
the first derivative of the free energy is discontinuous, i.e., the order parameter jumps from
a finite value to zero at the transition, and second-order phase transitions, where the order
parameter goes to zero continuously, but second derivatives of the free energy such as the
susceptibility diverge. Whereas first-order phase transitions depend on the details of the

1 A\ 1
E E
0 ‘ T 0 ‘ T
TC TC

Temperature dependence of the order parameter at first-order (left) and second-order (right) phase transi-
tions. T, indicates the critical temperature.

system second-order phase transitions show universal behavior, e.g., the magnetization M,
the susceptibility y, and the specific heat ¢ behave as a function of temperature as

(M(T) ~ (L-TV  (T<T), (912
D) = o [OF) = O17] ~ T =TT (91b)
oT) = gz (B~ (8] ~ =T " (o1¢)
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The Ising model has a second-order phase transition for A~ = 0 as a function of temperature.
For the two-dimensional model the critical exponents (3, v, and « and the critical temperature
can be determined exactly (Onsager 1944), e.g., sinh IcZJTc = 1. The critical exponents f3,
v, and « do not depend on the details of the system but only on the symmetries of the
microscopic variables, i.e., they remain the same if, e.g., next-nearest neighbor interactions
are included in the Hamiltonian. However, they do change, if the spins are allowed not only
to point into the £z direction, but are allowed to rotate freely in all directions (Heisenberg
model). Thus, by measuring critical exponents it is possible to determine the nature of the

microscopic elements of the system under investigation.

The divergence of, e.g., the susceptibility at the criti-
cal temperature T, occurs only in an infinite system, there
are no singularities in a finite system, instead the singu-
larities appear rounded for finite system sizes L. Further-
more, the maximum of the susceptibility is shifted away
from the critical temperature of the infinite system as
illustrated in the figure to the right. However, as the sys- )
tem size is increased the maximum of the susceptibility S S—= = T
increases as well, in fact in a characteristic way that de- T Ty TL)
pends on the values of the critical exponents. Thus this Schematic graph of the susceptibility
kind of finite-size scaling allows an accurate determina- X as a function of temperature T' for

. o . . . different system sizes L.
tion of critical exponents in a Monte-Carlo simulation.
To understand finite-size scaling an additional length, the correlation length

§T) ~ T =T (92)

that diverges at the critical temperature with an critical exponent v must be introduced. The
divergences of the susceptibility and of the specific heat have their origin in the divergence
of the fluctuations of the magnetization and the energy at the critical point. The correlation
length measures the size of a typical fluctuation in the system, for 7' > T} one typically finds
that the correlation function of the magnetization behaves as (M (r + x) M (x)) ~ e™"/¢T).
At the critical point the correlation length diverges and this behavior is no longer valid. In
a finite system, however, the size of the fluctuations is limited by the system size; this leads
to the rounding of the singularities. To study these effects we make the finite-size scaling
ansatz, here written down for the susceptibility,

X(T, L) = L*Q(L/¢(T)) -

In the limit L — oo this equation must reproduce the relation (91b), i.e., the L dependent
terms must cancel. This requires that Q(z) ~ z7% for x > 1 and y,, = /v because of (92).
Therefore the finite-size scaling ansatz takes the form

X(T,L) = L' Q(L/¢(T)) . (93)

The scaling function @) describes the change in the functional dependence of x(7) from the
result for the infinite system size (91b) to a form, where the singularity is more and more
rounded as the system size decreases. The maximum Xyax(L) is determined by the relation
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ox(T,L)/0T |r—r,,,. = 0 or, equivalently, Q' (L/§(Ty,..)) = 0. The latter relation can be
reformulated as £(7),...) = oL, where xy is the solution of the equation @)'(x) = 0. From
this relation the shift of the maximum from the critical temperature

|7—"C - T max (L)| ~ Lil/u (94)
is obtained. For T'=T,, . (L) the scaling function () reduces to a constant and we therefore
obtain

Xmax(L) ~ LV/V (95)
and analogously for the specific heat per spin
Cmax(L) /L% ~ LV (96)

Similar scaling relations can be derived for many other quantities, e.g., the magnetization,
etc. These scaling relations (94), (95), and (96), allow the determination of the critical
exponents v, v, and « in a Monte-Carlo simulation. In order to obtain high accuracies it
is not really necessary to simulate huge system sizes, but to do the simulation for several
different system sizes with a spread in the values of L as large as possible.

The order parameter (M) for T' < T, cannot be obtained in a Monte-Carlo simulation
by just averaging over the values of M = ZZ-L:dl S;, since for h = 0 the configuration that has
all spins reversed occurs with the same probability. Thus, averaging over all configurations
results in an average of zero. In an infinite system such a reversal of all spins does not occur
within finite time, since it requires an intermediate state with M = 0 that has a probability
of zero. To avoid this artificial averaging to zero in a simulation one can obtain the order
parameter for h = 0, i.e., the spontaneous magnetization, by calculating the average

S5

=1

l 1

(97)

Clearly, in the thermodynamic limit L — oo this quantity must converge to the correct value
of the spontaneous magnetization.

The critical temperature 7T, is most accurately determined by studying the fourth order
cumulant
(m*)

3<m2>2

with m = M/L? At low temperatures, T < T,, (m*) ~ (m?)? and therefore U ~ 2/3. At
high temperatures, 7' > T,, U approaches zero as can be shown be assuming a Gaussian
probability distribution for m. In the neighborhood of the critical temperature the scaling
ansatz for the magnetization (m(T, L)) = L=%/*Q,(L/£(t)) can be used to derive the scaling
form for U: (m*) = L=%/*Q,(L/&(t)) and (m?) = L=2/*Qy(L/&(t)) and consequently

(m*) ~( L

L =Q =] . 99

wey =@ \em) )
For T = T, the correlation length £(7,) is infinite, hence the right-hand side of Eq. (99)
becomes a constant independent of the system size L. Thus, a graph of the fourth order

U(T,L)=1- (98)
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cumulant U as a function of temperature for different system sizes L shows a set of curves
that intersect at the critical temperature T, of the infinite system.

Another problem in the Monte-Carlo simulation of second-order phase transitions is the
phenomenon of critical slowing down: correlations between two states decay on time-scales
t* ~ &%, z is called the dynamical critical exponent. At the critical point these times diverge
and in a simulation correlations decay only on scales t* ~ L* for T close to T,.. This is the
reason that the parameters \g and A introduced in the previous section must be increased
the larger the system size L becomes. This will lead to a serious increase in the necessary
computation time and limits the maximum size L that can be studied in the simulation.
The dynamical exponent z depends on the dynamics: z ~ 2 for Glauber dynamics, whereas
2z ~ 4 for Kawasaki dynamics. The advantage of the cluster-flip algorithm introduced by
Swendsen and Wang is the reduction of the dynamical exponent: z ~ 0 and t* ~ log &(T).
Therefore, much larger systems can be studied.
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Appendix A: Problems

1. Differentiation

Calculate the derivative of the function f(z) = arcsin x numerically for 0 < z < 1 using the
finite difference formula f’'(z, h) = [f(x+h)— f(x—h)]/(2h) for the first derivative of f. Use
h = z.€'/3 with 2, = 1. Estimate the error of the numerical result by changing h by factors
of 2 and calculate |f'(xz, h) — f'(x,2h)|. Compare with the exact result. What happens if
is close to 17

2. Numerical Integration: Pendulum

Use Simpson’s rule to calculate the oscillation period T'(¢g) of a
mathematical pendulum with an amplitude p(t = 0) = ¢, and ini-
tial angular velocity ¢(t = 0) = 0 (see figure to the right). Energy
conservation tells you that

Iml** + mgl(1 — cos @) = mgl(1 — cos ) (A2.1)

(m, | mass and length of the pendulum, ¢ gravitational constant).
Therefore, ¢?/[cos @ — cos o] = 2¢/1, and

INY2 dy
Tipo)=4(5-] | .
(o) <2g> 0 [cos @ — cos pp]t/?

This integral is not very well suited for numerical integration because of the singular-
ity of the integrand at the upper limit of the integral. However, this singularity can
be removed using cosp = 1 — 2sin?(¢/2) and introducing the new variable ¥ through
sin(p/2) = sin(pg/2) sin?). This substitution transforms the integral into a so-called com-
plete elliptic integral of the first kind:

T(py) =4 (L 1/2/“/2 4y ith = sin(i0/2) (A2.2)
LAV o [1— kZsin®¥]l/2 v — Sere) '

This integral does no longer have a singularity within the interval of integration and can be
calculated using Simpson’s rule. For the computation set wy = (g/l)!/? = 1. Create a graph
showing 7" as a function of ¢,. In the same graph also plot the result that is obtained if the
small angle approximations 1 — cos¢ ~ ¢?/2 and 1 — cospy ~ p3/2 are used in equation
(A2.1).

For ¢y — = the elliptic integral (A2.2) diverges logarithmically. To illustrate this fact
include a plot of the function f(p) = 21In[16/(1 — k?)] in the graph as well.
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3. Frenkel-Kontorova Model

Consider a chain of particles coupled together with harmonic springs in a periodic potential.
The total energy of the system is

V = Z I:% (l‘j+1 — l‘j — b)2 —|—p(1 — COSk‘IL’j) — %bz] s
J

where z;, j = 1,..., N denote the positions of the particles, b is the equilibrium length of the
springs, p is the strength of the periodic potential, and k = 27/ with A being the period of
the potential. Most of these parameters can be eliminated by a change of coordinates: Set
©; = kx; — 2wy, i.e., rescale all lengths with k so that the period of the periodic potential
becomes 27 and define the New coordinates ¢; so that they measure the distance from the
j-th minimum of the potential. Furthermore, redefine the energy scale so that the factor in
front of the contribution of the springs becomes one. The resulting total energy

V=[5 (01— 95— A +u(l—cosp;) — §A?] (A3.1)
J

contains only two parameters: wu, the redefined strength of the periodic potential, and
A = bk — 2w, the misfit between the equilibrium length of the springs and the period
of the potential. The stable configurations of this model correspond to sets of variables

?
—>

¢j, j =1,..., N that minimize the total energy V' (A3.1). These are the ground states of
the model. If v and A are changed, in general the ground state will change as well. The
phase diagram specifies the ground state of the Frenkel-Kontorova model for each pair of
values (u,A). Two extreme states can be specified immediately: For v = 0 the distances
between the particles will be equal to the length of the springs, e.g.,

) onj2 =—A/2 N even

For very large u the particles will all sit in the minimum of the potential, i.e.,

0;j=0,j=1,...,N . (A3.3)
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For other values of u and A the ground state configurations have to be determined numeri-
cally. For a finite number of particles N the boundary conditions must be specified as well.
Two cases are of interest:

a) Free boundary conditions: There is only one spring attached to the particles at the end
of the chain, i.e., there are only N — 1 springs. The total energy in this case is

N-— N
Z (4 (pis1 — 05 — A)? — 1A?] + Z (1—cosgp;) . (A3.4)

b) Periodic boundary conditions: The chain is closed at the ends, i.e., there is a spring that
connects particle N with particle 1, or in other words the particle at ¢y is identified
with the particle at ;. In this case the “winding number” p must be specified as well
that determines how much ¢y differs from ¢;:

ON41 = @1 + 27p , p integer. (A3.5)

The total energy in this case is

N-1
V= Z [% (pjr1 — @5 — A)2 — %AQ +u (1 — cos goj)]

j=1

+% (o1 +27p — pn — A)Z — %AQ +u(l—cospyn) -

(A3.6)

Write a program that determines ground state energies of the Frenkel-Kontorova model for
free and/or periodic boundary conditions. The parameters u, A, N, and, in the case of
periodic boundary conditions, p are input parameters of the program. Use the Newton-
Raphson method complemented by a golden section search in cases where the Newton-
Raphson step fails to reduce V. As initial configuration use the configuration (A3.2). To
compare energies for different N the final result for the total energy (A3.4) or (A3.6) should
be given as energy per particle V//N. Plot a typical solution ¢; as a function of j preferably
for large N. The routines tridiag and tridiagpb can be used (see below) to solve the sets
of linear equations at each step of the Newton-Raphson method.

Description of the Routines tridiag and tridiagpb

These two routines solve for an array x of length N the tridiagonal set of equations
a;T; 1+ bzib'z + Ciliy1 =715 , = 1, Ceey N . (*)

In tridiag a; = 0 = cy, in tridiagpb periodic boundary conditions are used: xy = zy and
Tn4+1 = 1. The routines are called in the following way:

(i) FORTRAN:
double precision a(n),b(n),c(n),r(n),x(n),w(n),anorm
integer n,info

call tridiag(a,b,c,r,x,n,anorm,info,w)
or
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call tridiagpb(a,b,c,r,x,n,anorm,info,w)

a, b, ¢, r, anorm, n have to be set before calling the routines. a, b, c, r are arrays
of length n that specify the matrix elements and the right-hand side of the equation
according to eq. (x). anorm must be set to a value that is of the typical size of the matrix
elements, e.g., anorm = max(|a;l, |b;], |ci|, i = 1,..., N). n must specify the length of the
arrays a, b, c, r. If after the call the variable info=1, x will contain the solution of
the system of equations (). If info=2, this indicates that your matrix is singular and no
solution can be obtained. The array w is used as workspace by the routine. The compiler
must be told that the routines can be found in the library /usr/lib/libcomphys.a:
f77 myprog.f -lcomphys
(ii) C:
void tridiag_(double *,double *,double *,double *,double *,int *,
double *,int *,double *);
void tridiagpb_(double *,double *,double *,double *,double *,int *,
double *,int *,double *);

double *a,*b,*c,*r,*x,*w,anorm;
int n,info;

a=(double *)malloc(n*sizeof (double));
b=(double *)malloc(n*sizeof (double));
c=(double *)malloc(n*sizeof (double)) ;
r=(double *)malloc(n*sizeof (double));
x=(double *)malloc(n*sizeof (double));
w=(double *)malloc(n*sizeof (double));

tridiag (a,b,c,r,x,&n,&anorm,&info,w)
or
tridiagpb_(a,b,c,r,x,&n,&anorm,&info,w)

The meaning of the variables is the same is for FORTRAN. The compiler call must call
the FORTRAN libraries:
cc myprog.c —-1F77 -1U77 -lcomphys

Note that tridiagpb will change the arrays a, b, c, r in the calculation. Thus, if you
still need the arrays after the call to tridiagpb you must make a copy of these arrays before
the call.
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4. Density-Density Correlation Function

Consider an alloy that contains two kinds of particles,
say A and B, with the following properties: At high tem-
peratures the particles A and B mix perfectly, the alloy is
said to be in a disordered state. At low temperatures A
particles attract each other as the B particles do, whereas
A and B particles repel each other. Therefore A and B
particles tend to separate and regions with only A parti-
cles and regions with only B particles are formed. If this
alloy is cooled down quickly from high temperatures to low
temperatures first small domains of A and B particles are
formed. These domains then grow in size: the alloy be-
comes more and more ordered. A typical configuration is

shown in the figure to the right. The quantity of interest in this situation is the average
domain size R indicated with an arrow in the figure. To describe the situation the density
p(r) is introduced with p(r) = 1 if there is an A particle at the site r and p(r) = 0 otherwise.
It is customary, however to study the quantity AM(r) = 2p(r) — 1 instead, i.e., M(r) =1
at A sites and M(r) = —1 at B sites. The density-density correlation function is defined
as C(r) = V'S, M(r + r')M(r'), where r and r’ run over all lattice sites within the
measurement volume V. The function C' depends only on the distance r = |r| between the
two points where M is measured.

A typical measurement of the correlation function C' can be found in the file
“siegert/comphys/c.data on the Physics workstations. The file contains three columns:
ri, C;, and o;, i = 1,..., N. The first column contains the points r at which the measure-
ments of C' were taken that are listed in the second column. The third column contains
an estimate o; = 0.02 for the standard deviations of these measurements. The first zero
of the correlation function C'(r) can be taken as a measure for the average domain size R.
The correlation function has an oscillatory form C(r) =~ ¢y cos(gr)d(r) with a function d
that decays exponentially, d(r) ~ exp(—br), but is unknown otherwise. To determine this
domain size and other properties of the correlation function write a program that uses the
Levenberg-Marquardt algorithm to fit the measured data C; to the following fitting functions:

(1) 0(7") = COS(QT + gp)@‘br
(2) C(r) = cocos(qr + @) (1 + br)e "

(3) C(r) = ¢y cos(gr + @)m .

In order to estimate systematic errors first fit the data by setting ¢ = 0 and only fitting the
three parameters cg, ¢, and b. In a second set of least square fits perform a 4 parameter fit by
allowing ¢ to vary as well. In any case your program should determine the optimal choices for
the parameters, the corresponding value of x2, the standard deviations of the parameters,
and the correlation coefficients rg;. Plot the data together with the fitting function that
yields the smallest x? as a function of . Plot the residuals R; = C; — C'(r;a) preferably in
the same graph but on a different scale.
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The Levenberg-Marquardt algorithm requires the solution of a system of linear equations
at each step. This can be accomplished using the routine dgesv of the public domain library
package LAPACK that has been installed on the workstations.

Usage for C programmers: (The variable n corresponds to the number of parameters in the
fitting function)

Prototype:

void dgesv_(int *,int *,double *,int *,int *,double *,int *,int *);

Function call:
double **a,*x*b;
int n,nrhs,info,*ipiv,1lda,ldb;

1lda=n;

1db=n;

dgesv_(&n,&nrhs,&a[0] [0],&1da,&ipiv[0],&b[0] [0],&1db,&info); For a description of
the different parameters type man dgesv. To allocate the storage for the matrices a and b
you can use the routine matrix that you find in the file “siegert/comphys/matrix.c. The
routine dgesv can be used to solve a set of linear equations (nrhs=1) and to find the inverse
of a matrix as well. In the latter case set b to the unity matrix and set nrhs=n.

To create an executable of your program myprog.c use the following two step process:

CC —C myprog.c
f77 -o myprog myprog.o -lm -llapack -lblas

67



5. Henon-Heiles System

Use the leapfrog algorithm to compute the trajectories for the Lagrange functions
L=L1(pt+p3)—Vin.g) with p=dg, i=1.2 (A5.1)
where the following two cases for the potential V' are to be investigated:

Vr(q,q2) = (A5.2)
Vila,a) = 3(60+6) +aa—3d . (A5.3)

ﬁ (62‘11*2112\/§ + 62111+2Q2\/§ + 6*4111) %

Eq. (A5.2) is the potential of the so-called Toda lattice, whereas eq. (A5.3) specifies the
potential of the Henon-Heiles system that is obtained by expanding V up to cubic terms
in ¢; and ¢y. Both systems can also be regarded as a perturbed two-dimensional harmonic
oscillator. The calculated trajectories are to be plotted in the form of Poincaré maps pi(q;):
Every time the trajectory crosses the plane g = 0 a point is added to the Poincaré map.
These points can be calculated in the following way: If ¢, changes sign between two steps
of the iteration g2, ¢2,+2, estimate the step size that would lead to ¢ = 0 using the
Euler method: At* & —¢2.,/p2n+1. Use this step size At* to determine the other quantities
q1,p1,p2 at the point with ¢ = 0 using the Euler method as well. Use these values only
to determine the points of the Poincaré map. The integration of the differential equations
should continue with the leapfrog algorithm as usual.

The program should print the values ¢, p;,ps together with the total energy of the
system for all points of the trajectories with ¢ = 0. In the case of the Toda lattice compute
additionally the quantity

A =8pa(p3 — 3p%) + (p2 + p1V/3)e* 223 4 (py — pyv/3)e20 2V _gpye it (A5.4)

at these points (can you show analytically that this is a constant of motion?).

Generate the Poincaré maps for the energies F = 1/8 and E = 1/6 for both potentials.
As initial conditions for the integration of the differential equations always choose g» = 0,
because that already gives the first point for the Poincaré map. Several combinations of
initial values for ¢, p; should be tried to generate the complete Poincaré map. The initial
value for p, is always determined by energy conservation. The Poincaré map for the Henon-
Heiles system with energy E' = 1/6, however, can be generated from one trajectory (= fully
developed chaos).
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6. Flight to the Moon

Compute the trajectory of a rocket that is launched towards the moon from the surface
of the earth at r = (z,y) = (rg,0) with an initial velocity v = (v,v,) = (v0,0). The
trajectory of the rocket is influenced by the gravitational forces of the earth and the moon,
all other forces shall be neglected. The trajectory of the moon is assumed to be circular and
lies in the x — y plane, whereas the earth is assumed to be at rest. At time £ = 0, when
the rocket is started, the moon is located at D(cos «r, — sin ) and rotates counterclockwise
around the earth. Use the following parameters: mass of the earth My = 5.98 x 10%*kg,
radius of the earth rp = 6.38 x 10°m, mass of the moon M), = 7.35 x 10*?kg, radius of the
moon 73, = 1.74 x 10°m, orbital period of the moon Ty, = 27.3d, radius of the moon’s orbit
D = 3.84 x 10®m, gravitational constant v = 6.67 x 107""Nm?/kg?. The initial parameters
vg and « are input parameters of the program. The aim is to choose values vy and « so that
the rocket flies around the moon as closely as possible and hits the earth on the way back.
Reasonable first guesses for vy and a can be obtained by setting the mass of the moon to
zero: In that case the velocity that is necessary to shoot the rocket exactly to the trajectory

of the moon is
M ! L\
= |2 — :
D { THE <re Dﬂ

The corresponding time to reach the moon is

D D D
Tph = ——1+D t ——1
D \/ My [TE\/ - + D arctan o ]

(why?). Use the fourth-order Runge-Kutta algorithm with adaptive step-size control to
integrate the equations of motion. Plot the trajectory y(z). In that plot the position of
the moon for the time when the distance rocket-moon is minimal should be indicated. The
program should return this minimal distance and the minimal distance rocket-earth on the
way back as well.
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7. Two-Dimensional Ising Model

Perform a Monte-Carlo simulation of the two-dimensional Ising model on a quadratic lattice
with periodic boundary conditions for J > 0 and h = 0, i.e., a ferromagnet without magnetic
field. Use Glauber dynamics (spin-flips), Metropolis rates, and sequential updates of the
spins. The energy and the magnetization of the system are

é
(2,5) i=1

Here (i, j) denotes a sum over all nearest neighbor pairs. The program has to calculate the
following quantities:

(a) the average magnetization per spin (m) = L~4(M) with d = 2. The magnetization itself

is calculated as (M) = L 377, | M|, where the sum runs over the configurations C; that

are used to calculate averages, see point (v) below;
b) the susceptibility x = BL ¢[(M?) — (M)?] = BLY(m?) — (m)?];
c¢) the energy per particle (¢) = L=4F) with (F) = 1" F;

(
( =
(d) the specific heat per particle ¢ = k2L 4[(E?) — (E)?] = kpB2L4[(e?) — (€)?];
(e) the fourth order cumulant U = 1 — (m*)/(3(m?)?);

(f) the standard deviation of y in order to estimate the error of the value of .
The following procedure should be incorporated:

(i) Initialize the spins of the system in a completely ordered state, i.e., S; = 1 for all
i=1,... L%

(ii) Set the initial values for the magnetization M and the energy E corresponding to the
initial configuration.

(iii) The basic step: For a particular spin S; calculate the energy change that is obtained,
if the spin would be flipped, AE = 2.J5; 3 ;). Sj, where the sum runs over all nearest
neighbor sites of the site . Determine the Boltzmann factor e ?2¥. Draw a random
number z. If z < e #2F flip the spin and update the magnetization M and energy
E, otherwise leave everything as it is. Continue with the next spin using a sequential
updating method. One run through the whole system from i = 1 to i = L? is called a
Monte-Carlo step (MCS).

(iv) Starting from the initial configuration perform \g MCS without calculating averages.

(v) Perform n\ more MCS. After each A MCS update the averages, e.g., (M) = L S | |M].

Thus, only the current configurations after each A MCS are used to Calculatne averages.
Input parameters of the program are: the temperature kg7'/.J, the linear size of the sys-
tem L, the initial number A\ of MCS, the number A of MCS between updates, and the number
n of updates to be taken. The simulation shall be carried out for several system sizes L and
temperatures 7. Plot x(7, L), ¢(T, L) and U(T, L) as functions of T' (data for several system
sizes in the same graph). Determine (graphically) the maximum Xmax(L) = X(Ty max, L) of
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the susceptibility with respect to temperature for each system size, analogously determine
Cmax(L). Determine the critical temperature T, from the intersection of the graphs of U (T, L)
for different system sizes. Plot Xmax(L), max(L), and |1y max(L) —T¢|/T; as functions of sys-
tem size L in a log-log plot and extract the critical exponents v, «, and v. In order to
determine a you also may want to plot ¢pax(L) on a semilogarithmic scale.

In particular the part of the program that implements one Monte-Carlo step should be as
efficient in terms of computation time as possible, e.g., if statements or modulo operations
aimed at implementing the periodic boundary conditions should be avoided. The Boltzmann
weights e #2F should be calculated at the beginning of the program for all possible values
of AFE and stored in an array. For the generation of random numbers use the program
“siegert/comphys/randv.c that generates an array r of random numbers. This routine
is much faster, if several random numbers are generated in one call. An example of an
implementation of the routine can be found in the file “siegert/comphys/test_rng.c.
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Appendix B: Solutions to the Problems, Graphs

2. Numerical Integration: Pendulum

25+
- T((Po)
""""""" 27
0l 0 2 In[16/(1-K")]

Oscillation period of a pendulum as a function of the initial angle ¢g. The to limiting cases T'(¢o — 0) = 27
and T'(¢o — m) = 2In[16/(1 — k?)], k = sin(pg/2), are also indicated.

3. Frenkel-Kontorova Model

p/N=4/105
A=1.252, u=1
41 O&m
27 - O@@MO
== 0 ‘WO | J
] 2 50.0 100.0
27T chmmmmmnﬁp
—47 —mmmﬁjo

Typical ground-state configuration of the Frenkel-Kontorova model with periodic boundary conditions. The
parameter p sets the number of defects (or solitons) in the solutions, here p = 4 for N = 105 particles.
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4. Density-Density Correlation Function
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Least-squares fit of the density-density correlation function; the original data C; and the fitting function
C(r) are plotted (left axis) as well as the residuals (right axis). x?/(N — M) = 0.339 for the upper fit,
x2/(N — M) = 0.193 for the lower fit with N =58, M = 4.
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5. Henon-Heiles System

Toda Hamiltonian, E=1/8 Henon—Heiles, E=1/8
P,

Toda Hamiltonian, E=1/6 Henon—-Heiles, E=1/6

Poincaré maps for the Toda Hamiltonian and the Henon-Heiles system for energies 1/8 and 1/6
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6. Flight to the Moon

ylre

7 50
Trajectory of a rocket launched towards the moon with an initial velocity of vg = 1.0015vp, the angle that
determines the position of the moon at the time of the start is & = 0.734. The minimum distance of the
trajectory from the center of the moon is 1.2 moon radii, the corresponding position of the moon is indicated
in the graph as well as the size of the earth.

7. Two-Dimensional Ising Model
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Susceptibility (left) and specific heat (right) as a function of temperature for several system sizes for the two-
dimensional Ising model. The data for the susceptibility have been plotted on a logarithmic scale because

of the large spread in the data. The lines are drawn as a guide to the eye.
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Fourth cumulant U = 1 — (m*)/(3(m?)?) as a function of temperature for different system sizes L. The
lines are drawn as a guide to the eye. The inset shows an enlargement of the interval around the critical
temperature. The intersection of the curves for different system sizes is obtained as T, ~ 2.269 + 0.0004 from
these data.
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Shift in the peak position of the susceptibility as obtained form the susceptibility data shown on the previous
page as a function of system size. The straight line corresponds to a power-law fit |T},.. (L) — Te| ~ L='/*
with v ~ 1.0 + 0.01. The value T, ~ 2.269 was used as obtained from the cumulant U.
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Maximum of the susceptibility (left) and of the specific heat (right) as a function of system size. The data
for the susceptibility have been fitted to a power law Ymax(L) ~ L7/¥ with /v ~ 1.76 & 0.01. The data for
the specific heat have been plotted on a semilogarithmic scale and the straight line corresponds to a behavior

Cmax (L) ~ log L indicating an exponent o ~ 0. The same data plotted on a log-log scale (see inset) do not
fall on a straight line.
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