
Glider flight

Last updated: November 5, 2014

1 Experimental facts

Figure 1: Forces acting on the glider: L, the lift, W , the force of gravity, W = mg, and D, the
drag. θ is the angle between the instantaneous direction of the velocity (tangential direction to
the trajectory) and the horizontal line.

The force of lift, L, created by the airflow around the wings is perpendicular to the trajectory,
and the force of drag, D, is parallel to the trajectory. Both forces are expressed in terms of
coefficients of lift and drag, CL and CD, respectively, that depend on the wing design and angle
of attack – the angle between the wing chord and the flight path.
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Lift and drag are proportional to a surface area of the wings, S, and the dynamic pressure,
1/2ρV 2, where ρ is the density of air, and V the forward velocity of the aircraft. The equations
for lift and drag are:

L =
1

2
ρV 2CLS (1)

D =
1

2
ρV 2CDS (2)

The ration of lift to drag, L/D is called the aerodynamic efficiency of the aircraft.

R ≡ L

D
=
CL
CD

. (3)

2 Equations of motion

Newton’s second law of motion applied to the motion tangential to the trajectory

m
dV

dt
= −mg sin θ −D, (4)

where V is the speed of the glider, m is its mass, g is acceleration of gravity, D is the drag
force given by Eq. (2).

The minus sign in front of the first term in the right hand side of Eq. (4) matches with our
intuition: when θ is negative, the nose is pointing down and the plane accelerates due to gravity.
When θ > 0, the plane must fight against gravity.

In the normal direction, we have centripetal force, mV 2

r
, where r is the instantaneous radius of

curvature. After noticing that that
dθ

dt
= V/r,

this can be expressed as V dθ
dt

, giving

mV
dθ

dt
= −mg cos θ + L, (5)

where L is the lift force given by Eq. (1).

m
dV

dt
= −mg sin θ − 1

2
ρV 2CDS (6)

mV
dθ

dt
= −mg cos θ + 1

2
ρV 2CLS (7)
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3 Glider trajectory

If we want to visualize the flight trajectories predicted by this model, we are going to need to
integrate the spatial coordinates, which depend on both the forward velocity and the trajectory
angle. The position of the glider on a vertical plane will be designated by coordinates (X, Y )
with respect to an inertial frame of reference, and are obtained from:

dX

dt
= V cos(θ) (8)

dY

dt
= V sin(θ). (9)

Augmenting our original two differential equations by the two equations above, we have a
system of four first-order differential equations to solve. We will use a time-stepping approach,
like in the previous lesson. To do so, we do need initial values for every unknown:

V (0) = V0 and θ(0) = θ0 (10)
X(0) = X0 and Y (0) = Y0 (11)

4 Scaling the equations

It is often useful to reduce equations describing a physical system to dimensionless form, both
for physical insight and for numerical convenience (i.e., to avoid dealing with very large or very
small numbers in the computer). To do this for the equations of glider motion, we introduce
dimensionless speed, time, and length variables.

To introduce the characteristic velocity, let’s consider horizontal motion of the glider with a
constant velocity:

θ = 0, V = vt = const. (12)

From Eqs. (6)-(7) we conclude that such motion is possible only when (a) the drag force acting
on the glider is zero, i.e. CD = 0, and (b) when the force of gravity is balanced by the lift
force:

mg =
1

2
ρv2tCLS. (13)

The relation Eq. (13) introduces the characteristic velocity, so called trim velocity, vt.

vt =

√
mg

1
2
ρCLS

. (14)
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For the reference,

m =
1

2g
ρv2tCLS. (15)

From now on we are going to measure the speed of the glider in units of vt, i.e. we introduce
new dimensionless speed variable

v ≡ V

vt
. (16)

The characteristic acceleration in the glider problem is acceleration of gravity, g. We can
combine characteristic acceleration with characteristic velocity, vt, to get a characteristic
variable, t0 with the dimension of time:

tc =
vt
g
. (17)

tc is the time for a free falling body starting from rest to gain the speed vt.

From now on we are going to measure the time in units of tc, i.e. we introduce new dimension-
less time variable

τ ≡ t

tc
, (18)

d

dt
=

1

tc

d

dτ
=
g

vt

d

dτ
. (19)

We introduce the characteristic length as the product of vt and tc.

lc = tcvt =
v2t
g
. (20)

lc is equal double the height for a free falling body starting from rest to gain the speed vt.

We’ll measure the X and Y coordinates of the glider in units of lc:

x =
X

lc
, y =

Y

lc
. (21)

Substituting Eqs. (13), (15)–(17), and (19) into Eqs. (6)–(7), we obtain:

1

2g
ρv2tCLSvt

g

vt

dv

dτ
= −1

2
ρv2tCLS sin θ − 1

2
ρv2t v

2CDS (22)

1

2g
ρv2tCLSvvt

g

vt

dθ

dτ
= −1

2
ρv2tCLS cos θ +

1

2
ρv2t v

2CLS (23)

Canceling common factors, arrive to the following system of ODEs:

dv

dτ
= − sin θ − v2

R
, (24)

dθ

dτ
= −cos θ

v
+ v. (25)
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dx

dτ
= v cos θ (26)

dy

dτ
= v sin θ (27)

5 Steady state flight

One way we can get a better handle on exactly how the behavior of the solutions depends on
R is to examine what happens to solutions near the constant solution. If we look in the θ − v
plane, this solution corresponds to a single point, which is often referred to as a “fixed point”.
We explicitly find the fixed point by noticing that whenever θ̇ = 0 and v̇ = 0, we must have a
constant solution:

− sin θ − v2

R
= 0 (28)

− cos θ + v2 = 0 (29)

sin2 θ =
v4

R2
(30)

cos2 θ = v4 (31)

v = 4

√√√√ 1

1 + 1
R2

(32)

θ = − sin−1

√
1

1 +R2
(33)

So, we see that there is a fixed point for all values of R (since 1 + R2 is always positive, the
radical always takes real values). For R > 0, θ(t) at this fixed solution is negative, so this
corresponds to a diving solution. As R increases, the angle of the dive becomes steeper and
steeper.

Page 5 of 8



Physics 2200 Glider flight Fall 2014

6 Numerical calculations
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Figure 2: Typical trajectories of a glider.

/∗
∗ The program s o l v e s t h e f o l l o w i n g sys tem of f o u r
∗ f i r s t o r d e r d i f f e r e n t i a l e q u a t i o n s , which d e s c r i b e
∗ t h e mot ion of a g l i d e r
∗
∗ v ’ = −s i n ( t h e t a ) − v ˆ2 / R
∗ t h e t a ’ = − cos ( t h e t a ) / v + v
∗ x ’ = v cos ( t h e t a )
∗ y ’ = v s i n ( t h e t a )
∗
∗ Here v i s t h e d i m e n s i o n l e s s speed of t h e g l i d e r ,
∗ t h e t a i s t h e a n g l e t h a t t h e v e l o c i t y d i r e c t i o n
∗ makes wi th t h e h o r i z o n t a l , x and y a r e
∗ d i m e n s i o n l e s s c a r t e s i a n c o o r d i n a t e s o f t h e g l i d e r .
∗
∗ The s t e p−s i z e o f t h e i n t e g r a t o r i s a u t o m a t i c a l l y
∗ a d j u s t e d by t h e c o n t r o l l e r t o m a i n t a i n t h e
∗ r e q u e s t e d a c c u r a c y
∗ /

# i n c l u d e < s t d i o . h>
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# i n c l u d e <math . h>

# i n c l u d e <g s l / g s l e r r n o . h>
# i n c l u d e <g s l / g s l o d e i v 2 . h>

i n t func ( d ou b l e t , c o n s t dou b l e y [ ] , dou b l e f [ ] ,
vo id ∗ params )

{
do ub l e R = ∗ ( do ub l e ∗ ) params ;

f [ 0 ] = −s i n ( y [ 1 ] ) − y [ 0 ]∗ y [ 0 ] / R ;
f [ 1 ] = −cos ( y [ 1 ] ) / y [ 0 ] + y [ 0 ] ;
f [ 2 ] = y [ 0 ]∗ cos ( y [ 1 ] ) ;
f [ 3 ] = y [ 0 ]∗ s i n ( y [ 1 ] ) ;

r e t u r n GSL SUCCESS ;
}

i n t main ( vo id )
{

s i z e t neqs = 4 ; /∗ number o f e q u a t i o n s ∗ /
do ub l e e p s a b s = 1 . e−8,

e p s r e l = 0 . ; /∗ d e s i r e d p r e c i s i o n ∗ /
do ub l e s t e p s i z e = 1e−6; /∗ i n i t i a l i n t e g r a t i o n s t e p ∗ /
do ub l e R = 5 . ; /∗ t h e ae rodynamic e f f i c i e n c y ∗ /
do ub l e t = 0 . , t 1 = 1 2 0 . ; /∗ t ime i n t e r v a l ∗ /
i n t s t a t u s ;
/∗
∗ I n i t i a l c o n d i t i o n s
∗ /

/ / do ub l e y [ 4 ] = { 1 . 3 , −0.1 , 0 . , 2 . } ;
/ / do ub l e y [ 4 ] = { 2 . 3 , −0.1 , 0 . , 2 . } ;
do ub l e y [ 4 ] = { 3 . 3 , −0.1 , 0 . , 2 . } ;

/∗
∗ E x p l i c i t embedded Runge−Kut ta−F e h l b e r g ( 4 , 5 ) method .
∗ Thi s method i s a good g e n e r a l−p u r p o s e i n t e g r a t o r .
∗ /

g s l o d e i v 2 s t e p ∗ s = g s l o d e i v 2 s t e p a l l o c
( g s l o d e i v 2 s t e p r k f 4 5 , neqs ) ;

g s l o d e i v 2 c o n t r o l ∗c = g s l o d e i v 2 c o n t r o l y n e w ( e p s a b s ,
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e p s r e l ) ;
g s l o d e i v 2 e v o l v e ∗e = g s l o d e i v 2 e v o l v e a l l o c ( neqs ) ;

g s l o d e i v 2 s y s t e m s y s = { func , NULL, neqs , &R} ;

/∗
∗ E v o l u t i o n loop
∗ /

w h i l e ( ( t < t 1 ) && ( y [ 3 ] > 0) )
{

s t a t u s = g s l o d e i v 2 e v o l v e a p p l y ( e , c , s , &sys , &t ,
t1 , &s t e p s i z e , y ) ;

i f ( s t a t u s != GSL SUCCESS ) {
p r i n t f ( ” T r o u b l e s : % . 5 e % . 5 e % . 5 e % . 5 e % . 5 e\n ” ,

t , y [ 0 ] , y [ 1 ] , y [ 2 ] , y [ 3 ] ) ;
b r e a k ;

}

p r i n t f (”% . 5 e % . 5 e % . 5 e % . 5 e % . 5 e\n ” ,
t , y [ 0 ] , y [ 1 ] , y [ 2 ] , y [ 3 ] ) ;

}

g s l o d e i v 2 e v o l v e f r e e ( e ) ;
g s l o d e i v 2 c o n t r o l f r e e ( c ) ;
g s l o d e i v 2 s t e p f r e e ( s ) ;

r e t u r n 0 ;
}
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