
Rydberg Electrons in a Bose-Einstein Condensate

Jia Wang,1 Marko Gacesa,1 and Robin Côté1
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We investigate a hybrid system composed of ultracold Rydberg atoms immersed in an atomic
Bose-Einstein condensate (BEC). The coupling between the Rydberg electrons and BEC atoms
leads to the excitation of phonons, the exchange of which induces Yukawa interaction between
Rydberg atoms. Due to the small electron mass, the effective charge associated with this quasi-
particle-mediated interaction can be large, while its range is equal to the healing length of the BEC,
which can be tuned by adjusting the scattering length of the BEC atoms. We find that for small
healing lengths, the distortion of the BEC can “image” the wave function density of the Rydberg
electron, while large healing lengths induce an attractive Yukawa potential between the two Rydberg
atoms that can form a new type of ultra-long-range molecule. We discuss both cases for a realistic
system.

Impurities in a Bose-Einstein condensate (BEC) have
attracted much attention and motivated the investigation
of a wide range of phenomena. For example, the motion
of a single impurity in a BEC can probe the superfluid
dynamics [1–3], while an ionic impurity in a BEC can
form a mesoscopic molecular ion [4]. Due to the self-
energy induced by phonons (excitations of the BEC), a
neutral impurity can self-localize in both a homogeneous
and a harmonically trapped BEC [5–7], which sheds light
on polaron physics [8, 9]. Exchanging phonons between
multiple impurities induces an attractive Yukawa poten-
tial between each pair of impurities [10, 11], which leads
to the so called “co-self-localization” [12] and is related
to forming bipolarons and multipolarons [13]. Recent
experiments, where an atom of a BEC is excited into a
Rydberg state [14] to study phonon excitations and col-
lective oscillations, open the door to exploration of the
electron-phonon coupling in ultracold degenerate gases,
a phenomenon responsible for the formation of Cooper
pairs of two repelling electrons in BCS superconductiv-
ity [15].

In this Letter, we study Rydberg atoms immersed in
a homogeneous BEC, as sketched in Fig. 1(a). Ryd-
berg atoms consist of an ion core and a highly excited
electron with its oscillatory wave function Ψe extending
to large distances of the order of ∼n2a0 (n: principle
quantum number, a0: Bohr radius). As pointed out by
Fermi [16], the interaction between the quasi-free elec-
tron at x and a ground state atom at r can be approxi-
mated at low scattering energies by a contact interaction
parametrized by an energy-dependent s-wave scattering
length As (k) = −k−1 tan δs(k),

Vs (x, r) =
2π~2

me
As [k (r)] δ(3) (x− r) . (1)

While the s-wave approximation is valid for qualitative
analysis, we include higher-partial wave contributions for
quantitative results [17]. As (k) depends on the scatter-
ing energy via the local wave number k(r) given by

~2k(r)2

2me
= − Ry

(n− δ`e)2
+

e2

4πε0r
, (2)

FIG. 1: (Color online) (a) Sketch: two Rydberg atoms im-
mersed in an atomic BEC exchange phonons. The Ryd-
berg electrons are represented by the surface plots inside the
spheres, plotted in (b) along with the interaction potential
curve within the s-wave approximation.

where Ry is the Rydberg constant, ε0 the vacuum permit-
tivity, e and me the charge and mass, respectively, of the
electron with angular momentum `e and quantum defect
δ`e . For low-`e state, Eq.(1) gives an effective interaction
between Rydberg and ground state atoms as

VR(r) ≈ 2π~2As [k (r)]

me
|Ψe(r)|2, (3)

which leads to an attraction and formation of ultra-long-
range Rydberg molecules for As < 0 [18]. The elec-
tron density and corresponding oscillatory potential are
sketched in Fig. 1(b) for a Rydberg ns (`e = 0) state.
High-`e states with negligible δ`e are nearly degenerate,
and their coupling gives electronic wave functions with
strong quantum interference patterns. For alkali metals
(e.g., Rb or Cs), these interactions are strong enough
to support very extended bound states, usually referred
to as “trilobite states”, that possess a strong permanent
dipole moment. The observation of “trilobite-like states”
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[19–23], has motivated the studies of the p-wave electron
(leading to “butterfly states” [24]), and Rydberg elec-
trons scattering off a perturber with a permanent dipole
moment [25].

In our system, Rydberg electrons interact with the
coherent ground state of BEC, i.e. with many atoms,
resulting in collective excitations described as phonons
(scalar bosons). One of the most profound conceptual
advances in physics is that the exchange of particles can
produce a force (e.g., the electromagnetic force is gener-
ated by charges exchanging virtual photons). Exchang-
ing phonons in a BEC will lead to a Yukawa potential.
As we describe below, under appropriate conditions, we
find two regimes. For a BEC with a small healing length
ξ, the Yukawa potential is short-ranged, and distorts the
BEC locally, “mapping” the electron density onto the
BEC density. For a large ξ, the Yukawa potential is long-
ranged and can bind Rydberg atoms and form a new type
of “ultra-long-range” molecule.

We first consider a homogeneous BEC in the absence
of impurities, described by the Hamiltonian

HBEC =
∑
k

~2k2

2mB
c†kck +

uB
2ΩV

∑
kpq

c†kc
†
pcqck+p−q, (4)

where uB = 4π~2aB/mB is the coupling constant be-
tween the atoms of mass mB and scattering length aB ,
ΩV is the quantization volume, and c†k (ck) is the creation
(annihilation) operator of bosonic atoms with momen-
tum k. If most atoms occupy the ground state (k=0),

one can replace c†0 and c0 by the c-number
√
N0 and ex-

pand Eq.(4) in the decreasing order of N0. The num-

ber of atoms is given by N = N0 +
∑

k6=0 c
†
kck. By

keeping the terms of the order
√
N0 or higher, HBEC

can be diagonalized via the Bogoliubov transformation
c†q = uqb

†
q + vqb−q. The resulting effective Hamilto-

nian is HBEC =
∑

q ~ωq(b†qbq + 1/2), where ~ωq =

(ε2q + 2uBρBεq)
1/2, with εq = ~2q2/2mB and the BEC

number density ρB = N/ΩV . The Bogoliubov oper-
ator b†q (bq) creates (annihilates) a quasi-particle (or
phonon) of momentum q when applied to the ground
state |0〉: b†q|0〉 = |q〉. The local density operator

ρ̂ (r) = Ω−1V
∑
p,q

eiq·rc†p+qcp can be written as,

ρ̂ (r) ≈ N0

ΩV
+

√
N0

ΩV

∑
q6=0

eiq·r (uq + vq)
(
b†q + b−q

)
, (5)

and the interaction between a Rydberg electron and BEC
atoms HINT =

∫
d3rρ(r)VR(r) as

HINT ≈
N0

ΩV
V0 +

√
N0

ΩV

∑
q6=0

(uq + vq)
(
b†q + b−q

)
Vq, (6)

where Vq =
∫
d3rVR(r)eiq·r is the Fourier transform of

the potential. Applying the perturbation theory gives
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FIG. 2: (Color online) Comparison of radial electron proba-
bility density Pe (x) = 4πx2|Ψe (x) |2 (green filled curve)and
BEC local density distortion ∆P (r) = 4πr2δρ(r) (solid
curves) for a 87Rb BEC with density ρB = 2 × 1013 cm−3

and various scattering length aB (in units of k=103 a0) as
indicated.

the first and second order corrections to the ground state
energy: E(1) =

∫
d3rρBVR(r) and

E(2) = −ρBmB

2π~2

∫
d3rd3r′VR(r)

e−|r−r
′|/ξ

|r− r′|
VR(r), (7)

by taking the thermal limit of V −1
∑

q → (2π)−3
∫
d3q

and integrating over q, where ρB is assumed to be a
constant. Note that N0 can be replaced by the total
atom number N at this level of approximation.

Under approximation in Eq. (1), E(1) = 2πρB~2āe/me

is the mean-field energy shift given in terms of the av-
erage scattering length āe =

∫
d3rAs[k(r)]|Ψe(r)|2, while

E(2) ≈
∫
d3rd3r′|Ψe(r)|2VY (r − r′)|Ψe(r

′)|2/2 involves
the Yukawa potential

VY (r− r′) = −Q̃2 e
−|r−r′|/ξ

|r− r′|
, (8)

where its range ξ = 1/
√

16πρBaB is exactly equal to the
BEC healing length, and Q̃2 ≈ 4π~2ā2eρBmB/m

2
e char-

acterizes its strength; the “effective charge” Q̃ empha-
sizes the analogy with Coulomb interactions. The term
E(2) can be understood as the self-interaction of electrons
by a Yukawa potential induced via phonon exchange at
two different positions. This term is crucial in studies
of self-localization of impurities in a BEC. However, in
our system, the Rydberg electrons are already localized
by strong Coulomb forces with ion cores. Therefore, the
distorted BEC density, under appropriate conditions, can
reflect the oscillatory nature of Ψe and “image” the Ry-
dberg electron.

To the first order, the perturbed ground state given
by
∣∣0̃〉 = |0〉 −

(√
N0/ΩV

)∑
q6=0 (uq + vq)Vq/ (~ωq) |q〉
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FIG. 3: (Color online) The BEC density distortion
∆P2D/max (∆P2D) in the x-z plane, where ∆P2D = 2πrδρ.
To better illustrate the oscillatory behavior at large distances,
we use an exponential scale: x̃ = exp(x/l0) and z̃ = exp(z/l0),
where l0 = 1k a.u.

leads to the BEC density distortion δρ (r) ≡ 〈ρ̂ (r)〉 − ρB

δρ(r)

ρB
= −mB

~2π

∫
d3r′VR(r′)

e−|r−r
′|/ξ

|r− r′|
. (9)

Eq. (9) shows that δρ(r) is affected by “averaging” the ef-
fective interaction VR within the range ξ. The oscillatory
nature of Ψe can be imaged onto δρ(r) [26]. However, if
ξ is larger than the local wavelength of the Rydberg elec-
tron, the averaging will erase this signature. This effect
is illustrated in Fig. 2 for a 87Rb(160s) Rydberg atom
in a 87Rb BEC with ρB = 2 × 1013 cm−3, by compar-
ing the radial probability density Pe (x) = 4πx2|Ψe (x) |2
with ∆P (r) = 4πr2δρ (r) for different scattering lengths
aB . Larger values of aB produce a sharper signature of
the oscillation, albeit an overall smaller distortion ampli-
tude. This effect is better illustrated in a 2D density plot
(Fig. 3), where different quadrants represent the “nor-
malized” 2D distortion densities ∆P2D/max (∆P2D) in
the x-z plane for four different aB . Here, ∆P2D = 2πrδρ,
and x and z are rescaled by x̃ = exp(x/l0) and z̃ =
exp(z/l0), where l0 = 1k a.u., so that the effects at large
distances are emphasized. It is evident that the oscil-
lations for aB = 5k a.u. (fourth quadrant) are much
blurrier than for aB = 20k a.u. (first quadrant).

For a large healing length ξ, the averaging of VR
masks the effect of the electron self-interaction due to
the phonon exchange. However, the phonon exchange
still mediates non-trivial interactions between the Ryd-
berg atoms. Without a BEC, two Rydberg atoms experi-
ence strong long-range interactions, leading to formation
of macrodimers [27] and the interaction blockade [28–
32]. For two ns Rydberg atoms separated by R, this
interaction is repulsive with its leading term being the

van-der-Waals (vdW) +C6/R
6 term, where C6 ∝ n11

[33]. Immersed in a BEC, however, the exchange of
phonons between two Rydberg atoms gives rise to a
Yukawa potential. We derive this potential within the
Born-Oppenheimer (BO) approximation, starting from
the interaction of two Rydberg atoms, located at R1

and R2, and BEC atoms (after applying the Bogoliubov
transformation)

HINT ≈
N0

ΩV
1V0 +

N0

ΩV
2V0 +

√
N0

ΩV

∑
q6=0

(uq + vq)

×(b†q + b−q)(1Vqe
iq·R1 + 2Vqe

iq·R2). (10)

Here, iVq ≡
∫
d3rVi(r)eiq·r, where Vi(r) describes the

interaction of “impurity” i and the BEC atoms in coor-
dinate space. Within perturbation theory, the first order
correction E(1) gives a mean-field energy shift similar to
the single Rydberg atom case in the thermal limit. For
spherically symmetric interactions (where iVq = iV−q =
iVq is real), the second order correction is

E(2) = − ρB
(2π)3

∫
d3q

Aq + 2Bqe
iqR cos θq

εq + 2uBρB
, (11)

where Aq = (1Vq)2 + (2Vq)2, Bq = 1Vq · 2Vq, R =
|R1 − R2| is the Rydberg atoms separation, and θq is
the angle between the vector R and q. The term con-
taining Aq can be understood as the self-localizing energy
for both Rydberg atoms calculated previously, and will
be neglected together with the mean-field energy shift
E(1) for the study of relative dynamics of Rydberg atoms,
since they simply contribute a constant energy shift. The
term containing Bq leads to the BO potential

U(R) = − ρB
(2π)3

∫
d3q

2Bqe
iqR cos θq

εq + 2uBρB
, (12)

which can be easily generalized to interactions between
any two impurities immersed in a BEC [11].

The BO approach allows the study of the adiabatic cor-
rections induced by the motion of Rydberg atoms. The

diagonal adiabatic correction ∆E(2) = ~2〈0̃|
←
∂R~∂R|0̃〉/mI

depends on the impurity mass mI , where
∣∣0̃〉 =

|0〉 −
∑

q 6=0
〈q|HINT|0〉

~ωq
|q〉 is the perturbed ground state.

Therefore, ∆E(2) = ~2

mI

∑
q 6=0

〈0|∂RHINT|q〉〈q|∂RHINT|0〉
~2ω2

q
, so

that, in the thermal limit and neglecting the constant en-
ergy shift terms, the diabatic correction to U (R) is

∆U(R) = − ~2

2mI

ρB
(2π)3

∫
d3q

Bqq
2 cos2 θqe

iqR cos θq√
εq(εq + 2uρB)3

.

(13)
The eiqR cos θq term in Eqs. (12) and (13) implies
that, for a large R, only the terms where q is small
are important, leading to the asymptotic behavior of
the potential U (R) → −Q̃2e−R/ξ/R, where Q̃2 ≈
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FIG. 4: (Color online) (a) Interaction potential between a
Rydberg 87Rb(50s) atom and a ground state 87Rb atom. (b)
Bq as a function of q. (c) Effective potential between two
Rydberg 87Rb(50s) atoms in a BEC. The tail is dominated
by the Yukawa potential (dash-dotted curve) while the blue
filled curve represents the lowest bound state.

ρBmBBq=0/π. For the s-wave, the effective charge

is Q̃2 ≈ 4π~2ā2eρBmB/m
2
e. Not surprisingly, we ob-

tain the same Yukawa potential as in Eq. (8), since
phonon-exchange mediates the interaction. Note that
Q̃ is inversely proportional to me for Rydberg atoms,
since the electrons are really the perturbers, as opposed
to more massive neutral impurities for which Q̃ is in-
versely proportional to mI . Hence, the induced inter-
action is much stronger for Rydberg atoms. Under the
same approximation, the adiabatic correction is given by
∆U (R)→ (mB/mI) (Q̃2/2ξ)F (R/ξ), with F (x) defined

as F (x) = 2
π −

4
πx2 − 2f(−1,x)

x2 + f(0,x)
x − f(1, x), where

f(n, x) = In(x)−Ln(x) is given in terms of the modified
Bessel function of the first kind In(x) and the modified
Struve function Ln(x). The asymptotic behaviors are
F (R/ξ)→ 4/(3π) for R� ξ, and F (R/ξ)→ 12ξ4/(πR4)
for R � ξ. We note that for R � ξ, these imply a
vanishing adiabatic potential U (R) so that the adiabatic
correction becomes dominated by a repulsive 1/R4 term.
As expected, the diabatic correction can be neglected
if mB � mI . A surprising limit is reached for a very
large healing length ξ, which can be achieved by using a
Feshbach resonance to tune aB → 0. Then, the diabatic
correction also vanishes: limξ→∞∆U (R) = 0, even when
mB is larger than mI . Notice that, in this limit, U (R)
reduces to the Coulomb potential.

To illustrate these predictions, we consider a realistic
system of two 87Rb(50s) Rydberg atoms immersed in a
BEC of 87Rb atoms of density ρB = 1013 cm−3. To en-
sure a healing length ξ much larger than the Rydberg
atoms, the scattering length between the BEC atoms is
tuned to aB = 10 a.u. (e.g., via a Feshbach resonance),
so that ξ = 3.66 × 104 a.u. The numerical “trilobite-
like” interaction shown in Fig. 4(a) is constructed us-
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FIG. 5: (Color online) The thin solid red curves show the
dispersion interactions between two 87Rb(50s) atoms in a
vacuum, while the thick curves show the interaction between
these two Rydberg atoms immersed in a BEC with (a) fixed
aB = 10 a.u. but different density ρB and (b) fixed ρB = 1013

cm−3 but different scattering length aB .

ing the first-order perturbative model [16, 34] including
s- and p- contributions [17], with zero-energy scattering
lengths, As = −16.05 a0 and Ap = −21.15 a0, respec-
tively [35]. The states in the range n = 47 − 51 were
included and the resulting Hamiltonian diagonalized to
obtain the 50s eigenstate [36]. Fig. 4(b) shows that Bq
computed using this potential converges to a constant
Bq=0 ≈ 2 × 104 a.u. for a small q, yielding an effec-

tive charge Q̃2 ≈ 1.537× 10−3 a.u. Fig. 4(c) depicts the
effect of immersing Rydberg atoms in a BEC: without
the BEC, two Rydberg atoms interact via the vdW po-
tential −C6/R

6 − C8/R
8 − C10/R

10 (repulsive solid-red
curve with C6 = −1.074 × 1020, C8 = 7.189 × 1026, and
C10 = −7.162 × 1033, in a.u. for 87Rb(50s) [37].) In
a BEC, the BO potential (solid black curve) is attrac-
tive at large separations, in agreement with the Yukawa
potential −Q̃2e−R/ξ/R (dash-dotted curve) at large dis-
tances, before becoming repulsive at shorter range where
the “bare” repulsive vdW interaction dominates the
phonon-exchange contribution. The well produced by the
phonon-exchange can support bound levels; in the exam-
ple above, its depth is about -17.77 MHz, while the equi-
librium separation is about 60k a.u. (much larger than
the 5k a.u. extension of the “trilobite-like” potentials).
The large mass of Rb atoms leads to many bound levels;
the three lowest are at about -17.64 MHz, -17.56 MHz
and -17.47 MHz. The ground state wave function with a
spatial width about 2k a.u. is also shown in Fig. 4(c),

These results show how phonon-exchange modifies an
otherwise repulsive interaction into a potential well ca-
pable of binding two Rydberg atoms. Fig. 5 explores
the sensitivity of the BO potentials to variations in den-
sity ρB and scattering length aB , and compares them to
the “bare” case (without BEC). The behavior of the BO



5

curves can be understood qualitatively from the s-wave
approximation with average scattering length āe: Q̃

2 is

proportional to ρB and ξ to ρ
−1/2
B . The competition be-

tween the two effects as ρB varies leads to a deeper BO
curve for a moderate density (see Fig. 5(a)). However, Q̃2

is independent of aB while ξ is proportional to a
−1/2
B , giv-

ing deeper BO curves as aB gets smaller (see Fig. 5(a)).
Hence, the BEC-induced interaction can be conveniently
controlled by tuning aB via a Feshbach resonance; in the
limit aB = 0, the long-range Yukawa potential becomes
an attractive Coulomb potential.

In summary, we studied BEC-induced interactions in-
volving Rydberg impurities due to phonon-exchange, and
found two limiting cases depending on the healing length
ξ of the BEC. For a small ξ, the BEC modulation can be
used to “image” the wave function of the Rydberg elec-
tron, while large ξ leads to the formation of ultra-long-
range diatomic molecules. By tuning aB , “synthetic”
Coulomb potentials can be generated between neutral
particles and their sign can be modified by using different
Rydberg states for the two impurity atoms. This long
range interaction is well-behaved and easily controlled
and, hence, opens promising avenues of research. For
example, for systems containing many Rydberg atoms
impurities, this interaction might lead to crystallization
[38], and be used to study the phase diagram of Yukawa
bosons [39].
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