HOMEWORK 1

Due: Tuesday, February 7

Problems: 7.1, 7.4, and 7.7 (Griffiths, ED textbook)

Problem 1

A circular loop of wire with radius ${\it a}$ and electrical resistance ${\it R}$ lies in the ${\it x-y}$ plane. An uniform time-dependent magnetic field ${\it B}(t)$, turned on at time t=0, is given by formula: ${\it B}(t) = B_0 \, \frac{\hat{e}_y \, + \hat{e}_z}{\sqrt{2}} \, [1 \, - \, e^{-\mu t}]$, where B_0 and μ are positive constants. Determine:

- (a) the current I(t) induced in the loop;
- (b) the energy W(t) converted to Joule's heat as a function of time t.