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Abstract

We demonstrate that an effect other than anharmonicity can severely distort the spectroscopic

signatures of quantum mechanical systems. This is done through an analytic calculation of the

spectroscopic response of a simple system, a charged torsional pendulum. One may look for these

effects in the optical data of real systems when for example a significant rocking component of rigid

polyhedra plays a significant role in the lattice dynamics.
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FIG. 1: (a) A torsional pendulum. (b) A realization of an analogous quantum mechanical system.

In a typical spectroscopic experiment, electromagnetic radiation couples to the charge

degrees of freedom of a system whose underlying dynamical behavior is described by a

Hamiltonian. In many cases, the behavior of a system near a stable equilibrium can be

adequately described by a simple harmonic Hamiltonian, a choice that is often well justified

as an expansion in some suitably chosen coordinate about a minimum of a more compli-

cated potential. The potential expansion coordinates are often chosen to be one or more

of the Cartesian coordinates x, y, and z, such as is done in the quantum theory of lattice

vibrations[1].

The coupling of radiation to matter also involves matrix elements of the Cartesian vari-

ables and as a result, selection rules arise which forbid optical transitions between vibrational

levels which are not adjacent in energy. The effect on spectroscopy is to produce a single

peak in the system response at the oscillator’s fundamental frequency. The symmetry for-

bidding the transitions to higher energy levels is imposed by the initial choice of Cartesian

expansion coordinate, a choice that in certain situations could be improved upon toward de-

scribing the system dynamics. An example of the latter is a system with inherent curvilinear

geometrical constraints.

In this manuscript, we show that for a simple and familiar model system where curvilinear

motion is inherent, profound effects on the spectroscopic response functions are realized. We

exemplify this principle by studying the dynamical response of a torsional pendulum with

charge degrees of freedom.

The quantum mechanical problem which is analogous to the classical torsional pendulum

is shown in Figure 1b. This situation corresponds to a situation where 360◦ rotations of the
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particle wavefunction produces a distinct state, which cannot interfere with the unrotated

state. The “particle on a pig’s tail” system shown in Figure 1 is can be viewed as a 1D

harmonic oscillator wrapped many times around a cylinder. We proceed to investigate the

spectroscopic response functions of this harmonic system.

***Quantum Lorentz Oscillator*** To begin we show that, in the absence of damping, a

charged linear harmonic oscillator gives rise to response only at the oscillator resonant fre-

quency and hence will have a single peak in the spectrum at this frequency. The Hamiltonian

for the linear oscillator is

H =
p2

2m
+

1

2
mω2

0x
2

where m is the particle mass and ω0 is the resonant frequency of the pendulum. The

momentum operator p is conjugate to the position coordinate x, which can have any value

on the x axis. We exploit extensively Dirac’s factorization procedure in order to find the

current-current correlation function, and hence the linear response of this model system.

The Hamiltonian in quantized form is:

H = (a†a +
1

2
)~ω0

and

H|n〉 = ~ω0(n +
1

2
)|n〉

Where |n〉 is the nth harmonic oscillator state and a† and a are the raising and lowering

operators of Dirac’s theory, which are related to the observables x and p by

x =

√

~

2mω0
(a + a†)

p = −i

√

mω0~

2
(a − a†)

The spectrum of this system is a ladder of states in energy separated by ~ω0.

The vector components of the polarization operator are

Px = Qx; Py = 0

and the associated current operator can be determined from the Heisenberg equation of

motion,

jx =
i

~
[H, Px] =

Q

m
p.
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The matrix elements we will be interested in are

〈n|jx|m〉 =
Q

m
(−i

√

mω0~

2
)〈n|(a − a†)|m〉

=
Q

m
(−i

√

mω0~

2
)(δn,m−1 − δn,m+1)

The optical conductivity, σ1(ω), which represents the amount of current that is generated

by an oscillatory field of frequency ω, is generally related to these matrix elements through

σ1(ω) =
π

V ω

∑

n 6=0

|〈n|j|0〉|2(δ(~ω − En + E0) + δ(~ω + En − E0)),

which for the case of the linear harmonic oscillator, is

σ1(ω) =
π

V

Q2

2m

∑

n 6=0

(δ(ω − ω0) + δ(ω + ω0)).

The optical conductivity has a single peak corresponding to absorption of one quantum of

radiation of frequency ω0. When damping is included, this expression generalizes to the

Lorentzian line shape, which is encountered in the context of the power absorption in the

damped driven harmonic oscillator[2] and is commonly used in the analysis of optical data

where a sharp resonance characterizes the absorption.

The absorption of radiation at only a single frequency is a bit surprising since the har-

monic oscillator has energy levels for n = 0, 1, 2, 3, ..., and so one may expect that there be

corresponding optical transitions with frequencies ω = (En − E0)/~ = ω0, 2ω0, 3ω0, .... We

shall see below that these transitions are forbidden for the linear harmonic oscillator but

need not be in general.

We now repeat this treatment for the torsional oscillator, shown in Figure 1b. One can

view this as a 1D harmonic oscillator wrapped on the surface of a cylinder, with the position

variable x closely related to the angular coordinate θ. The Hamiltonian for the torsional

oscillator is

H =
L2

2I
+

1

2
Iω2

0θ
2

where I is the moment of inertia and ω0 is the resonant frequency of the pendulum. The

angular momentum operator L is conjugate to the (unbounded) angular coordinate θ, and

the Hamiltonian describes a harmonic oscillator. We can again exploit extensively Dirac’s

factorization procedure as before with the appropriate substitutions x → θ and p → L.
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Repeating the procedure outlined above for the linear harmonic oscillator, the vector

components of the polarization operator are

Px = Qr cos θ

Py = Qr sin θ

and the associated current operators can be determined from the Heisenberg equation of

motion,

jx =
i

~
[H, Px] = −Qr

2I
(L sin θ + sin θL)

jy =
i

~
[H, Py] =

Qr

2I
(L cos θ + cos θL).

In the torsional oscillator, we are concerned with taking matrix elements of a nontrivial

function of the angle θ, which appears quadratically in the Hamiltonian. This nonlinear

dependence of the matrix element on the harmonic degree of freedom will permit transitions

between states not adjacent in energy, an effect which is studied widely and has been termed

electrical anharmonicity. The main effect of this for spectroscopy is that the conductivity

will be a series of peaks at integral multiples of the resonant frequency. We will demonstrate

this effect below by calculating the spectroscopic matrix elements for this system.

The matrix elements we will be interested in are of the form

〈n|jx|m〉 = −Qr

2I
〈n|(L sin θ + sin θL)|m〉.

Cribbing the result from the harmonic oscillator theory,

L = −i

√

Iω0~

2
(a − a†),

we can write the current matrix elements in terms of matrix elements of the trigonometric

functions of θ:

〈n|jx|m〉 = −Qr

2I
(−i

√

Iω0~

2
)〈n|((a − a†) sin θ + sin θ(a − a†))|m〉

= i
Qr

2I

√

Iω0~

2
(〈n + 1|

√
n + 1 sin θ|m〉 − 〈n − 1|

√
n sin θ|m〉

+〈n| sin θ
√

m|m − 1〉) − 〈n| sin θ
√

m + 1|m + 1〉

= i
Qr

2I

√

Iω0~

2
(Sn+1,m

√
n + 1 − Sn−1,m

√
n

+Sn,m−1

√
m − Sn,m+1

√
m + 1)
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where

Sn,m = 〈n| sin θ|m〉

A nearly identical calculation for the current component jy gives

〈n|jy|m〉 = −i
Qr

2I

√

Iω0~

2
(Cn+1,m

√
n + 1 − Cn−1,m

√
n

+Cn,m−1

√
m − Cn,m+1

√
m + 1)

Cn,m = 〈n| cos θ|m〉

To take a general approach, we will calculate the matrix elements of the operator

En,m = 〈n|eiθ|m〉

and use them to determine those of the trigonometric functions through deMoivre’s identity.

Again using a result from the harmonic oscillator theory, and introducing the factor c for

notational simplification,

θ =

√

~

2Iω0

(a + a†) = c(a + a†),

En,m(c) = 〈n|eic(a+a†)|m〉.

The trigonometric matrix elements are then

Sn,m(c) =
1

2i
(En,m(c) − En,m(−c))

Cn,m(c) =
1

2
(En,m(c) + En,m(−c))

To simplify the calculation of En,m(c), one can invoke the Baker-Campbell-Haussdorf

theorem[3]:

eA+B = eAeBe−[A,B]/2

which holds provided that A and B both commute with their mutual commutator. This is

true for a and a†, so

En,m = 〈n|eicaeica†

ec2[a,a†]/2|m〉 = 〈n|eicaeica†

ec2/2|m〉.

We can now expand the exponentials and operate on the bra and ket multiple times with

the a and a†. Using the identities

|m〉 =
(a†)m

√
m!

|0〉
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and

〈n| = 〈0|(a)n

√
n!

En,m = ec2/2〈n|eica

∞
∑

k=0

(ic)k

k!
(a†)k|m〉

= ec2/2
∞

∑

k=0

〈n|eica (ic)k

k!
(a†)k (a†)m

√
m!

|0〉

= ec2/2
∞

∑

k=0

〈n|eica (ic)k

k!

√

(m + k)!√
m!

(a†)m+k

√

(m + k)!
|0〉

= ec2/2

∞
∑

k=0

〈n|eica (ic)k

k!

√

(m + k)!√
m!

|m + k〉

Similarly, the eica can be expanded to act on the bra 〈n|,

En,m =
∞

∑

k=0

ec2/2〈n|eica (ic)k

k!

√

(m + k)!√
m!

|m + k〉

= ec2/2
∞

∑

k=0

∞
∑

l=0

(ic)l

l!
〈n|(a)l (ic)

k

k!

√

(m + k)!√
m!

|m + k〉

= ec2/2

∞
∑

k=0

∞
∑

l=0

(ic)l

l!
〈0|(a)n

√
n!

(a)l (ic)
k

k!

√

(m + k)!√
m!

|m + k〉

= ec2/2

∞
∑

k=0

∞
∑

l=0

(ic)l

l!
〈0| (a)n+l

√

(n + l)!

√

(n + l)!√
n!

(ic)k

k!

√

(m + k)!√
m!

|m + k〉

Combining factors and using the orthonormality of the harmonic oscillator states,

En,m(c) =
ec2/2

√
n!m!

∞
∑

l,k=0

(ic)k+l
√

(l + n)!(k + m)!

l!k!
δl+n,k+m

=
ec2/2

√
n!m!

∞
∑

k=0

(ic)2k+m−n(k + m)!

k!(k + m − n)!

=
ec2/2(ic)m−n

√
n!m!

∞
∑

k=0

(−c2)k(k + m)!

k!(k + m − n)!

=
ec2/2(ic)m−n

√
n!m!

S(c2, m, n)

The sum S(c2, m, n) is a real function and can be expressed in terms of hypergeometric

and gamma functions[5]. This expression can now be used to give the trigonometric matrix
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elements of θ and these are

Sn,m(c) =
ec2/2

√
n!m!

S(c2, m, n)
(ic)m−n − (−ic)m−n

2i

=
1

i

ec2/2

√
n!m!

S(c2, m, n)

{

0 m − n even

(ic)m−n m − n odd

and

Cn,m(c) =
ec2/2

√
n!m!

S(c2, m, n)
(ic)m−n + (−ic)m−n

2

=
ec2/2

√
n!m!

S(c2, m, n)

{

(ic)m−n m − n even

0 m − n odd

We restrict our attention at this point to the case of zero temperature. In that case, we

are interested in transitions from the ground state, so that n = 0:

〈0|jx|m〉 = i
Qr

2I

√

Iω0~

2
(S1,m + S0,m−1

√
m − S0,m+1

√
m + 1)

This is zero when m is odd. For m even,

〈0|jx|m〉 = i
Qr

2I

√

Iω0~

2
ec2/2

∞
∑

k=0

(−c2)k

k!i

{ (k + m)!(ic)m−1

(k + m − 1)!
√

m!

+
(k + m − 1)!(ic)m−1

√
m

(k + m − 1)!
√

(m − 1)!
− (k + m + 1)!(ic)m+1

√
m + 1

(k + m + 1)!
√

(m + 1)!

}

= i
Qr

2I

√

Iω0~

2
ec2/2

∞
∑

k=0

(−c2)k

k!i

{(k + m)(ic)m−1

√
m!

+
(ic)m−1m√

m!
− (ic)m+1

√
m!

}

= i
Qr

2I

√

Iω0~

2
ec2/2

∞
∑

k=0

(−c2)k

k!i

(ic)m

√
m!

{(k + 2m)

ic
+

c2

ic

}

= i
Qr

2I

√

Iω0~

2
ec2/2

∞
∑

k=0

(−c2)k

k!i

(ic)m−1

√
m!

{

k + 2m + c2
}

We can now sum the series, which gives exponentials:

〈0|jx|m〉 =
Qr

2I

√

Iω0~

2
ec2/2 (ic)m−1

√
m!

∞
∑

k=0

(−c2)k

k!

{

k + 2m + c2
}

=
Qr

2I

√

Iω0~

2
ec2/2 (ic)m−1

√
m!

∞
∑

k=0

{(−c2)k

k!
k +

(−c2)k

k!
(2m + c2)

}

=
Qr

2I

√

Iω0~

2
ec2/2 (ic)m−1

√
m!

{

− c2e−c2 + e−c2(2m + c2)
}

=
Qr

2I

√

Iω0~

2
e−c2/2 (ic)m−1

√
m!

2m
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FIG. 2: The matrix elements of the torsional oscillator for three values of angular uncertainty. Only

the integral values of m are meaningful. Inset: The ground state wavefunctions corresponding to

these three uncertainty values.

The analysis of the 〈0|jy|m〉 matrix element follows similarly. The intensities of the

transitions are determined from

|〈0|jx|m〉|2 =
Q2r2

I

~ω0

2
e−c2 m2

m!
(c2)m−1

{

1 m even

0 m odd

|〈0|jy|m〉|2 =
Q2r2

I

~ω0

2
e−c2 m2

m!
(c2)m−1

{

0 m even

1 m odd

Both the relative and absolute intensities are crucially influenced by the parameter c,

which we have not yet supplied a physical interpretation. To this end, we calculate the

uncertainty in angular position of the ground state,

∆θ2 = 〈θ2 − 〈θ〉2〉

= c2〈0|(a + a†)2|0〉

= c2〈0|(aa† + a†a)|0〉

= c2.

It seems that the parameter which controls the multiple-peak effect is ∆θ = c =
√

~/2Iω0,

that is the extent to which the wavefunction covers the circle.
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We see that the transitions between the ground and excited states are allowed for all

excited states in the torsional pendulum, and the distribution of intensities is crucially

determined by the angular uncertainty. In the “stiff pendulum” limit, ω0 is large and c ≪ 1.

The ground state wave function in this case subtends a small angle and motion along the

periphery of the pendulum is well approximated by the appropriate Cartesian coordinate

y = r sin θ ∼ rθ. The |0〉 → |1〉 transition is by far the strongest, with the other peak

exponentially suppressed both as a function of c and m. Conversely, in a floppy pendulum,

the perpendicular motion is important to the response and also the matrix elements to

higher states become appreciable. The crossover between these limits occurs when the

angular uncertainty c becomes comparable to 1 radian.

For values of uncertainty c >1 radian, the maximum intensity is no longer the |0〉 → |1〉
transition, but rather the |0〉 → |2〉 begins to dominate the oscillator strength. Figure 2

shows this in a plot of |〈0|j|m〉|2 versus final state quantum number m for several values of

∆θ.

The diagonal ((σxx
1 + σyy

1 )/2) optical conductivity is:

σ1(ω) =
π

V ω

∑

m6=0

|〈m|j|0〉|2(δ(~ω − Em + E0) + δ(~ω + Em − E0))

=
π

V ω

Q2r2

I

~ω0

2
e−c2

∞
∑

m=1

m2

m!
(c2)m−1(δ(~ω − m~ω0) + δ(~ω + m~ω0))

=
π

V

Q2r2

2I
e−c2

∞
∑

m=1

m

m!
(c2)m−1(δ(~ω − m~ω0) + δ(~ω + m~ω0))

We can integrate the optical conductivity and find the total oscillator strength:

∫ ∞

0

σ1(ω)dω =
π

V

Q2r2

2I
e−c2

∞
∑

m=1

m

m!
(c2)m−1

∫ ∞

0

δ(ω − m~ω0)dω

=
π

V

Q2r2

2I
e−c2

∞
∑

m=1

m

m!
(c2)m−1

=
π

V

Q2r2

2I
e−c2

∞
∑

n=0

1

n!
(c2)n

=
π

V

Q2r2

2I
=

ω2
P

8
.
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FIG. 3: The conductivity of the torsional pendulum versus frequency for three values of c (and

therefore ω0). Inset: The same data plotted as a function of final state quantum number.

We can also find σ2(ω) using the Kramer-Kronig relation[4]:

σ2(ω) = −1

π
P

∫ ∞

−∞

σ1(ω
′)

ω′ − ω
dω′

= −1

π

ω2
P

8
e−c2

∞
∑

m=1

m

m!
(c2)m−1

∫ ∞

−∞

δ(ω′ − mω0) + δ(ω′ + mω0)

ω′ − ω
dω′

=
ω2

P

8
e−c2

∞
∑

m=1

m

m!
(c2)m−1 2ω/π

ω2 − (mω0)2
,
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giving for the complex conductivity (σ = σ1 + iσ2)

σ(ω) =
ω2

P

8
e−c2

∞
∑

m=1

m

m!
(c2)m−1(δ(ω − mω0) + δ(ω + mω0) + i

2ω/π

ω2 − (mω0)2
)

Further insight into the physical significance of multiple peaks comes by considering

the time-dependent current which arises from the application of a short electric field pulse

E(t) ∝ δ(t). In this case, E(ω) = E0 = const. and for t > 0,

J(t) =
1

2π

∫ ∞

−∞

e−iωtσ(ω)E(ω)dω

=
E0

2π

ω2
P

8
e−c2

∞
∑

m=1

m

m!
(c2)m−1

∫ ∞

−∞

e−iωt(δ(ω − mω0) + δ(ω + mω0) + i
2ω/π

ω2 − (mω0)2
)dω

=
E0

2π

3ω2
P

4
e−c2

∞
∑

m=1

m

m!
(c2)m−1 cos mω0t

=
E0

2π

3ω2
P

4
e−c2 1

2
(ec2e−iω0t−iω0t + ec2eiω0t+iω0t)

(for t < 0, J(t) = 0, a consequence of causality that is built-in to the Kramers-Kronig

relations.) This current response is shown for three values of c in Figure 4. For small

values of c, the response of the system is similar to that of a harmonic oscillator, exhibiting

nearly sinusoidal oscillations for t > 0. Loosening the pendulum (and increasing the angular

uncertainty ∆θ) effects these dynamics considerably.

While the considerations spelled out here are rather idealized, a reasonable place to seek

the multiple peak effect in a real system could be the vibrational spectra of nanotubes. When

a chiral nanotube is formed from a graphene sheet, phonons propagating along the graphene

lattice basis vectors form a twisting pattern around the nanotube axis. The geometry

associated with these vibrational degrees of freedom bear similarities to that of Figure 1b.

It is feasible that another realization of this effect could be found in solids which support

very soft librational phonon modes.
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FIG. 4: (a) The current response J(t) to an impulse pulse at time t = 0. (b) The same curves as

(a), plotted versus the scaled time variable in order to show how the sinusoidal response changes

as the pendulum is loosened.

I. APPENDIX

Here we present some calculational details:

jx =
i

~
[H, Px]

=
iQr

2I~
[L2, cos θ]

=
iQr

2I~
(L2 cos θ − cos θL2)

=
iQr

2I~
(L2 cos θ − L cos θL + L cos θL − cos θL2)

=
iQr

2I~
(L[L, cos θ] + [L, cos θ]L).
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The commutator in this expression is

[L, cos θ] = −i~(
∂

∂θ
cos θ − cos θ

∂

∂θ
)

= −i~(− sin θ + cos θ
∂

∂θ
− cos θ

∂

∂θ
)

= i~ sin θ

and so

jx =
iQr

2I~
(L[L, cos θ] + [L, cos θ]L)

= −Qr

2I
(L sin θ + sin θL).

A similar expression follows jy
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