I. **Shape Resonances**

These are the simplest of several types of continuum and scattering resonances we will encounter later. They are often just quasi-bound levels behind a centrifugal barrier, but sometimes they are just "reflections" from an oddly shaped potential curve.

A few examples appear on the following pages. Obviously, these do not occur in a pure Coulomb potential.

"Condensation oscillations"

The vibrational equivalent of a Cooper minimum is the beating of the initial and final vibrational wave functions.

On a large energy scale, the cross sections roughly map our peaks or nodes of the initial vibrational wave function. Here we show a calculated example for \(\text{H}_2 \).

J. Tellinghause has experimentally studied this phenomenon in \(\text{F}_2 \), quite extensively.
H$_2$ states near the second dissociation limit
to H(1s) + H (2s or 2p)
$C^1\Pi_u, \nu=13, N=3$ Shape Resonance in H_2

Measured Width: 3.6 ± 0.3 cm$^{-1}$

Theory (crude WKB): 0.09 cm$^{-1}$

Theory (non-adiabatic): 0.10 cm$^{-1}$

$N''=1$ threshold of H_2 (Low resolution)

- **C, $v=13$, $N=2$**
 - "quasi-bound" shape resonance
- **B', $v=9$, $N=2$**
 - (shape resonance)

![Graph showing H$^+$ Signal vs. Offset in scan (cm$^{-1}$)]

- Threshold at 14771 cm$^{-1}$

(From my group's work, 1997)
Calculated cross-sections using ab-initio potentials, for B' state

From Zucker & Eyler, 1986.
C <-> EF (dotted)
B' <-> EF (solid)
adiabatic cross sections (calc.)

From Zucker & Exler, 1986
Feshbach Resonances (2-channel case)

We will follow closely the treatment in Friedrich, Section 1.4.2. Assume two "channels" converge to different limits: an internal excitation state of product atom or ion

\[\Phi_0 \leftrightarrow V_{12} \rightarrow \Phi_2 \]

Look at the resonance caused by the effect of the coupling \(V_{12} \) on the bound state \(\Phi_0 \) in the uncoupled channel 2.

(Ch. 1 open, Ch. 2 closed)

In general,

\[
\left(-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + V_1 (r) \right) \Phi_1 (r) + V_{12} \Phi_2 (r) = E \Phi_1 (r) \tag{21}
\]

\[
\left(-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + V_2 (r) \right) \Phi_2 (r) + V_{21} \Phi_1 (r) = E \Phi_2 (r) \tag{22}
\]

and if \(V \) is real, need \(V_{12} = V_{21} \) for the Hamiltonian to be Hermitian.

The bound level \(\Phi_0 \) in the uncoupled problem satisfies

\[
\left(-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + V_2 (r) \right) \Phi_0 (r) = E_0 \Phi_0 (r) \tag{22}
\]

Near \(E_0 \), assume the wave function \(\Phi_2 \) in channel 2 of the coupled system is a multiple of \(\Phi_0 \),

\[\Phi_2 = A \Phi_0 \]. Then (21) becomes, (22)

\[
\begin{align*}
\left\{ \begin{array}{ll}
(E + \frac{\hbar^2}{2m} \frac{d^2}{dr^2} - V_1) \Phi_1 = A V_{12} \Phi_0 \\
A (E - E_0) \Phi_0 = V_{21} \Phi_1
\end{array} \right.
\tag{24}
\]

Formally solve using a Green's function,

\[
(E + \frac{\hbar^2}{2m} \frac{d^2}{dr^2} - V_1) G (r, r') = \delta (r - r') \tag{25}
\]

We can solve the top equation in (24) with

\[\Phi_1 = \Phi_{reg} + A \int G (r, r') V_{12} (r') \Phi_0 (r') dr' \].

\[\Phi_0 \rightarrow \Phi_{reg} \]
where \(\Phi_{\text{reg}} \) solves the homogeneous equation,

\[
(E + \frac{k^2}{2m} \frac{d^2}{dr^2} - V_i) \Phi_{\text{reg}} = 0 \tag{27}
\]

"regular" solution \(\to 0 \) as \(r \to 0 \).

Asymptotically, energy normalized \(\Phi_{\text{reg}} \) can be written as

\[
\Phi_{\text{reg}} (r) \to \sqrt{\frac{2m}{\pi \hbar^2 k}} \sin (kr + \phi_y) \tag{28}
\]

"background phase shift" mostly from \(V_i (r) \); varies only slowly with \(E \).

Inserting (27) in the bottom equation of (24) and multiplying by \(\langle \Phi_o | \) we obtain

\[
A = \frac{\langle \Phi_o | V_{21} | \Phi_{\text{reg}} \rangle}{E - E_0 - \langle \Phi_o | V_{21} \hat{G} V_{12} | \Phi_o \rangle} \tag{29}
\]

\[\equiv \int \! dr \int \! dr' \Phi_o (r) V_{21} (r) \hat{G} (r, r') V_{12} (r') \Phi_o (r')\]

Now find the asymptotic form of \(\Phi_1 \), and interpret it.

The Green's function for \(V_i (r) \) in channel 1 can be expressed as (see problem 1.4 in Friedrich),

\[
G (r, r') = - \pi \begin{cases}
\Phi_{\text{reg}} (r) \Phi_{\text{irr}} (r') & r \leq r' \\
\Phi_{\text{reg}} (r') \Phi_{\text{irr}} (r) & r' \leq r
\end{cases} \tag{30}
\]

Same as (28), with \(\sin \to \cos \).

At large \(r \), \(\Phi_o (r) \) will vanish (it's bound), so in (26) we can assume \(r' < r \) and integrate.

Using (29) for \(A \), we get

\[
\Phi_1 (r) \to \Phi_{\text{reg}} + \tan \phi_{\text{irr}} \tan \phi_{\text{irr}} \tag{31}
\]

\[\equiv \frac{1}{r \to 0} \sqrt{\frac{2m}{\pi \hbar^2 k}} \sin (kr + \phi_y + \phi) (\chi \text{ constant})\]

must be \(2 \pi \cos \phi \) to energy

(since \(\Phi_o \) is tied to \(\Phi_1 \), \(A \Phi_o \) must also be multiplied by \(\cos \phi \))
Bottom line: coupling leads to additional phase shift ϕ in open channel 1.

The result (31) is often written as

$$\phi = -\tan^{-1}\left(\frac{\hbar \Gamma/2}{E-E_R}\right)$$ \hspace{1cm} (32)$$

Where $$\Gamma \equiv \frac{2\pi}{\hbar} \left| \langle \Phi_0 | V_{21} | \Phi_{0\gamma} \rangle \right|^2$$, and the resonance position is shifted slightly,

$$E_R \equiv E_0 + \langle \Phi_0 | V_{21} \hat{G} V_{12} | \Phi_0 \rangle$$

If Γ, d, and E are constants near the resonance, the phase ϕ changes by π at the resonance position, with a width of Γ between the $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ points:

The derivative $\frac{d\phi}{dE}$ is max. at the resonance, and is Lorentzian,

$$\frac{d\phi}{dE} = \frac{\hbar \Gamma/2}{(E-E_R)^2 + (\hbar \Gamma/2)^2}$$

This type of isolated resonance is called \underline{Breit-Wigner} resonance, and corresponds to the isolated-resonance limit of an MWT treatment. There we employ not the phase, but the amplitude. These are connected:

the admixture of the closed channel in the total wave function is, from (31) with the correct normalization,

$$|A_{\text{cos}}|^2 = \frac{1}{\pi} \frac{\hbar \Gamma/2}{(E-E_R)^2 + (\hbar \Gamma/2)^2} = \frac{1}{\pi} \frac{d\phi}{dE}$$
III. A. Ionizing Resonances

Here we loosely follow Friedrich, §2.2.2.

Look at this region

Electronic states
or molecular rot. or vib. series
(Can simplify if $V \sim$ Coulomb)

After normalizing Φ_1, as indicated in Eq. (51),

$$\Phi_1(r) = \cos \theta \Phi_{reg} + \sin \theta \Phi_{irr}, \text{ and also,}$$

$$\Phi_2(r) = \cos \theta \frac{\langle \Phi_0 | V_{12} | \Phi_{reg} \rangle}{E - E_2} \Phi_0(r)$$

$$= -\frac{\sin \theta}{\pi \langle \Phi_{reg} | V_{12} | \Phi_0 \rangle} \Phi_0(r)$$

The decay of $\Phi(r)$ is described by the
Lorentzian, (35).

But photoionization can be much richer:

Assume a reasonably isolated resonance exists,
but allow both d_1, d_2 to be non-zero.

$\Phi_{initial}$
Including the core or internal wave function, the total wave function near the resonance is, after antisymmetrizing and recalling \(\psi_{\text{int}} = \Phi \),

\[
\Phi = \cos \delta \hat{A} \left(\psi_{\text{int}} (1) \Phi_{\text{reg}} (r) \right)
\]

\[
= \cos \delta \hat{A} \psi_{\text{int}} (1) - \frac{\sin \delta}{\pi \langle \Phi_{\text{reg}} | V_{12} | \Phi_{0} \rangle} \hat{A} \psi_{\text{int}} (2)
\]

For photoionization, generalize the equation for \(\frac{dF}{dE} \) at the bottom of p. C-5.

Writing

\[
d_1 = \langle \psi_{\text{int}} (1) | E \hat{A} | \Phi_{\text{init}} \rangle \quad (39)
\]

\[
d_2 = \langle \psi_{\text{int}} (2) | E \hat{A} | \Phi_{\text{init}} \rangle
\]

\[
\frac{dF_{E_i}}{dE} = \frac{2 \mu}{\kappa} w d_i^2 \cos^2 \delta \left(1 - \frac{d_2}{d_1} \frac{\tan \delta}{\pi \langle \Phi_{\text{reg}} | V_{12} | \Phi_{0} \rangle} \right)^2
\]

\[
\frac{dF_{E_i}}{dE} = \frac{2 \mu}{\kappa} w d_i^2 \frac{(\varepsilon + \varepsilon_i)^2}{1 + \varepsilon^2}
\]

\[
\varepsilon = \frac{E - E_{Fr}}{\Gamma/2}, \quad \varepsilon_i = \frac{d_2}{d_1} \frac{\tan \delta}{\pi \langle \Phi_{\text{reg}} | V_{12} | \Phi_{0} \rangle}
\]

Butler-Fano profile, \(\beta \) = shape parameter

\(\varepsilon \) = reduced energy

(in units of \(V_2 \)-width)
These lineshapes are asymmetric except for
\[q = \infty \] (Lorentzian, from exciting ch. 2 only)
and \[q = 0 \] (Lorentzian dip, ch. 1 only)

(See p. 143 of Friedrich for better plots.)

\[\frac{d\sigma}{dE} \]
or \[\sigma \]

\[q = 1 \] (mirror image for \(-1\))
\[q = 0 \]
\[q = \infty \]

"Window resonance"

Note that \(q \propto \frac{d^2\sigma}{d\Omega} \), so lineshape depends on method of excitation!

These asymmetric resonances are ubiquitous in photoionization and photodissociation spectroscopy.

III. Complex Resonances

Note that if \(R \) is large, the adjacent resonances will overlap. An elegant way to deal with this situation, especially for the Coulomb potential, is to use

Multichannel quantum defect theory (see Friedrich, or \(E^3 \) notes available upon request.)

Idea: Extend \(R \)-matrix scattering theory to \(E < 0 \) by treating \(n \) as a continuous variable; scale every thing per unit energy. Works beautifully for strongly interacting Rydberg series.
The Stark spectra -- Nussenzweig, Pollock & Eyler 1958

ION SIGNAL
(from autoionization)

"Field induced narrowing" -- an interference effect.

Beutler-Fano and overlapping complex resonances

THEORY
(Bergeman)
USES MQDT in parabolic coordinates
Interference at the Upper \((H + D^*)\) Dissociation Limit of HD

See Cheng, Kim, Eyler, and Melikechi,

D\((2s)\) at High Resolution, with fit to two ground-state hyperfine thresholds