Hyperfine Structure in hydrogen

So far we have completely ignored the nuclear spin and nuclear electric field distribution. The most important of these contributions are the nuclear spin I, with its associated magnetic moment M_N, and the nuclear electric quadrupole moment Q (it's zero for the proton, but not for the deuteron, for example.)

Note that parity conservation forbids an electric dipole moment for an elementary particle (or any nondegenerate system):

If $\vec{D} = \alpha \vec{I}$ for some $\alpha \neq 0$,

Consider the effect of reversing all coordinates about an origin centered on the nucleus.

Like all angular momenta, \vec{I} is an axial vector, with $\vec{I} = \vec{I'}$. However, \vec{D} is a polar vector (charge x position), so $\vec{D'} = -\vec{D}$, and

$\vec{D'} = -\alpha \vec{I'}$ (different physics!)

Thus $\alpha = 0$ so long as parity isn't violated. This fails to hold only for the weak interaction, which could cause a very small nuclear dipole moment.

The search for a neutron dipole moment continues, and indirect searches for proton or electron dipole moments have been conducted as well (by Hinds, Sandars, and others). For example, experimentally,

$|d_{\text{neutron}}| < 8.7 \times 10^{-28}$ e·cm (Fortson group, PRA 52, 3521 (1995))

$|d_e| < 1.8 \times 10^{-27}$ e·cm (Coombs group, PRA 50, 2960 (1994))

<By 1995 with 205Tl, Demille trying for 10^{-28}!>

Anyhow, for ordinary H we need worry only about the magnetic dipole hyperfine structure.

Now $<1.5 \times 10^{-27}$: same group, PRL 88, 071805 (2002).
Magnetic dipole hyperfine Hamiltonian: \(\mathbf{\Delta} = \frac{\mathbf{\hat{M}} \times \mathbf{r}}{r^3} \left(\frac{M_N}{4\pi} \right) \)

where \(\mathbf{\hat{M}} = gN M_N \left(\frac{\mathbf{S}}{\hbar} \right) \)

\(M_N \) is the nuclear Bohr magneton, \(M_N = \frac{e\hbar}{2m_p} \) (smaller than \(M_B \) by \(\frac{m_e}{m_p} \) \(5.051 \times 10^{-29} \text{ J/T} \)).

\(g_N \) = nuclear \(g \)-factor
\(= 5.59 \) for proton, \(I = \frac{1}{2} \)
\(= 0.857 \) for deuteron, \(I = 1 \)

Also commonly used is the gyromagnetic ratio \(\gamma_N \),
\(\mathbf{\hat{M}} = \gamma_N \mathbf{I} \), \(\gamma_N = \frac{gN M_N}{\hbar} \)

For the one-electron case:

Since \(\mathbf{\hat{M}}, \mathbf{I} \) and \(\mathbf{S} \) are all nonzero, several terms arise in the interaction. Things get very tricky, particularly for \(S \)-states because there is a finite electron amplitude at the nucleus. A very careful derivation is given by Weissbluth, who shows that in H-like systems,

\[H_{\text{hfs}} = \frac{M_N}{4\pi} \frac{2m_p gN}{\hbar} \left(\frac{\mathbf{I} \cdot (\mathbf{I} - \mathbf{S})}{r^3} + 3 \left(\frac{\mathbf{S} \cdot \mathbf{r}}{r^3} \right)^2 \right) + \frac{8\pi}{3} I \cdot S \cdot C^{(2)} \]

Fermi contact interaction for \(S \) states

Compare with \(H_{\text{fs}} = \frac{KE^3}{2m_e^2 c^2 r^3} \mathbf{S} \cdot \mathbf{L} \) (for \(Z = 1 \), from 38)

Writing \(g_N = gN \frac{e}{2m_p} \), \(M_B = \frac{e\hbar}{2m_e} \), the prefactor in 39 becomes \(\frac{M_N}{4\pi} \frac{2m_p}{2m_e m_p} \), \(g_N \Rightarrow \) smaller than fine structure by \(\frac{m_e}{m_p} \)

(note that \(M_0 E_0 = \frac{1}{c^2} \))
For many-electron atoms (85) is generalized by simply adding the contributions of the \(n \) electrons.

Evaluation of hfs for \(\Pi \):

Since \(H_{\text{hfs}} = (\text{stuff}) \cdot \left(\frac{\vec{r} - \vec{s}}{r^3} + \frac{3}{r^5} \vec{r} \cdot (\vec{s} \cdot \vec{r}) + \frac{8\pi}{3} \vec{s} \cdot \vec{d} \right) \cdot \vec{A}'(\vec{L}, \vec{s}, \vec{r}) \)

If we define a new angular momentum vector

\[\vec{F} = \vec{J} + \vec{I} \quad (\vec{F} = \vec{L} + \vec{s}) \]

the interaction will be diagonal in \(F \) and the off-diagonal terms in \(J \) and \(I \) will be small, since the fine structure levels \(J \) are split by the much larger \(F \) interaction, and the nuclear levels \(I \) by immense amounts.

Evaluate the dipole-dipole part first, ignoring the Fermi contact term for now. Define, following Weissbluth,

\[\vec{b'} = \left(\frac{\vec{r} - \vec{s}}{r^3} + \frac{3}{r^5} \vec{r} \cdot (\vec{s} \cdot \vec{r}) \right) \]

We need the Landé formula, a consequence of the Wigner-Eckart theorem that will be proved next week. For now, we assert that "it can be shown that"

\[\langle J m | \vec{b'} \cdot \vec{F} | J m' \rangle = \frac{\langle J m | \vec{b'} \cdot \vec{F} | J m' \rangle}{\frac{1}{2} (J + 1)} \langle J m | \vec{F} | J m' \rangle \]

The matrix element of \(\vec{b'} \cdot \vec{F} \) is easy:

\[\langle J m | \vec{b'} \cdot \vec{F} | J m \rangle = \langle J m | \left(\frac{\vec{r} - \vec{s}}{r^3} + \frac{3}{r^5} (\vec{r} \cdot \vec{F}) (\vec{s} \cdot \vec{r}) \right) | J m \rangle \]

\(\odot \) \(\odot \)
For term (a),

\[
\langle Jm \mid (\vec{L} - \vec{S}) \cdot \vec{J} \mid Jm \rangle = \langle Jm \mid \vec{L}^2 - \vec{S}^2 \mid Jm \rangle = (L(L+1) - S(S+1)) \frac{1}{2} \frac{\hbar^2}{\alpha}
\]

For term (b), note that

\[
\vec{r} \cdot \vec{J} = \vec{r} \cdot (\vec{L} + \vec{S}) = \vec{r} \cdot (\vec{r} \times \vec{p}) + \vec{r} \cdot \vec{S}
\]

\[
= \vec{r} \cdot \vec{S}
\]

So \((\vec{r} \cdot \vec{J}) \cdot (\vec{S} \cdot \vec{r}) = (\vec{r} \cdot \vec{S})^2 \)

\[
= \frac{\hbar^2}{4} (\vec{S} \cdot \vec{J}) (\vec{S} \cdot \vec{r})
\]

\[
= \frac{\hbar^2}{4} \vec{r}^2, \text{ using the theorem on p. DE-7.}
\]

Thus,

\[
\langle Jm \mid \vec{B} \mid Jm' \rangle = \frac{(L(L+1) - S(S+1)) \left< \frac{1}{r^3} \right> + \frac{3}{2} \left< \frac{r^2}{r^5} \right>}{J(J+1)} \langle Jm \mid \vec{J} \mid Jm' \rangle
\]

And for \(S = \frac{1}{2} \)

\[
\frac{L(L+1)}{J(J+1)} \left< \frac{1}{r^3} \right> \langle Jm \mid \vec{J} \mid Jm' \rangle
\]

This means that we can replace \(B \) in equation (39) with the quantity,

\[
\frac{L(L+1)}{J(J+1)} \left< \frac{1}{r^3} \right> \vec{J}, \text{ giving}
\]

\[
H_{\text{eff}}^{\text{eff}} = \frac{4 \hbar^2}{\alpha \pi \gamma_N} \left(\frac{L(L+1)}{J(J+1)} \left< \frac{1}{r^3} \right> \vec{J} \cdot \vec{J} \right. + \frac{8 \pi}{3} \left| \gamma(0) \right|^2 \left[\vec{J} \right] \left[\vec{J} \right]
\]

\[(40) \]

Now find actual value for some \(H \) levels:
Only the $I\cdot S$ contact term contributes. It is the perturbation due to the interaction of the nuclear spin dipole \vec{I}_N with the B field of the electron.

For $H(1S)$, $|\psi_{1S}|^2 = \frac{4}{\alpha_0^3} \text{ (radial)} \times \frac{1}{\eta \mu} \text{ (angular)}$

With $F = \frac{3}{2}$ and $J = \frac{3}{2}$ for $L = 0$

$I \cdot S = \frac{1}{2} (F^2 - S^2 - I^2)$

and we have $S = \frac{1}{2}$

$I = \frac{1}{2}$

$F = 0, 1$ (2 sublevels)

$\langle \alpha F m_F / I \cdot S / \alpha F m_F \rangle = \frac{\hbar^2}{2} (F(F+1) - \frac{3}{2})$

"$nL S J I$" irrelevant, symbolize by α

$E_{F=0} = -\frac{3}{4} \left(\frac{16}{3} \frac{\mu_0 \gamma_{\mu N} \eta}{\alpha_0^3} \right) \left(\frac{\mu_0}{4\hbar} \right)$

$E_{F=1} = +\frac{1}{4} \text{ (same)}$

$\Rightarrow \Delta E = 0.047 \text{ cm}^{-1} = 1420 \text{ MHz}$

In higher nS states, scales as $\frac{1}{n^3}$ due to scaling of $|\psi_{1S}|^2$.
This is the famous "21 cm line" of astrophysics; it is forbidden for electric dipole radiation but can occur for magnetic dipole transitions. Note: \(\Delta E \) implies \(R_{nu} \) at nucleus.

\[hfs \text{ of } ^2P \text{ for } F = 0 \]

Now only \(\vec{I} \cdot \vec{J} \) contributes; writing \(\vec{F} = \vec{I} + \vec{J} \) again,

\[\langle \frac{1}{r^3} \rangle = \frac{\pi^2}{a_0^3} \frac{1}{n^3 (l+1)(l+1/2)} \]

\[\langle F n_F | \vec{I} \cdot \vec{J} | F n_F \rangle = \frac{1}{2} \langle F n_F | F^2 - I^2 - J^2 | F n_F \rangle = \frac{\hbar^2}{2} \left(F (F+1) - \frac{3}{4} - J (J+1) \right) \]

\[2 \; ^2P_{1/2} \]: here \(F = 0, \; 1 \) and \(J = 1/2 \)

\[
\begin{cases}
E_{F=0} = \frac{2 L (L+1)}{J (J+1)} \frac{1}{24 a_0^3} \left(\frac{-3}{2} \right) \mu_B N k \hbar \frac{m_e}{4\pi} = \frac{-1}{6} \frac{\mu_B \mu_N}{a_0^3} \\
E_{F=1} = \frac{1}{18} \left(\frac{1}{2} \right) \frac{\mu_B \mu_N}{a_0^3} = \frac{+1}{18} \frac{\mu_B \mu_N}{a_0^3} \\
\end{cases}
\]

(24 \times \text{ smaller than for } 1 \; ^2S_{1/2} \text{)}

(3 \times \text{ smaller than for } 2 \; ^2S_{1/2} \text{)}

\[2 \; ^2P_{3/2} \]: \(J = 3/2 \) and \(F = 1, \; 2 \)

\[
\begin{cases}
E_{F=1} = -\frac{1}{18} \frac{\mu_B \mu_N}{a_0^3} \\
E_{F=2} = +\frac{1}{30} \frac{\mu_B \mu_N}{a_0^3} \\
\end{cases}
\]

(2 \; \text{times smaller than for } 2 \; ^2P_{3/2} \text{)}
So we have, for \(H, n=2 \),

\[
\begin{align*}
2^2 P_{3/2} &\quad F=2 \\
F=1 &\quad \text{fs splitting } = 10700 \text{ MHz} \\
F=0 &
\end{align*}
\]

\[
\begin{align*}
2^2 S_{1/2} &\quad \bar{v} = 178 \text{ MHz} \\
F=0 &
\end{align*}
\]

\[
\begin{align*}
2^2 P_{1/2} &\quad F=1 \\
F=0 &\quad \text{Lamb shift } = 1058 \text{ MHz} \\
F=0 &
\end{align*}
\]

(Remember \(1 \text{ cm}^{-1} \equiv 29979 \text{ MHz} \); binding energy \(\cong 27420 \text{ cm}^{-1} \))

Off-diagonal terms -- \(\Delta J = \pm 1 \) terms change the HFS by about 300 Hz. Numerous other corrections are needed to compare with the best radio frequency measurements,

\[\Delta E \left(H, \frac{1}{2}, \pm \frac{1}{2} \right) = 1420.405751800 \text{ (28 MHz)} \]

(by Crampton, Kleppner, & Ramsey, Phys. Rev. Lett. 11, 358 (1963))

HFS in Other Atoms

The magnetic dipole HFS works similarly except that the radial matrix elements must be approximated. The best-studied case is that of the alkali atoms, with a single electron outside a closed shell. The qualitative structure is the same as for \(H \), but \(|y_0|^2 \) and \(\langle \frac{r}{e} \rangle \) must be estimated.

The ground \(2S_{1/2} \) state of \(\text{Cs}^{133} \), with \(I = \frac{7}{2} \), is a special case. The \(F=4 \leftrightarrow F=3 \) transition is the current standard for frequency,

\[\Delta v \left(\text{Cs} \right) = 9192631770.000 \ldots \text{ Hz}\]