
Nonlinear Regression for
a Gaussian Function

Physics 258, 259, and 281 - E. Eyler, 2006.  A new contribution to a series
of tutorials compiled by D. Hamilton in 2004.

This example worksheet uses a generalized least-squares fit in Mathcad to fit a peak to
a Gaussian function.  It should work with Mathcad 2001i and later.

Start by generating a data set of (x,y) points from a normal distribution, with a little random noise
added for realism.   Set the mean to zero and the standard deviation to 0.5.
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Always plot the data
before attempting a fit.

This is the fitting function, a Gaussian
with an arbitrary amplitude.gauss x A, μ, σ,( ) A
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Vector containing the function and
its derivatives with regard to each
parameter.  An additive
background term is not included,
but could easily be incorporated,
with a derivative of one.
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Enter initial guesses for the three parameters.  Usually it's
sufficient to make reasonable guesses based on a quick
look at your plot.  They don't have to be all that close to work.

Below we plot the data together with the current guess.
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Results genfit x y, guess, f,( ):= Now perform the nonlinear least-squares fit and

store the results in a vector.
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Plot these results, now stored in constants A, μ, and σ,  together with the original data:
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We can easily calculate the RMS difference between the data points and
the fitting function.  The built-in standard deviation function can be used to
make this quick and painless.  A vectorizing operator is included for
completeness, although the result will be the same without it.
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We can also plot the residuals, the difference between the data and
the fit.  Because we used uniformly distributed noise, the residuals
should reflect this.
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