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Propagation of Gaussian Beams in Homogeneous Media 
 

Physics 4150 
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Even though a beam with a Gaussian transverse intensity profile is not an exact solution to the 
wave equation, it is a very widely used approximation because it provides a good description of 
the output of many lasers.  As the beam propagates it retains a Gaussian cross-section, but its size 
changes due to diffraction as shown in the sketch below.  The sketch also introduces some of the 
parameters we will use in this discussion.  The best way to solve for the effects of diffraction on 
such a beam is to work directly with the wave equation, rather than to use approximate methods 
that fail near the origin, z = 0.  There is a brief summary of the most useful equations describing 
Gaussian beams in Hecht, Section 13.1 (pp. 594-596).  However, he does not describe the under-
lying theory.  Here I give a brief account based loosely on Yariv and Yeh, Photonics (6th Ed.) and 
on Pedrotti3, Optics.  

 
 
A. Approximate wave equation 
 
We are interested primarily in solutions that have cylindrical symmetry, so we will look for ap-
proximate solutions to the wave equation where the electric field has the form 

 ( )( , ) ,i kz tf r z e  0E E  (1) 

where f(r,z) describes the transverse profile of the laser.  We will assume that the beam diameter 
changes with z only on a scale much larger than the wavelength .  This assumption of a slowly 
varying amplitude  is the key approximation that is required. 
 
Assuming that the medium is homogeneous and has no free charges, the wave equation for the 
electric field is 
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Given the harmonic time dependence of Eq. (1), this simplifies immediately to the Helmholtz 
equation,  
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The next step is to write out the spatial derivatives explictly,  
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In the right-hand expression the second derivative with respect to z has been dropped because of 
the slowly varying envelope approximation, which can be stated mathematically as / .f z k    
Upon inserting the resulting expression into Eq. (3) the two k2 terms cancel, leaving a fairly simple 
differential equation for f: 
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Now we look for solutions with a Gaussian transverse profile, which we write by introducing two 
complex functions P(z) and q(z) to define the longitudinal variation of the phase and the radius of 
curvature, with seemingly arbitrary multiplicative factors chosen for our later convenience: 
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Substituting this into Eq. (4), we find a scalar term and a term in r2: 
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For this to be a solution for all r, the scalar term and the quadratic term must equal zero sepa-
rately.  Thus we are finally left with a pair of equations for P and q,  
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The final step is to note that if we write q0 in terms of real and imaginary parts, q0r+ iq0i , it is 
possible to shift the origin so that at z=0, q0 is purely imaginary.  This corresponds to placing the 
origin at the minimum-diameter “beam waist”.  Further, the imaginary part of q0 must be negative 
in order for f(r,z) to vanish as ,r   so for this choice of the origin we can write 
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B. Properties of Gaussian Beams 
 
The formal solution for a Gaussian beam is already given by Eqs. (1), (5), and (8), but to gain some 
physical insight it is very helpful to define two real functions R(z) and (z) to replace the complex 
function q(z), with some multiplicative factors again chosen for later convenience: 
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Equating the real and imaginary parts of Eq. (9) yields the z-dependence of R and , 
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The parameter z0 is called the confocal parameter, and 0 is the beam waist radius.  If either is 
known, the other can be determined from the final relation in Eq. (10).  Physically the spot size of 
the Gaussian beam is given by (z), and the radius of curvature of the wavefronts by R(z), as 
shown in the sketch above.  The interpretation of  as the spot size can be justified mathematically 
by rewriting the full electric field of Eq. (1) in terms of these functions, 

 
12 2 2

0tan ( / )/ ( ) /2 ( ) ( )0 .
( )

i z zr z ikr R z i kz te e e e
z

 


  0E E  (11) 

To understand the curvature, note that for 2 2,  with ,z r r x y   
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At position z the irradiance is 
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Thus the spot size (z) corresponds to the 1/e2 radius of the beam (measured in terms of power, 
not electric field).  The smallest value that it ever attains is at z = 0, where the spot size is equal to  
the beam waist parameter, 0.  Away from this location the beam spreads quadratically according 
to Eq. (10).  The confocal parameter z0 defines the scale for this spreading: at z = z0 the spot size is 

02  , and the peak irradiance is reduced by a factor of two. 
 
As sketched in the figure, the radius of curvature R(z) of the wavefronts is infinite at z = 0, meaning 
that the wavefronts are flat and perpendicular to the z axis.  Further away, the radius of curvature 
gradually increases, approaching the limit R = z that would characterize a pure spherical wave.  It 
is also easy to show that at large z, the half-angle describing the beam divergence measured to the 
1/e2 point approaches the value 
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This limit where 0z z is the region in which ordinary geometric optics can be used with good 
accuracy. 
 
We have not discussed the focusing of a Gaussian beam by a lens.  If the input beam has a waist 
at the lens, the equations are not difficult.  They have been incorporated into the “Topticalc” optics 
calculator program from Toptica, which is recommended as a quick way to evaluate the spot size 
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of a focused beam.  For the more general case of an input beam with an arbitrary waist position, 
there is a matrix formalism for describing the propagation of Gaussian beams, including their fo-
cusing by multiple lenses and other optical elements.  You can read about this method, often called 
the “ABCD law,” in most advanced texts on optics or lasers.  It is also implemented in most mod-
ern ray-tracing programs, including the OSLO program that we use in Physics 4150. 
 

It’s also important to note that for optical beams in a resonator, such as the curved-mirror cavities 
used for many simple lasers, the Gaussian beam is only the lowest-order solution.  A more general 
treatment allowing for the possibility of azimuthal variations in the field reveals that the modes of 
a resonator can be written in the slowly-varying amplitude approximation as Gauss-Hermite pol-
ynomials.  The lowest-order mode, often designated TEM00, is identical to the Gaussian beam.  An 
important task in designing a practical laser is to suppress all of the higher-order transverse modes 
so that the output is a relatively “clean” Gaussian mode.  Similar considerations arise in the design 
of fiber optics. 

 
 
Example: Spreading of a He-Ne laser beam 
 
Consider the beam from a 632 nm He-Ne laser.  If it has a beam waist located at the laser output 
with a 1/e2 radius of 0 = 0.5 mm, the confocal parameter is 
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From Eq. (10) we find that the beam doubles in size,  = 20 = 1 mm, when z2/z0
2 = 3, or z = 

2.15 m.  At a distance of several meters the beam diverges like a bundle of rays from a point source, 
with a half angle of 
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At a distance of 10 m from the laser, we can estimate from the divergence that the radius is ap-
proximately 10(0.402) = 4.02 mm, while from Eq. (10) we find the exact solution, which differs 
very little: 
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