

Relax.mcd

Solves Laplace's equation for a square array in 2-D by the relaxation method,
including an "overrelaxation" parameter. Last modified 10/21/09 by E. Eyler

Define the "left" (x=0) and right (x=SIZE-1) boundary conditions using
Kronecker delta functions, setting all other points to V=0.. Just for fun, set
the left border to a sinusoidal potential, but the right border to a constant 2V.

SIZE 25:=

f x y,() δ x 0,() 1 cos
2 π⋅ y
SIZE
⎛⎜
⎝

⎞⎟
⎠

+⎛⎜
⎝

⎞⎟
⎠

⋅ 2δ x SIZE 1−,()+:=

Now create a square matrix with these boundary conditions.

V matrix SIZE SIZE, f,():=

Define the "bottom" (y=0) and top boundaries to be at ground, 0 V. Adding them to
the expression above would have caused unsightly 'spikes' in the corners, although
it would not have affected the actual results of the calculation. This time we will use
a different method, the Mathcad range variable, to set the values:

x 0 SIZE 1−..:=

Vx 0, 0:= Vx SIZE 1−, 0:=

Display the corner of the matrix near the origin, noting rows are indexed by x, and
columns by y:

V

0 1 2 3 4 5

0

1

2

3

4

5

6

7

0 1.969 1.876 1.729 1.536 1.309

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

=

Define the relaxation calculation. Define it as a function that operates on an
arbitrary array Φ, returning both the result and the number of iterations
required to achieve the desired convergence level, tol, between adjacent
iterations. The overrelaxation parameter is w. Note that for an angled right
boundary, the looping condition on y would require modification.

relax Φ tol, w,() iters 0←

maxdiff 1 106×←

iters iters 1+←

maxdiff 0←

newval
w
4

Φx 1− y, Φx y 1−,+ Φx 1+ y,+ Φx y 1+,+() 1 w−() Φx y,⋅+←

maxdiff newval Φx y,−← newval Φx y,− maxdiff>if

Φx y, newval←

y 1 cols Φ() 2−..∈for

x 1 rows Φ() 2−..∈for

maxdiff tol>while

Φ

iters
⎛
⎜
⎝

⎞
⎟
⎠

return

:=

Finally, carry out the calculation on the initialized array, V, and print part of the result.

V

iters
⎛
⎜
⎝

⎞
⎟
⎠

relax V 10 4−, 1.5,():=

iters 125= Numer of iterations that were required.

V

0 1 2 3 4 5

0

1

2

3

4

0 1.969 1.876 1.729 1.536 1.309

0 0.924 1.217 1.268 1.205 1.08

0 0.511 0.8 0.921 0.936 0.884

0 0.321 0.55 0.681 0.733 0.727

0 0.221 0.4 0.52 0.586 0.609

=

Finally, plot the results.

V

