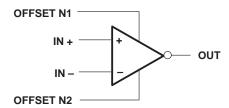
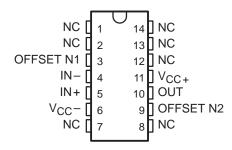
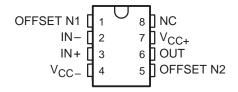
- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Fairchild uA741

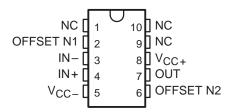

description

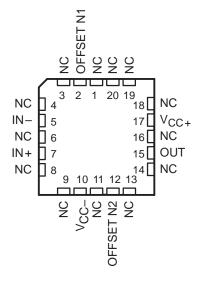
The μ A741 is a general-purpose operational amplifier featuring offset-voltage null capability.


The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The μ A741C is characterized for operation from 0°C to 70°C. The μ A741I is characterized for operation from -40°C to 85°C.The μ A741M is characterized for operation over the full military temperature range of -55°C to 125°C.


symbol

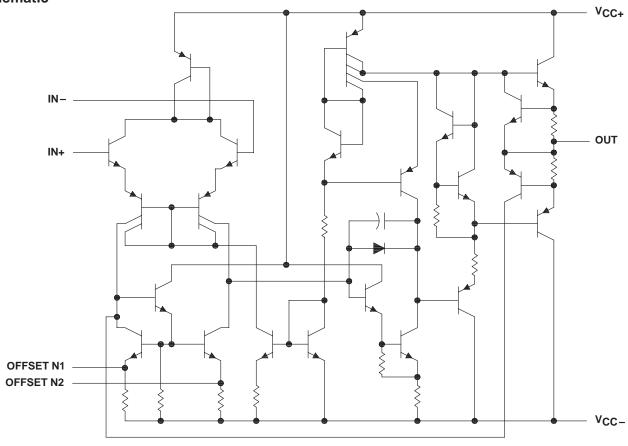

μΑ741M . . . J PACKAGE (TOP VIEW)


 $\mu\text{A741M}\dots\text{JG PACKAGE}$ $\mu\text{A741C}, \mu\text{A741I}\dots\text{D, P, OR PW PACKAGE}$ (TOP VIEW)

 $\begin{array}{c} \mu \text{A741M} \dots \text{U PACKAGE} \\ \text{(TOP VIEW)} \end{array}$

μΑ741M . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

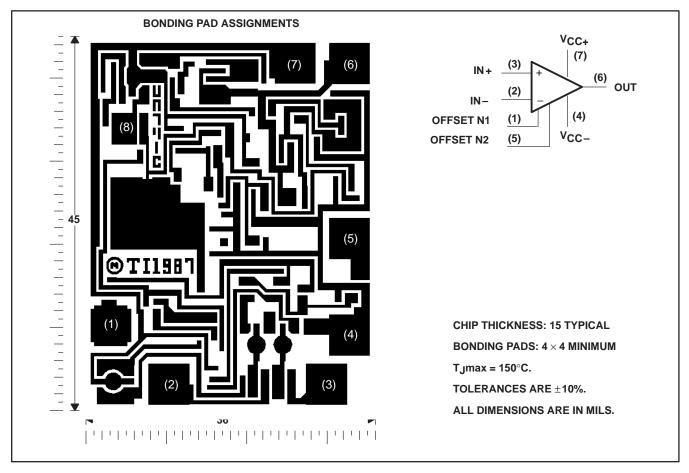


AVAILABLE OPTIONS

	PACKAGED DEVICES							
TA	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)	FLAT PACK (U)	CHIP FORM (Y)
0°C to 70°C	μΑ741CD				μΑ741CP	μΑ741CPW		μΑ741Υ
-40°C to 85°C	μΑ741ID				μΑ741IP			
−55°C to 125°C		μΑ741MFK	μA741MJ	μΑ741MJG			μA741MU	

The D package is available taped and reeled. Add the suffix R (e.g., μ A741CDR).

schematic



Component Count				
Transistors	22			
Resistors	11			
Diode	1			
Capacitor	1			

μΑ741Y chip information

This chip, when properly assembled, displays characteristics similar to the μ A741C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		μ Α741C	μ Α741 Ι	μ Α741Μ	UNIT
Supply voltage, V _{CC+} (see Note 1)	18	22	22	V	
Supply voltage, V _{CC} (see Note 1)		-18	-22	-22	V
Differential input voltage, V _{ID} (see Note 2)		±15	±30	±30	V
Input voltage, V _I any input (see Notes 1 and 3)		±15	±15	±15	V
Voltage between offset null (either OFFSET N1 or OFFSET N2) and V _{CC} _			±0.5	±0.5	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total power dissipation		See Dissipation Rating Table			
Operating free-air temperature range, TA		0 to 70	-40 to 85	-55 to 125	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds	Case temperature for 60 seconds FK package			260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, or U package			300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, P, or PW package	260	260		°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or either power supply. For the μA741M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	500 mW	5.8 mW/°C	64°C	464 mW	377 mW	N/A
FK	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
J	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
JG	500 mW	8.4 mW/°C	90°C	500 mW	500 mW	210 mW
Р	500 mW	N/A	N/A	500 mW	500 mW	N/A
PW	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
U	500 mW	5.4 mW/°C	57°C	432 mW	351 mW	135 mW

electrical characteristics at specified free-air temperature, $V_{\text{CC}\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER	TEST	- +	ŀ	ι Α741C		μ Α74	1Ι, μ Α7	41M	UNIT	
	PARAMETER	CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
VIO	Input offset voltage	V _O = 0	25°C		1	6		1	5	mV	
٧١٥	input onset voltage	VO = 0	Full range			7.5			6	111 V	
ΔV IO(adj)	Offset voltage adjust range	VO = 0	25°C		±15			±15		mV	
الما	Input offset current	V _O = 0	25°C		20	200		20	200	nA	
liO	input onset current	10-0	Full range			300			500		
l _{IB}	Input bias current	V _O = 0	25°C		80	500		80	500	nA	
ΊΒ	input bias current	10-0	Full range			800			1500	ША	
VICR	Common-mode input		25°C	±12	±13		±12	±13		V	
VICK	voltage range		Full range	±12			±12			v	
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±14		±12	±14			
VoM	Maximum peak output voltage swing	$R_L \ge 10 \text{ k}\Omega$ Full range ± 12				±12			V		
VOM		$R_L = 2 k\Omega$	25°C	±10	±13		±10	±13			
		$R_L \ge 2 k\Omega$	Full range	±10			±10				
Δ, τρ	Large-signal differential	$R_L \ge 2 k\Omega$	25°C	20	200		50	200		V/mV	
AVD	voltage amplification	V _O = ±10 V	Full range	15			25			V/IIIV	
rį	Input resistance		25°C	0.3	2		0.3	2		МΩ	
r _O	Output resistance	$V_O = 0$, See Note 5	25°C		75			75		Ω	
Ci	Input capacitance		25°C		1.4			1.4		pF	
CMRR	Common-mode rejection	V _{IC} = V _{ICR} min	25°C	70	90		70	90		dB	
CIVIKK	ratio	AIC = AICKIIIIII	Full range	70			70			uБ	
kovo	Supply voltage sensitivity	V _{CC} = ±9 V to ±15 V	25°C		30	150		30	150	μV/V	
ksvs	$(\nabla \Lambda^{IO}/\nabla \Lambda^{CC})$	ACC = Ta A 10 T 12 A	Full range			150			150	μν/ν	
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA	
loc	Supply current	$V_{O} = 0$, No load	25°C		1.7	2.8		1.7	2.8	mA	
Icc	очрену синени	VO = 0, INO IOAU	Full range			3.3			3.3	111/	
PD	Total power dissipation	$V_{\Omega} = 0$, No load	25°C		50	85		50	85	mW	
ט ין	Total power dissipation	VO = 0, 140 load	Full range			100			100		

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the μ A741C is 0°C to 70°C, the μ A741I is -40°C to 85°C, and the μ A741M is -55°C to 125°C.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

PARAMETER		TEST CONDITIONS		μ Α741C			μ Α741Ι , μ Α741Μ			UNIT
	PARAMETER	1231 00	DNDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _r	Rise time	$V_1 = 20 \text{ mV},$	$R_L = 2 k\Omega$,		0.3			0.3		μs
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		5%			5%		
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 2 kΩ$, See Figure 1		0.5			0.5		V/μs

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	ļ	ι Α741Υ		UNIT	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNII	
VIO	Input offset voltage	V _O = 0		1	6	mV	
$\Delta V_{IO(adj)}$	Offset voltage adjust range	V _O = 0		±15		mV	
I _{IO}	Input offset current	V _O = 0		20	200	nA	
I_{IB}	Input bias current	V _O = 0		80	500	nA	
VICR	Common-mode input voltage range		±12	±13		V	
V	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	±12	±14		V	
VOM	waximum peak output voltage swing	$R_L = 2 k\Omega$	±10	±13			
A_{VD}	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$	20	200		V/mV	
rį	Input resistance		0.3	2		МΩ	
r _o	Output resistance	$V_O = 0$, See Note 5		75		Ω	
Ci	Input capacitance			1.4		pF	
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	70	90		dB	
ksvs	Supply voltage sensitivity ($\Delta V_{IO}/\Delta V_{CC}$)	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V}$		30	150	μV/V	
los	Short-circuit output current			±25	±40	mA	
Icc	Supply current	$V_O = 0$, No load		1.7	2.8	mA	
PD	Total power dissipation	V _O = 0, No load		50	85	mW	

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, $V_{CC}\pm$ = ±15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	μ Α741Υ			UNIT
	FARAINETER	TEST CONDITIONS	MIN	TYP	MAX	ONIT
t _r	Rise time	$V_{\parallel} = 20 \text{ mV}, R_{\perp} = 2 \text{ k}\Omega,$		0.3		μs
		C _L = 100 pF, See Figure 1		5%		
SR	Slew rate at unity gain	V_{I} = 10 V, R_{L} = 2 k Ω , C_{L} = 100 pF, See Figure 1		0.5		V/μs

PARAMETER MEASUREMENT INFORMATION

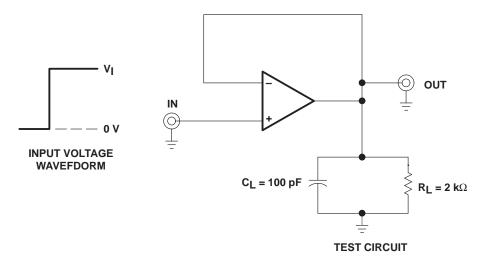


Figure 1. Rise Time, Overshoot, and Slew Rate

APPLICATION INFORMATION

Figure 2 shows a diagram for an input offset voltage null circuit.

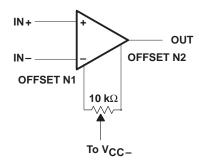
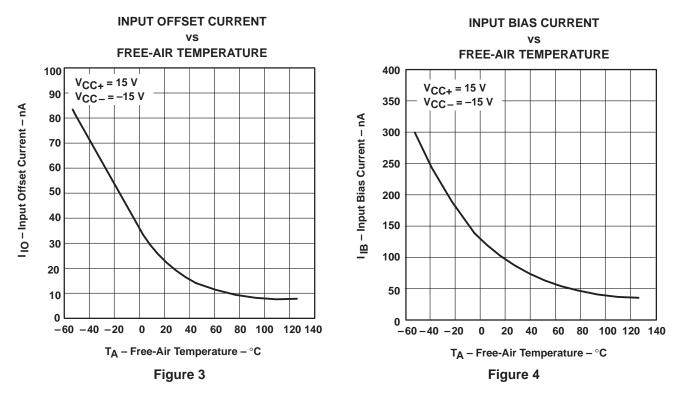
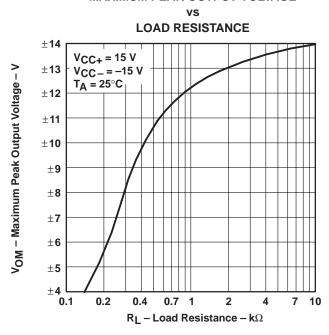
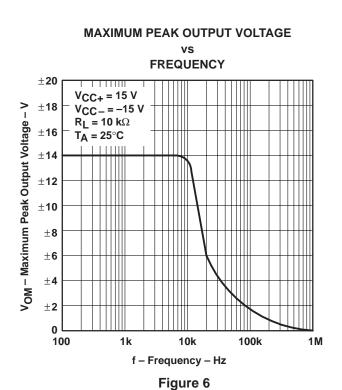




Figure 2. Input Offset Voltage Null Circuit

TYPICAL CHARACTERISTICS[†]

MAXIMUM PEAK OUTPUT VOLTAGE



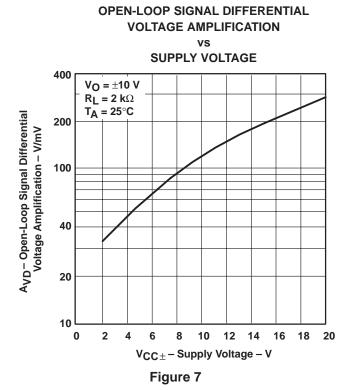
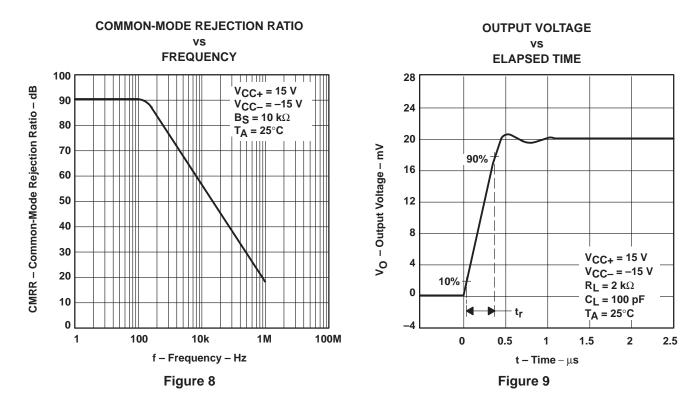

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 5

TYPICAL CHARACTERISTICS



OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

vs **FREQUENCY** 110 $V_{CC+} = 15 V$ 100 V_{CC}_ = -15 V 90 A_{VD} - Open-Loop Signal Differential $V_0 = \pm 10 \text{ V}$ $R_1 = 2 k\Omega$ 80 Voltage Amplification - dB TA = 25°C 70 60 50 40 30 20 10 0 -10 100 10k 100k 1M 10 1k 10M f - Frequency - Hz

TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

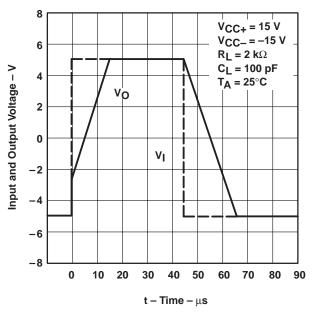


Figure 10

i.com 27-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA741CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741CJG4	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
UA741CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
UA741CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA741MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
UA741MJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
UA741MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
UA741MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

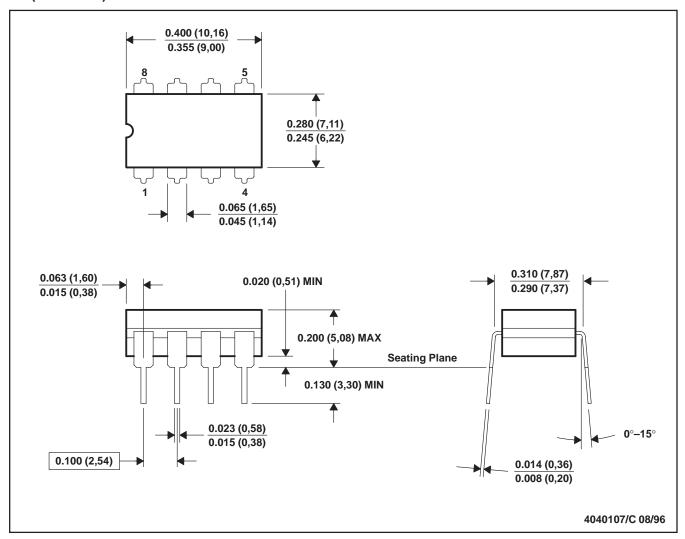
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

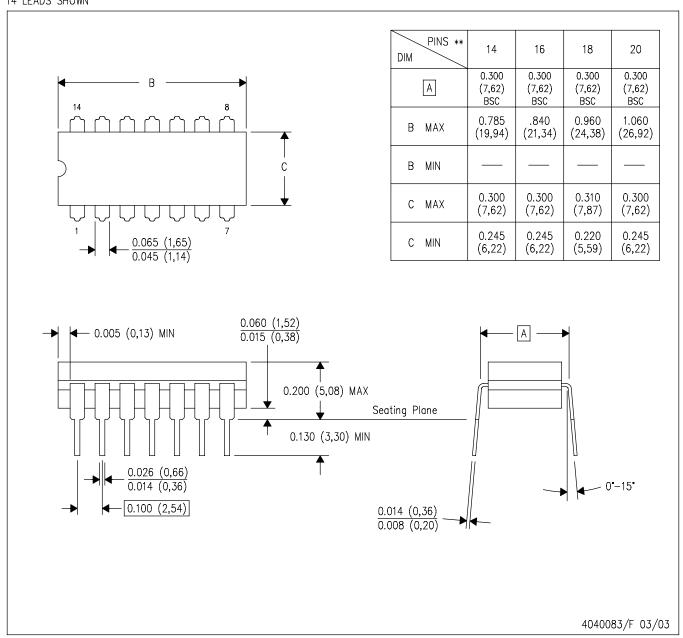
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


PACKAGE OPTION ADDENDUM

27-Feb-2006

In no event shall TI's liability arisin	a out of such information	avecad the total purch	eaco prico of the TI part	(c) at issue in this doc	sumant sold by T
In no event shall TI's liability arisin to Customer on an annual basis.	g out of such information	exceed the total purch	lase price of the 11 part	(s) at issue in this doc	currient sold by T

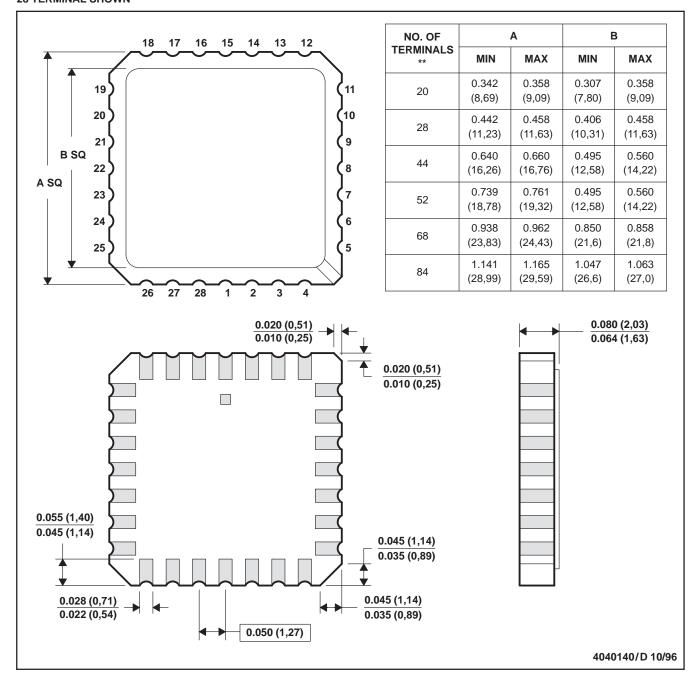
JG (R-GDIP-T8)


CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

14 LEADS SHOWN

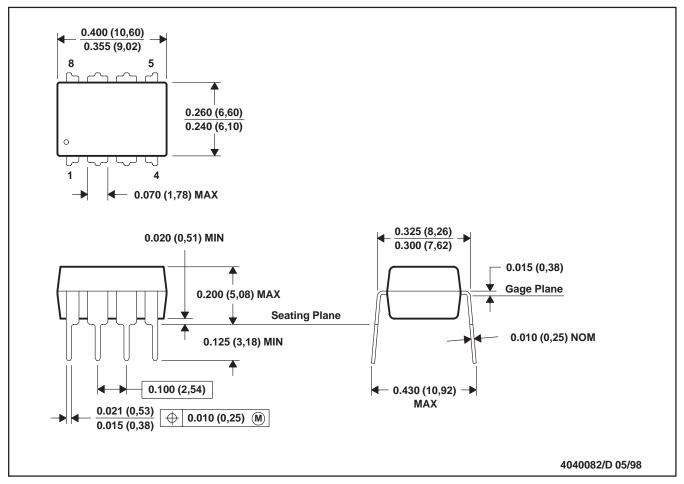

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

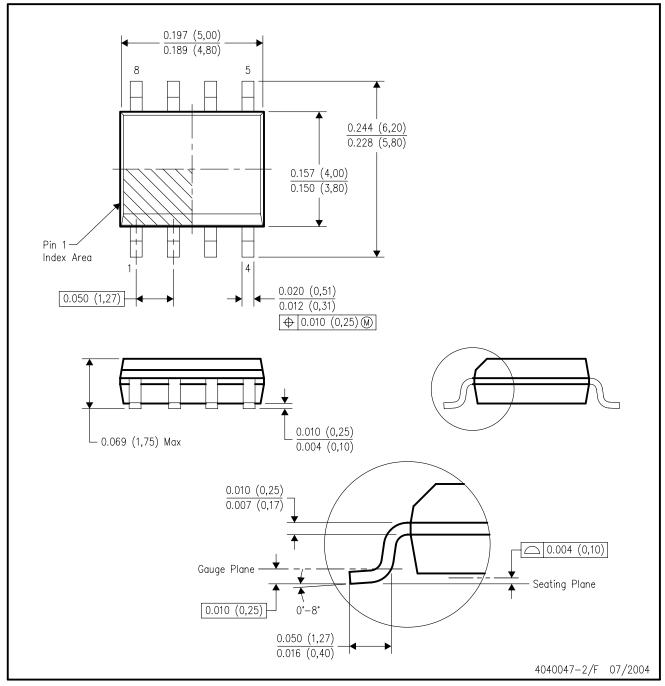
LEADLESS CERAMIC CHIP CARRIER


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

P (R-PDIP-T8)

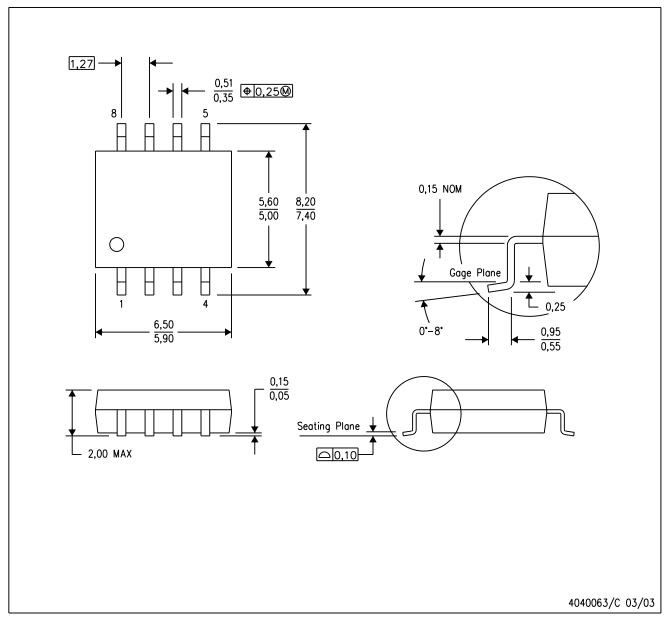
PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated