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Physics 3150, Laboratory X 
January 22, 2014 

Ann Onymous (lab partner: John Doe) 

A. Procedure and Results 

A.1. Voltage and current for a resistor bridge 

We constructed a resistor bridge circuit as indicated in the lab writeup.  Its schematic 

diagram is also shown below in part B. We measured the current through each of several 

load resistors Rload using a DMM in series, and the voltage across each using a DMM in 

parallel.  The resistors have a tolerance of 5%.  Table I summarizes the results. 

Table I.  Voltage and current data for the resistor bridge, for various resistors 
Rload.  Calculated current Icalc is described in text.  Estimated DMM uncertainties 
are 0.005 V for Vload and 0.05 mA for Iload. 

R () Vload (V) Iload (mA) Icalc (mA) 
680 1.63 2.4 2.40 
820 1.82 2.2 2.22 

1000 2.05 2.1 2.05 
1800 2.71 1.5 1.51 
2000 2.87 1.4 1.44 

22000 4.29 0.2 0.20 

The DMM uncertainties are set by the finite resolution of the readout.1  Expressed as 

percentage errors they range from 2% to 25% for the currents, but only from 0.1% to 

0.3% for the voltage.  Because the currents can be calculated from the voltages using the 

known resistance, /load load loadI V R , the current readings are actually superfluous.  The 

calculated values Icalc are shown in the last column of in Table I.  Their uncertainty is set 

by the 5% resistor tolerance, though this could be reduced by measuring R directly. 

These results are plotted in Fig. 1 together with a linear regression fit, which lies well 

within the error bars. For this fit the reduced value of  is 0.3, well below the expected 

value of ~1, 2 indicating that the statistical uncertainties are somewhat overestimated. 

The coefficients of the fit give the parameters Rth and Vth of the Thévenin equivalent 

circuit (1212  and 4.54 V), which can be compared with the results of Section A.2 

below.  This method is more time-consuming but has the advantages of being non-

destructive3 and yielding enough statistical data to reliably estimate the uncertainties.4  
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A.2. Thévenin equivalent circuit 

We measured the short circuit current Isc= (3.8 ± 0.05) mA and the open circuit 

voltage Voc = (4.53 ± 0.005) V.  Their ratio predicts a Thévenin equivalent resistance of 

Rth = (1200 ± 16) .5  We then constructed the equivalent circuit with a 1.2 k (±5%) 

resistor and re-measured the data of Table I using the same set of resistors as before, 

obtaining the results shown in Table II. 

Table II.  Voltage and current data for the Thévenin equivalent circuit. The 
measured quantities and uncertainties are as in Table I. 

R () Vload (V) Iload (mA) 
680 1.63 2.4 
820 1.83 2.2 

1000 2.03 2.1 
1800 2.69 1.5 
2000 2.84 1.4 

22000 4.29 0.2 
 
 

        Current (A) 
 

Fig.1 . Voltage vs. current for the resistor bridge circuit of part A.1, with a 
linear regression fit to determine RTh  and VTh. 
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A comparison with the results of Section A.1 is shown in Fig. 2.  The result is 

gratifying; indeed it is much closer than the experimental errors and tolerances would 

lead one to expect. The fit results are hard to distinguish from those of the original 

resistor bridge circuit6—they fall within a few parts per thousand. 

 

A.3. Familiarization with the oscilloscope 

The TA specified that no writeup is required for this section, as the main objective 

was simply to gain experience with the equipment. 

B. Questions 

B.1. Direct solution using Kirchoff’s laws 

For reference and nomenclature the circuit is sketched below.  The load resistor Rload 

is not shown, but it connects between points 1 and 2.  Using the “mesh loop” method, we 

write three loop equations for the currents I1, I2, and I3: 

 Do this (1) 
 yourself! (2) 
 (But ask for help if needed.) (3) 

 
 

        Current (A) 
 

Fig. 2. Voltage vs. current measurements for Parts A.1 and A.2, with linear 
regression fits to each indicated by dotted lines. 
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These equations can be solved to find the current Iload = I3 – I2 that flows through the 

load resistor, and the corresponding voltage Vload = Rload Iload.  This is most easily done by 

using a computer mathematics package such as Mathematica for symbolic solutions, or 

Matlab or SPICE for numerical solutions.7  The solution for Iload is 
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Simplifying by substituting numerical values (with SI units),6 

 
6

5314.2

1.4344 10 1173load
load

I
R


 

. (5) 

Note that Eq. (5) includes everything we need to know to find the Thévenin 

equivalent.  Setting Rload to infinity gives the open-circuit voltage, VTh = 5314.2/1173 = 

4.530 V.  Setting it to zero gives the short-circuit current, Isc = 3.70 mA, and the ratio of 

these results yields the Thévenin equivalent resistance, RTh = 1223 .  Comparing these 

to the results of Parts A.1 and A.2, we again find excellent agreement, much better than 

the resistor tolerances of 5% would suggest.  

B.2. Remarks on accuracy 

This subject was already discussed in some detail in the text—in general, the results 

agree more closely than the resistor tolerances of 5% would suggest.  The input 

impedance of the voltmeter is a resistance of ~107  which will act in parallel with Rload.  

In the worst case when Rload ~104  , this is only a 0.1% perturbation. 

Fig. 3. Sketch of the bridge circuit, adapted from the lab writeup 
provided on the Physics 3150 web page. 
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Likewise the ammeter input impedance is about 10-1  in series with the 

measurement terminals, so for the worst case when Rload ~102 , it again causes a 

perturbation of only about 0.1%. 

B.3. Peak-to-peak vs. rms voltage 

In general it is not important which measure of ac voltage is used for comparisons, so 

long as the usage is consistent.  However, as a practical matter digital scopes calculate the 

rms voltage by integrating root-mean-squared voltage over the entire waveform, which 

averages out noise fluctuations, whereas the peak-to-peak mesurements are very sensitive 

to noise spikes.   In the present case this makes little difference, as the noise level was 

small. 

For comparison with dc measurements by a DMM the rms voltage is required.  If the 

peak-to-peak value was measured instead, it can be converted by dividing by 2 2 .  It 

was also evident in the lab that DMMs are clearly not designed for measuring ac signals 

at rf frequencies, or indeed anything far in excess of 60Hz. They show a decreasing 

reading for increasing frequency, even for a constant-amplitude input. 

 

 

Notes 
                                                 

1 It can be difficult to estimate errors, and a detailed statistical analysis of the data set is not 
always necessary, or even possible. In this case the DMM is not being read to its full 3.5 digit 
resolution, so it is a pretty safe assumption that the uncertainty does not exceed 1/2 in the last 
displayed digit.  Thus the uncertainties listed here should be an upper bound.  Under other 
circumstances it might be necessary to look up or measure the absolute accuracy of the 
instrument.  If so, this would be a systematic uncertainty, not a random or statistical uncertainty. 

If a reading fluctuates, it’s helpful to estimate the range of the fluctuations, taking an 
approximate average as the reading, with an uncertainty based on the fluctuations (in principle it 
should be based on the rms deviation and the number of samples used; in practice it’s often 
easiest to repeat the first measurement three or four times to see how much it varies. 

Of course, systematic errors are possible in electronics just as in any other experimental 
science: voltmeters can be miscalibrated, component values can be inaccurate, and the measuring 
instruments can perturb the circuit due to the finite input impedances.  These issues are often 
important, and in most cases we will encounter, they cause uncertainties much larger than purely 
statistical fluctuations. 
 

2 A standard statistical measure of the quality of a least-squares fit is the “2 statistic”: the 
mean squared deviation of the data from the fit, with the deviation of each point expressed as a 
multiple of its uncertainty:  
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If the uncertainties are estimated accurately, each term in the summation should have a value 

of approximately one.  With this perspective in mind, but refined by a more quantitative analysis, 
statisticians define the reduced 2 statistic to be 2 / (N-M), where N is the number of data points 
and M is the number of adjustable parameters used in the least-squares fit.  The expected value of 
this reduced chi-squared statistic can be looked up in statistical tables: it is just slightly larger than 
one, with a slight dependence on the number of samples.  So the rule of thumb is that if the 
reduced chi-squared is close to one, the fit is good. 

This degree of statistical sophistication is normally not really required in your lab report, 
especially if your error bars behave as expected, encompassing the fit about 2/3 of the time.  For 
further information ask your instructor or refer to a text, such as the ones listed in Note 4 below. 
 
3 It is often not safe to place an ammeter directly between two terminals; in the present case this 
works because the resistor network restricts the current to well below the limit of the DMM, 
typically 1 A. 
 
4 We don’t show the uncertainties here, but formulas for estimating the uncertainties in the slope and 
the intercept are given in most books on data analysis, for example Bevington and Robinson,  
Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., or Taylor, An Introduction 
to Error Analysis, 2nd Ed.  Unfortunately many pre-programmed fitting routines do not provide 
these estimates, leaving the researcher to his own devices.  One commonly-used exception is 
Origin graphics, which does provide estimates of the uncertainties of the fit results. 
 
5 Formulas for the propagation of uncertainties are also readily available in Bevington or Taylor 
(see Note 4). 
 
6 The Course staff doesn’t always get things right, either!  The fits in Fig. 2 would be much easier 
to distinguish if we made good use of colors or differing line types.  In addition, the voltage used 
for the measurements and to obtain Eq. (5) from Eq. (4) is nowhere specified. 
 
7 See www.partsim.com for a free graphical interface providing SPICE simulation of basic 
circuits. 


