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Physics 3150, Laboratory 3 
RC and RLC Circuits 

 
February 8 and 10, 2016 

Last revised February 10, 2016 by Ed Eyler 
 
Purpose: 

1. To study the dynamics of RC circuits, and some of their common applications. 
2. To experimentally investigate resonance in an RLC circuit. 

 
References: 

Chapter 2 of Eggleston, or Chapters 2 and 3 of Meyer, or Chapter 1 of Horowitz and Hill for a 
more concise and practical viewpoint. 
 
Equipment: 

1. Function generator with frequency sweeping capability (e.g., Instek AFG-2105/2112). 
2. Digital oscilloscope, preferably one that can directly measure phase shifts. 
3. Breadboard with power supplies and hookup wire. 
4. A selection of 1/4W or 1/2W resistors. 
5. 200 pF, 0.01 F, and 0.1 F capacitors. 
6. High-Q inductors with 2 mH < L < 50 mH. 

 
 
 
I. RC Circuits 
A. Exponential time constant 

 
1. Build the circuit above and drive it with a 50 Hz square wave.  Monitor the output on the 

oscilloscope and make sure that you are using dc coupling. 
2. Measure the time constant by determining the time for the output to drop to 37% of its maximum 

value after the falling edge of the square wave.  Notice that this is not the same as the fall time 
defined on many built-in measurement functions, which is typically measured from 10% to 90%.  

3. Similarly, measure the time for the output to rise to 63% of its final value after the rising edge of 
the square wave.  Is it the same time as in part 2, within experimental error? 

4. Compare the results to the calculated RC time constant. 
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B. Integrator 

1. The above circuit functions as an integrator for signals with sufficiently short time scales.  Drive 
the circuit with a 10 kHz square wave.  Qualitatively describe the output wave form and explain 
why it has the shape you observe.  Quantitatively explain the p-p output voltage you measure.  
You may have to adjust the output level of the function generator to get good results. 

2. Now drive it with a triangle wave.  Again, qualitatively describe and explain the output wave 
form. 

3. This is the same circuit as in Section I.A, where the output doesn’t look much like an integrator.  
Under what conditions does it accurately integrate the input?  Determine this experimentally, and 
in your writeup, explain your result using the relevant circuit theory. 

4. What is the input impedance of this circuit at zero frequency?  At very high frequencies? 
 
C. Differentiator 

 
1. Build the circuit above and drive it with a 100 kHz square wave.  Again, describe and explain the 

output wave form.  Your writeup should include a quantitative explanation for the waveform and 
the maximum output voltage amplitude that you measure. 

2. Do the same for a triangle wave and a sine wave. 
3. What is the input impedance at zero and infinite frequency? 

 
D. High-pass filter 
 

1. The above circuit can also be viewed as a high-pass filter — it blocks low frequencies.  This is 
exactly what’s used when you set an oscilloscope input to ac coupling, although in this case the 
low frequency cut-off is below 100 Hz.  In this section, you will estimate the value of the 
“blocking capacitor” in the oscilloscope, assuming that the input resistance is 1 MΩ, which is 
typical for an oscilloscope without a probe. 

2. Connect a signal generator directly to your oscilloscope, with a cable rather than a probe.  Vary 
the frequency in the range from about 5-100 Hz until you find the value where the response is 
reduced by 3 dB when you switch the scope from dc to ac coupling. 

3.  Calculate the value CB of the internal blocking capacitor from your measurement of f3dB.  Be 
careful not to confuse radians with cycles/sec, or decibels in power units with decibels in voltage 
units. 
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II. RLC Resonance 
 
A. Principles 

The resonant behavior of RLC circuits is discussed in detail in Section 2.6.5.3 of Eggeleston and 
Section 3.6.2 of Meyer, as well as in lecture, so only a brief synopsis is needed here.  The circuit 
configuration in this instance is a series-parallel combination, chosen to avoid problems with 
excessive loading of the signal generator: 

 

The output voltage is found by treating the circuit as a complex voltage divider, in which ZLC 
appears in series with ZR: 
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Note that the frequencies  and 0 are expressed in radians/s, not in Hz.  The resonance 
frequency is 
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The quality factor Q, the ratio 0/ of the resonant frequency 0 to half-power width  of the 
resonance curve 
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B. Procedure 

Construct an LC-parallel RLC filter as shown in the schematic diagram in Part A.  Drive it with a 
sine wave, varying the frequency through a range that includes the circuit’s resonance (which 
should be somewhere between about 3 KHz and 100 KHz depending on the value of L).  Some 
of the inductors are difficult to insert in the breadboards, so be patient and try not to force them. 
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Find the resonant frequency 0.  Measure the amplitude of VLC as a function of frequency, taking 
enough points to make a respectable plot.  Measure the phase shift of VLC relative to the input 
voltage at resonance, and also at frequencies chosen to be well below resonance and well above 
resonance.  Note that the phase shift can be used to find the resonance frequency considerably 
more accurately than a direct attempt to maximize the amplitude.  Finally, measure the series 
resistance RL of the inductor with an ohmmeter; you will need this to answer the questions 
below.   

For an elegant display of the resonance curve, learn to set up the frequency sweep option on one 
of the better signal generators to obtain the entire response curve in a single trace.   

Just for fun, try using this filter to find the Fourier components of a square wave by gradually 
reducing the signal generator frequency so that the filter circuit passes through resonance with 
the successive Fourier components at , 3, etc.  Since the filter’s resonant frequency stays 
fixed, an output should be observed each time one of the Fourier components matches this 
resonant frequency. 
 
C. Questions for Part II 

1. Plot the measured response of the parallel RLC resonant circuit.  What is the observed Q 
factor, taking into account that it is defined in terms of the half-width in power, not in voltage?  
Compare your results with a calculated response curve for the same resonant frequency and Q. 

2. Calculate the expected phase shifts at resonance, as well as at high and low frequencies, and 
compare with what you measured. 

3. Can you account for the measured value of Q by using the values of the resistor R and the 
measured series resistance RL of the inductor, or are additional loss mechanisms playing a role? 


