Notes:

Physics 3150, Laboratory 10
Microcontrollers and Embedded Control

April 4 and 6, 2016
Last revised April 2, 2016, by Ed Eyler

(1) This is the last organized lab. The rest of the semester will be devoted to your final projects.

(2) You may wish to leave your microcontroller wired on a breadboard after the lab ends, if you
are considering a final project that might use it.

Purpose:

1.

To build a very simple but complete single-chip computer system, interfaced to a serial
LCD display.

To learn the process of compiling and loading a program, making a few simple changes
in a provided program to display values from a 12-bit ADC built into the microcontroller.
We keep this simple, so you don’t need to learn the full programming language (standard
C, with device-specific extensions) unless you want to use it for a later project.

To add an external 12-bit DAC using a fast “SPI” serial interface, which uses only three
wires.

References:

Documentation from Microchip, Inc. The basic data sheet is available on the course web page,
and much additional information can be found at www.microchip.com.

Equipment:
1. Digital oscilloscope.
2. Breadboard with logic switches, logic indicator LEDs, and 5V supplies.
3. 16-bit general-purpose microcontroller in 28-pin package, Microchip dsPIC30F3013.
4. 10 MHz crystal oscillator module, ECS-2200BX-100.
5. Two-line LCD display (5V), Sparkfun LCD-09395.
6. Decoupling capacitors, 0.01 uF to 0.1 «F.
7. Dual 12-bit DAC with SPI serial interface, Microchip MCP4822.
8. PICkit3 programmer from Microchip, Inc., and a 6-pin right-angle header to allow
breadboard operation.
9. Desktop PC running Microchip MPLAB with XC-16 compiler, for program develop-

ment and microcontroller programming.

1. Basic Microcontroller operation with an LCD display

The dsPIC30F3013 is an inexpensive (about $5) self-contained computer containing not only a
16-bit processor and a small random-access memory (2 kB), but also a non-volatile program
memory and numerous internal interface modules, including serial interfaces, counter-timers, dig-
ital interface lines, and a multiplexed 12-bit ADC. Most of its 28 pins can be assigned to any of
several different input/output functions, making the chip quite versatile. The processor is designed
to execute 16-bit instructions at up to 30 MHz, and is optimized for programming in the C lan-
guage. Here we will operate the controller with a 20 MHz instruction cycle frequency. A major
advantage of this particular processor series is that it can operate from a 5 V supply, with TTL-
compatible inputs and outputs. Closely related 32-bit microcontrollers are available in the Physics
3150 lab that are both more powerful and less expensive, but they generally operate with 3.3 V
supplies and incorporate only a handful of 5V-tolerant input pins.

In this portion of the lab, you will connect the microcontroller in a minimal configuration, and by
running a pre-stored program, use it to display a running count on an external LCD display panel.
This circuit could easily be included as part of a larger device — this is the key idea of imbedded
control, in which a tiny computer is included as a routine component in a circuit design.

All that’s necessary is to wire up the lower portion of the circuit shown below, without the optional
12-bit D-A converter. The four-pin crystal oscillator is used to provide a stable time base The
chips are somewhat static-sensitive, so you should try to avoid static electrical discharges on dry
days. For the programming header, use a 6-pin right-angle header, and orient it as shown in the
photo on the next page. The program will start automatically when power is applied, and can be

U1 MCP4822
11vop wvouta g TOUTA
c1 2 | — AVss o
0.01 ”EE cs VOuTB {VoUTD
T a2+ sck
GND - 4. spi LDAC 42
VDD
Optional: 12-bit D-A Converter _'_—'_GND
R1
33K
U2
vDD] dsPIC30F3013
MCLR)
RBO/ANOA REF
U3 ECS-2200BX-100 13 13
VDD RB1/ANTANREF- f—=— ADC_CHO_Input
c2 20
1| 8 2 | VPP 4
—— TNH VDD :Em uF AVDD RB/AN2 [=im—se
——"- RB3/AN/CNS [o—i——se
. 5 - o RE4/ANS. o
GND OUT OSC1/CLKI RB5/ANS f——
— —10 % oscerets RBG/ANG [—28—s
GNDZ 10 MHz Osc RBT/ANT 25—
VDD
«% UIATK/T2CKRC13 OC1/RBS 2‘;
U1ARX/TICK/RC14 OC2/RBY |[~=2—we ClockPWM
J2 [
RX | 211 ya1x PGCUIRX/SDIT e 5
ND g —22.f zRx PGD/UITX/SDO1 1; g Header for PICKit 2
+5 " SCK1ANTO SPIck -
INT2/RD@
Sparkfun_LCD-09067 — c o rD8 |18 DA LE 1
- R2 82984 —_— 1
510 -
@2 [y
Len Note 1: Port signals with amows are for optional external use or for DAC (above)
— GND b+ UConn Physics, E. Eyler
D1 - - -
§ Title: Microcontroller for Physics 3150
Project: PHYS3150 File: Root.sch Page: 1/1
- Number: FS-3.1b Date: March 29, 2014 Rev.: 1.0

restarted by grounding the MCLR line on pin 1. The program listing appears at the end of this
writeup. Basically, it does three things:

1. Initialize the microcontroller by specifying how the clock input is to be utilized, and which
pins are to be used as digital inputs, digital outputs, or analog inputs.

2. Set an internal 16-bit timer, together with a built-in “Output Compare” device, to generate
a clock with a period of 256 ms on the OCI line. The timer/comparator is actually config-
ured as a programmable pulse-width modulator, which could be used for control of external
devices such as heaters or dc motors. For present purposes it is set to a duty cycle of 25%.
The timing on OC1 is determined by hardware, not by program execution, so it is extremely
precise. The period should be accurate to about 10 parts per million!

3. Using an internal serial interface (a universal asynchronous receiver/transmitter, or
UART), display the present count value on an external display. The display can also show
arbitrary alphanumerical characters, with two lines of 16 characters each. The computer
code to provide a buffered serial output stream is fairly complicated, and is in a separately
compiled module titled UART30.c, which you will not need to modify.

le L.LLLLLTTTT]

£
?

11. Programming the microcontroller to display ADC data

The provided program also includes a function that can digitize analog input data using the built-
in 12-bit A/D converter in the microcontroller. It’s intentially set up so that by making a trivial
change to the C code, you can substitute the ADC values for the counter values that are displayed
by default. The ADC will then be sampled and displayed every 256 ms, which is very convenient
for human observation. The ADC itself is capable of operation at up to 100-200 kHz.

Open the program in the MPLAB programming environment by double-clicking on “Phys3150.c”
under “Source Files” in the project window at the upper left. In the editing window, look for the
primary execution loop that appears on the top of page 3, starting with while (!Done) {}.

All that’s needed is to change “count” to “adcVal” in the argument of the function call to sprintf().
The edited line should read sprintf (outstr, “%Value: %-5u”, adcvVal) ;.

To compile and load your new program, you will need to attach a PICkit3 programmer to your
microcontroller. It attaches to the right-angle header, but note that the connector must be oriented
so that the programmer is upside-down, since it is otherwise too thick to fit without pulling the
header out of the breadboard.

Once your programmer is attached to the breadboard and to a USB connector on the PC, you can
compile your modified program and load the resulting machine-language code onto the controller
by selecting “Run” from the main menu at the top of the MPLAB user interface window. The
display window at the bottom of the page will indicate the progress as your program compiles,
then loads into binary form, then is programmed onto the chip. If anything goes amiss, ask your
TA for assistance.

Attach a variable dc voltage to the ADC_CHO_Input pin (pin 2 of the dsPIC30F3013), and watch
the corresponding 12-bit DAC output on your display. Be sure not to exceed 5.1 V at the input, nor
to apply negative voltages, since either condition will likely cause damage to the microcontroller. If
you use, say, a 0—20 V supply, add a voltage divider to make sure that you don’t exceed 5 V.

111. Adding an external 12-bit DAC with an SPI interface

One feature not included in the dsPIC30F3013 is a D/A converter. However, the MCP4822 is a
simple 8-pin chip that provides a pair of 12-bit DACs, designed for easy interfacing with a high-
speed SPI interface. Unlike the old-fashioned serial data conventions, the SPI interface includes
both a data line and a clock signal, indicating exactly when the data bits can be read. This allows
data transfer rates up to 50 megabits/s.

Your program already includes an initialization routine for the SPI interface, accomplished using
library functions provided by Microchip. All you need to do to use a DAC is:

1. Wire the DAC into your circuit, as indicated at the upper-right-hand corner of the schematic
diagram. We will need only DAC A, so the output signal will appear at the VOUTA port
on pin 8. Three wires are needed for an SPI interface: a data line, a clock line, and a “chip
select” line CS that informs the chip that it is the one presently being addressed by the
interface. It also serves as a data latch enable for the DAC.

2. Make a further modification to the program by taking the count that was originally sent to
the display panel, and instead sending it to the DAC. This can be done by inserting a call
to the function Write. DAC(0,value). The code for this function is already provided in the
program. In addition, it would be nice to use a faster clock to generate a more rapid ramp.
You can decrease the Timer 3 period by changing tmrPeriod from 20000 to something like
6—10. However, you will also need to “comment out” the code that writes to the LCD
display via UART2, because it will otherwise cause an overflow that will hold up program
execution.

3. Now repeat the compilation and programming cycle. The SPI data output is shared with
the programming intput, so the PICKit3 programmer must be disconnected before
the DAC will operate properly. Do so, and observe the ramp output. Only the lowest-
order 12 bits of the count are actually used, so the output should be a repetitive sawtooth
ranging from output code zero (0 V) to output code 4095 decimal (4.096 V, derived from
an internal voltage reference).

D:/E3/C/PIC/Phys3150.X/Phys3150.c

JrE ke kk kA kkk ok hhkk ok ko d b bk b b dk ko kkkkkkk ok ok kk ok ok hokok ok

* Phys3150.c

*

* Written for the dsPIC30F3013 16-bit microcontroller from Microchip,using
* the Microchip MPLAR XC-16 Compiler in its free ceonfiguration.

* The program demonstrates the timer, output compare register, A/D converter, UART serial

* interface, and SPI cserial interface. It is written to be easily expandable for
* use in student projects --—— for example, the timer/compare setup implements a pulse-width
* modulator that could easily be modified to contreol a heater or motor.

* Hardware interrupts are used only in the "hidden”™ code of

* the UART management routines, which are in a separately compiled file,
* to make the flow of execution easy to follow.

*

* In the main program (function main()), the primary execution loop is the
* code segment beginning with while (!Done}. It executes indefinitely.

* Last modified by E. Evler, University of Connecticut,
* on 4/2/14

FoEhk kA kA kAR R KA A LA A LTI A A I F A F A FFF IRk R AR L LRk Kk h kxS

/* Specify some standard header files to ke included for compilation */
#include <p30fxxxx.h>

#include <libpic30.h>

#include <string.h>

#include <stdioc.h>

#include <stdlib.h>

#include <timer.h>

#include <outceompare,h>

#include <spi.h>

/* Define some numerical constants and mnemonics */

#define F CY 20000000// Frequency of instruction clocck (=Fosc/4)
#define CYCLES MSEC (F_CY/1000)// Number of cycles per msec
#define DAC_CS PORTDbits.RD8

#define LED PORTDbits.RDS

/* The following configuration data is for special registers on the dsPIC30F3013 chip */
_FO3C(C3W _F3CM OFF & ECIO PLLB);// Use external oscillator =8, no switching
_FWDT (WDT OFF);:// Disable watchdog timer

_FBORPOR (PEOR_OFF & PWRT_16 & MCLR_EN); // 16 ms timer, enable MCLR reset
_FGS(CODE_PROT _OFF);// Code is not protected

/* Declare prototypes for functions in this source file */
int Write DAC lunsigned int DAC, unsigned int wval);
vold Setup ADC(void};

/* THese are prototypes for functicns in separately compiled scurce files*/
extern void delay3Z (unsigned long cycles);

volid delaymsec (unsigned long duration);

voild itocafwi(int m, int fwidth, char s[]);

int UART2 CharIn{void):

vold UART2 Init (veold);

void UARTZ2_StringOut (char* outstr);

int UART2_CharOut (char outchar):

/* Define global wvariables */
unsigned long F Cy;//Microcontroller cycle freqguency

1.1 of 4 2014.04.02 22:09:46

D:/E3/C/PIC/Phys3150.X/Phys3150.c

FEEFIFE I A A GG AR A AR A A A A A A F A A A A Ak k r kA kA Rk h A A

main{);

AAERFF AR IR A KA IR A AR AR I AR R AR AR T F AR IRk kRIS AR ARk A E [

int main (void}

{

unsigned int count;

char outstr[40];

char Deone;

unsigned int tmrPeriod, ocPeriod; //Periods for Timer Z and output comparator
int adeval; //Latest data wvalue from the A/D converter

F Cy = F CY;// Initialize clock frequency for external functions

/* Start initializing: Set up the processor for output on Port B */

PORTE = 07 // Reset PORTB latch
ADPCFG = (xFFFE;// Set BADC pins to digital except AN]
TRISE = 0x03; // Set PORTEB as outputs except for RBEO, RBI1

/* Alsoc set up Port D, with bits 8 and 9 as outputs */

TRISD = 0x0FF;

/* Initialize hits D8 (DAC select) and D9 (LED), both high */
DEC_CS = 1;

LED = 1;

/* Wait a while for external hardware initialization/warmup */
delaymsec {1400} ;

/* Now set up serial transmission on UARTZ for the external Sparkfun LCD display */
UARTZ2 Init{);

UARTZ_stringOut ("\=FE\x01"}; //Clear the display
UARTZ_StringOut ("Hello™)s
delaymsec {1000} ; //Hold the welcome message for a second

/* Initialize the S5SPI serial interface for opticnal use with an MCP4BZ2 dual 12-bit DAC.
Disable interrupts and use a 20 MHz clock. */
ConfigIntSPIl(SPI_INT_DIS);
OpenSPI1 (FRAME ENABLE OFF & ENABLE SDO PIN & SPI _MODEL6 ON &
SPI CEE ON & SLAVE ENABLE OFF & CLK POL ACTIVE HIGH &
MASTER ENABLE ON & SEC PRESCAL 1 1 & PRI PRESCAL 1 1,
SPI_ENABLE & SPI_IDLE CON & SPI_RX OVFLOW_CLR};

/* Initialize the built-in ADC for acquisition on pin ANO, triggered by Timer 3 */
Setup_ADC{):

/* Initialze Timer 3 and output comparator 0OCl to provide a PWM output on pin OClL.

* The periods are measured in units of 12.8 micreseconds for a 20 MHz instructicn clock,
* and will be accurate within 10-20 parts per million. */

tmrPeriod = 20000; //8et the timer period using a Microchip-supplied library rcoutine

OpenTimer3 (T3 ON & T3 GATE OFF & T3 PS 1 256 & T3 SOURCE INT,

tmrPeriod-1}; //Note that actual period is count-1, so we adjust accordingly

ccPeriod = tmrPeriod/4; //5et PWM 'on' time to 25% of the clock cycle

//Call another library routine to set up and start the cutput comparator unit

OpenOCl (OC_TIMER3_SRC & OC_PWM FAULT PIN DISABLE,ocPericd,ccPeriod):

/* Now enter an infinite locp and Jjust keep running things. */

Dene = 0;
count = 0;

2.1 of4 2014.04.02 22:09:46

:/E3/C/PIC/Phys3150.X/Phys3150.c
while (!'Done) |{
// Check for a Timer 3 "tick™ by looking at its interrupt flag, and update everything
/7 if a timer reset event has just occurred

if (IF30bits.T3IF) //The timer 3 interrupt flag has been set
count++; //Increment the count
IF50bits.T23IF = 0y //Reset the timer flag to awalt the next tick
LED = ~LED; //Toggle the LED asg a gquick wvisual check that we are here

//Read the ADC, which is triggered by the timer
while (!ADCONlbits.DONE) {}; //Wait if the conversion is presently in progress
adcval = ADCBUFO; //Read the 12-bit walue, storing it as adcval

// Write to the LCD display. For data rates > 50 Hz, comment out this section.
UARTZ_StringOut ("\xFE\x80"); //Reset the Sparkfun display cursor to row 0, column 0
//Write an unsigned integer value to text string outstr, in a 5-character field width
sprintf (outstr, "vValue: %-5u", count);

UARTZ_StringOut (cutstr); //5end the text string to the display

}// end of while (!Deone)

/* We should never reach this point, but if we do, shut down */

while (1) ;// Wailt forever for a reset

/-k-k-k-k-k-k*'k'k'k'}:9.'9.'************************'k'A"k-}:-}:9:

*yvold Setup ADC(void);

i -

* This function sets up ADC channel 0.

* MNew conversions start automatically whenever a compare event occurs

* for Timer 3.
*******k&*****************************kkk***/’

vold Setup ADC{veld)
{

BRDCON1 = 0; //3tart with all configuration bits 0
ADCONZ2 = 05

ADCON3 = 05

ADCON1bits.SSRC = 2; //Timer 3 starts the conversion
ADCON1bits . ASAM = 1; //Start sampling after each conversicn
ADCON2bits.SMPI = O; //3et interrrupt flag after each conversion
ADCON3bits.ADCS = 0x3F; //Conversion clock at minimum, 32*Tcy

ADCHS = 0; //Use pin ANO for channel 0 positive input
ADCON1bits.ADON = 1; //Enable the ADC

IFs0bits.ADIF = 0; //Clear ADC interrupt flag

return;

/-Jr-k-k-k-k-k*****-k******************************-k

*int Write DAC{unsigned int DAC, unsigned int wval);

*

* This function writes a 12-bit value to an MCP4822 DAC via SPI 1.
* DAC=0 selects DAC A, 1 selects DAC B.

* Returns 0 if normal, -1 if a fault occcurred.

‘k‘k‘k‘k‘k**k**********************‘k‘k‘k*****kkk***/
int Write DAC{unsigned int DAC, unsigned int wval}

{

DARC_Cs = 05 //Set DAC chip select/latch enable low
SPT18TATbits.3PTROV = 0;//Clear receive overflow flag, if it's set

3.1 of4 2014.04.02 22:09:46

D:/E3/C/PIC/Phys3150.X/Phys3150.c

SPI1BUF = (val & OxFFF) | 0xl0Q00 | DAC<<15;

while (!'IF50bits.SPILIIF) {} // Wait for the transfer to finish
IFs0bits.SPILIF = 0; //Clear the flag for next time

DAC C5 = 1; //All done---Set DAC latch enable high
return (0} 7

4.10f4 2014.04.02 22:09:46

