
Some Mathcad Examples
Prepared for Physics 258 by Ed Eyler, September 1999.

Let's start by entering an integral to be evaluated numerically, similar to the one
encountered in the
large-amplitude pendulum lab.  We will talk more about the techniques used for integration
later in the course, when you will have a chance to program some integrals for yourself.
The default tolerance for numerical evaluations is 0.001 (you can modify this), so the last
displayed decimal places may or may not be accurate.

Define variables before using them, unless they are global
defini- tions (use a tilda to define globals--they are known
everywhere.)
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Now use a range variable to evaluate the same integral for a variety of values of k.  Note
that the range variable must be an integer if we're going to use it as a subscript for
indexing.  
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Display the results,
with a little variety in
formatting to show
what's available:
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Mathcad has many, many plotting options.  Use a simple x-y graph to examine the
integral:
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You can also do fancier stuff:  Use the mouse to change perspective for this plot:
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You can obtain input data either by typing it directly or by reading from files with Import
(one-time) or the "File Read or Write" component (allows for updates).  Let's define an
input table using Insert, Component, Input Table:
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2 4.1
4 15.5
6 35
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Because we entered an n X 2 matrix, we can treat it with matrix operators if we wish.  For
example,
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We can easily find the mean of all the data in the matrix,

mean mydata( ) 65.756=

Or of the data in column 1:

mean mydata 1〈 〉( ) 122.4=



We can fit data using a simple linear least-squares fit, a polynomial regression, or a
generalized least-squares fit to an arbitrary function.  The data above are obviously close to
quadratic, so let's try a second-order regression.  (If we were sure there's no linear component,
we would probably instead take the square root and fit it to a straight line.)  Anyhow, we can
use the column operators to define the x and y data.   To be explicit we define vectors,

x mydata 0〈 〉:=

y mydata 1〈 〉:=
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fit regress x y, 2,( ):=
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Now take a look at the fit residuals:

q 0 rows x( ) 1−..:=



residq yq interp fit x, y, xq,( )−:= (Interp gives the same result as subtracting the fitting function
explicitly, but also can interpolate in between the data points if
desired.)
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We cannot quite evaluate the value of chi-squared, since we don't know the standard deviation
for the measurements.  However, we can measure the mean-squared deviation, which reflects
the quality of the fit just as well, if all of the data points have the same uncertainty:

msd
q
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:=

msd 3.245=

The least-squares fit in the regression function operates by minimizing this quantity.  For
example, if we try a very slightly different set of fit parameters, redefining the residuals to be

residq yq fit3 fit4 xq⋅+ fit5 0.005−( ) xq( )2⋅+⎡⎣ ⎤⎦−:=

we find that the mean-squared deviation increases a little bit,,
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Other MathCad capabilities include root finding, solutions of differential equations, numerous
vector operations and special functions, and the ability to treat dimensioned numbers.  Complex
numbers are handled transparently, without any change in notation:

acos 17( ) 3.525i=
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exp 1 2i+( ) 1.131− 2.472i+=

Finally, MathCad has a limited subset of Maple, allowing some symbolic ability:
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A potentially very useful feature is the ability to expand in Taylor series about an arbitrary point,
like π/3:
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