
Analysis of Impulse Response for a linear system
Processes the Impulse response to obtain a frequency-domain "transfer function," which is 
then used to solve for the response to an arbitrary driving function.

Last modified by Edward Eyler, Dec 4, 2005.  Tested with Mathcad 11, saved for MathCad 8.

First, read a data file containing the measured impulse response, obtained from an A/D converter on a 
computer.  (Note:  for this example spreadsheet, evaluation of the first four formulas has been disabled, 
so that a data file is not needed to display representative results.)

Data

A:\Data.tx
:=

Use the data file input component to read the data

Data0 Data1:= Throw away the first data point (often not valid)

t 0 last Data( )..:=

Data Data Datalast Data( )−:= Subtract the offset of the equilibrium position, here assumed to 
be represented accurately by the last data point.

For example purposes, substitute a perfect damped sine wave, which is 
the impulse response of an ideal under-damped harmonic oscillator.

t 0 7000..:= (Length would normally be supplied by the formula above.)

φ 0.0:= This variable is provided so that you can experiment with phase offsets.

Datat sin 2 π⋅
t

140
⋅⎛⎜

⎝
⎞⎟
⎠

φ+⎡⎢
⎣

⎤⎥
⎦

e

t−
1000

⋅:=

Analysis of Impulse Resonse 1



Plot the data to make sure things look reasonable.  The plot can also be used to directly determine the 
period of oscillation and the exponential decay time constant (the former, by measuring the zero-crossings
the latter, by reading off the maxima for each oscillation, then fitting to an exponential).  Note that the "zoom
and "trace" features of MathCad, available by right-clicking on the graph, are extremely useful for direct 
quantitative measurements of graphical data.
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Define a "padded" data array for the Fourier transform (length must be a power of 2)

k 0 214 1−..:= Fdatak 0:= Fdatat Datat:=
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It's important to minimize any 
discontinuity where the padding starts!
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Now take the Fourier transform.  The FFT algorithm returns essentially the same result as the familiar 
continuous Fourier integral.  However, a few notes may be helpful:

1. If the input array Fdata has time steps of size Δt, the frequency-domain output has frequency steps 
of size Δf = (number of elements in input array)/Δt.  See the plot below for clarification.
2. The output is an array of complex numbers, specifying both the magnitude and the phase of the 
response as a function of frequency.
3. If an inverse transform is to be performed, use the function IFFT.

The plots below are EXACTLY THE SAME as the conventional plots shown in every freshman physics 
textbook showing  the amplitude response and phase as a function of driving frequency.  However, by 
measuring the impulse response and using linear response theory, we have obtained the information 
with a single measurement of the response function, completely avoiding the need to painstakingly 
measure the steady-state response at several hundred different frequencies.  Wow!  

Ftransform fft Fdata( ):=

NFFT last Ftransform( ):=

n 0 NFFT..:= Define index variable for frequency-domain data

m 0 500..:= Define a more limited frequency region for plotting
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The phase of the Fourier transform evolves by π as the frequency sweeps through a resonance.  Phase 
data calculated from experimental measurements may be much more complex, since nonlinearities and 
other imperfections can introduce additional resonances, each with its own phase excursions, as well as 
noise.  In particular, for real experimental data the phase becomes ill-defined at high frequencies, where 
the signals are small and the noise is not.
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TResponse ifft Response( ):=
ITResponse ifft IResponse( ):=

Responsen Ftransformn FDriven⋅:=
IResponsen Ftransformn FIDriven⋅:=

FIDrive fft ImpulseDrive( ):=FDrive fft Drive( ):=

Drivestart sin 2 π⋅
start
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:=
ImpulseDriveimpulse_on 10:=

impulse_on 500 510..:=start 500 5000..:=

ImpulseDrivek 0:=Drivek 0:=

The results are plotted on the following page.

In this example, determine the response to two very different driving functions.  The first is a sine-wave "burst
starting at t=500 and continuing to t=5000.  The second is a short rectangular pulse.  Because this is essentia
an impulse, the calculated response should be very similar to the original impulse response entered at the 
beginning of this spreadsheet.

Perhaps the most impressive thing about this approach is that given the frequency-domain transfer function, 
we can calculate the response to ANY time-dependent driving force.  In time domain, we would take the 
convolution integral of the impulse response with the driving function.  In frequency domain, we just multiply th
transfer function by the (complex) Fourier transform of the driving function.  An inverse FFT then returns us to
the time domain, where we can plot and examine the results.
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Should resemble original impulse response, starting at t=500
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