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The harmonic oscillator approximation is perhaps the most frequently used model in all of phys-

ics.  This model can be extended to multi-body systems, such as atoms in a crystal lattice, by al-

lowing multiple oscillators to weakly perturb one another.  In this lab we study the simplest such 

coupled system, a pair of simple harmonic oscillators weakly coupled by a spring. 

 
I. Equations of Motion 

Consider the two identical pendulum bobs displayed in Fig. 1.  Without the coupling spring, 

the small-amplitude motion of either pendulum is described by  

 I mLθ θ= −  (1) 

where I is the moment of inertia about the pivot point and L is the distance from the pivot to the 

center of mass.  The resulting motion is simple harmonic, 

Figure 1. Coupled oscillators.  L = vertical distance from support to center of mass 
(marked ‘X’), l = vertical distance from support to where coupling spring is attached. 
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where the angular frequency is  

 /mgL Iω = . (3) 

Now consider a situation in which the two pendulums are coupled together by a spring whose 

spring constant is k and whose unstretched length is S0.  If l is the distance from the pivot to 

where the spring is attached and W is the distance between the two pivot points, then show that 

in the small-angle approximation the spring is stretched by a distance  

 0 1 2S W S l lθ θ= − + + . (4) 

The angular equations of motion, including the torque from the spring as measured at the pivot 

point, are 
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or, expanding out S using Eq. (4), 
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Finally, the equations can be arranged to explicitly reveal how each pendulum affects the other 

via the coupling k, 
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The equilibrium angles of the pendulums are no longer vertical due to the torques from the 

spring.  Show that for either pendulum, the angular displacement θ 0 of the new equilibrium po-

sition can be found by balancing the torques due to gravity and the spring to give, in the small-

angle approximation,  
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Now we can define new angles that are measured from equilibrium, 

 1 1 0 2 2 0   and   φ θ θ φ θ θ= − = − . (9) 

Making this substitution in Eqs. (7) above, we find 

 
2 2

1 1 2

2 2
2 2 1

( ) 0

( ) 0.

I mgL kl kl

I mgL kl kl

φ φ φ

φ φ φ

+ + + =

+ + + =
 (10) 

Assuming that φ1 and φ2 are sinusoidal oscillatory functions of time with amplitudes A and B, 

φ1 = Aeiωt and φ1 = Beiωt, (or the equivalent real notation using cosines), we can solve for the 

natural or normal frequencies of the system, 
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After collecting terms and canceling the common factor eiωt we find that 
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If a nontrivial solution exists for this pair of simultaneous equations, then the determinant of the 

coefficients  of A and B must vanish, 

 2 2 2 2 2( ) ( ) 0I mgL kl klω − − − = . (13) 

Equation (13) is quadratic in ω2, and thus there are two solutions, 

 2 2 2( ) /mgL kl kl Iω = + ± , (14) 

or 
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One of the main points to be emphasized here is that each pendulum oscillates as a linear 

combination of only these two frequencies.  Thus any motion whatsoever of each can be de-

scribed as a sum of two harmonic functions, the normal mode frequencies.  This is a general re-

sult for coupled oscillators.  A set of N coupled oscillators can always be described as a sum of 



oscillations involving no more than N normal mode frequencies.  In the present case one of the 

normal modes corresponds to the pendulums moving together “in phase,” and the other corre-

sponds to oscillation “in opposition,” with a higher frequency because of the involvement of the 

coupling spring in this motion. 

If the two normal mode frequencies are not too different, it is often easy to see the beat note 

between them if the system is excited in a superposition of the two modes.  The strongest beats 

occur if both normal modes are excited with the same magnitude A1.  In this case we can rewrite 

the general solution for the motion of one of the pendulums in terms of sum and difference fre-

quencies, 
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The slowly-modulated “envelope” at the frequency (ω1 - ω2)/2 goes through zero twice in each 

period, so the number of nodes per second in the beat note is equal to the difference of the two 

normal mode frequencies measured in Hz, 1 2 1 2( ) / 2f f ω ω π− = − .  

 

II. Experimental Procedure 

(1) Uncouple the two pendulums and measure their individual resonant frequencies for small 

amplitude oscillations.  These two frequencies must be nearly equal for the analysis above to 

apply, otherwise you are will need to solve the problem for the more general case where the 

two uncoupled frequencies are different.  Because the coupling has just a small effect on the 

frequencies, you need to make an accurate measurement here. 

(2) Now couple the two pendulums together with the spring, choosing a convenient value of l.  

Measure the two normal mode frequencies which result from the coupling.  Do this by first 

setting the pendulums in oscillation together, and then in opposition.  Again, high accuracy 

is needed. 

(3) Find the difference in the normal mode frequencies by the methods of beats.  To do this it is 



necessary to start the pendulums oscillating in a mixed mode.  You can get a nearly equal 

mixture of the two normal modes if you start the oscillations by holding one pendulum ver-

tical, displacing the other one and then releasing both together.  Compare your results to the 

difference between the two normal mode frequencies obtained above.  Which method is 

more accurate, and why? 

(4) Measure the force constant k of the coupling spring, using any reasonable method, and use 

this value to calculate the normal frequencies using the theoretical treatment in Section I.  

Be sure that the spring constant does not vary in the range of stretching that you used; if it 

does, use an average value.  Compare your calculated normal mode frequencies with the 

measured ones.  For the moment of inertia I, it is easiest to use an experimental value, which 

you can obtain from the analysis of part (1). 

(5) Repeat steps 2, 3, and 4 for at least two different locations l of the coupling spring. 

(6) If you start the coupled pendulums in an manner you wish, you will note that after some tens 

of minutes, the system will revert to oscillating in a nearly pure mode at the lower normal 

mode frequency, especially if the spring has losses (a rubber band works well for observing 

this effect).  Explain why the higher-frequency mode damps out faster. 

(7) In your writeup, be sure to address the two questions in Section I prefaced by “show that…”. 

 

III. Resources 

1. Principles of Mechanics, by Synge and Griffity, McGraw Hill, 1959, pp. 188 ff. 

2. Mechanics, 3rd Edition, by K. R. Symon, Addison Wesley, 1971, pp. 195 ff., 469 ff. 

3. Classical Mechanics, by H. Goldstein, Addison-Wesley, 1953. 

4. For beats: almost any good introductory physics textbook. 


