Coherent control of pairs of atoms in a double-well optical lattice.

J. V. Porto

Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland, 20899, USA

I will describe a novel double-well optical lattice and several experiments where we control the vibrational and internal states of pairs of 87 Rb trapped in the lattice, including controlled pairwise interactions useful for quantum logic. The lattice is generated from a single, retro-reflected laser beam that is folded onto itself such that the beam passes through the origin four times¹. The resulting four-beam, 2D optical lattice is phase stable, and by changing the input polarization the unit cell can be changed continuously from a single-site configuration to a double-well configuration. This lattice has several interesting properties: the lattice potential is two-dimensional, and is not separable in the *x* and *y* directions; and spatially varying polarization gradients (combined with the vector light shift of 87 Rb) give rise to site- and spin-dependent light shifts, resulting in two inter-penetrating sub-lattices of 'left' and 'right' sites with two different effective magnetic fields in the two sub-lattices.

Using this lattice, we have loaded and measured number-squeezed and Poisson states of atoms in the individual sites of the lattice² and demonstrated dynamic control of the motional state of atoms, adiabatically transferring atom population between adjacent sites of the lattice as well as between different energy bands³. The local effective field gradient allows us to spectroscopically resolve atoms in the two sub-lattices (separated by 400 nm), and we have demonstrated independent control of the atom spins in the separate sub-lattices⁴. Finally, combining these techniques, we demonstrate controlled spin-dependent exchange interactions of atoms that have been merged into the same well⁵. The observed exchange oscillations represent the essential component of an entangling \sqrt{SWAP} gate.

I will briefly discuss these experiments and our current work using coherent control of atoms in hyperfine clock states with long coherence times.

¹J Sebby-Strabley, M Anderlini, PS Jessen and JV Porto, Phys. Rev. A 73, 033605 (2006)

²J Sebby-Strabley, et al., Phys. Rev. Lett **98**, 200405 (2007).

³M Anderlini, J Sebby-Strabley, J Kruse, JV Porto, and WD Phillips, J. Phys. B **39**, S199 (2006).

⁴PJ Lee, <u>et al.</u>, Phys. Rev. Lett. **99**, 020402 (2007).

⁵M Anderlini et al. Nature **448**, 452 (2007)