
Preliminary Exam: Statistical Mechanics, Tuesday January 14, 2020. 9:00-12:00

Answer a total of any THREE out of the four questions. Put the solution to each problem in a
SEPARATE blue book and put the number of the problem and your name on the front of each book.
If you submit solutions to more than three problems, only the first three problems as listed on the exam
will be graded. Some possibly useful information:
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1. When two different species of “molecules” are mixed, a generic entropy of mixing

∆S = −k
(
N1 ln

N1

N1 +N2

+N2 ln
N2

N1 +N2

)
arises. From now on, assume that one of the species is much more abundant than the other, N1 �
N2. There are varying circumstances such as chemical reactions, but by default in the limit N2 → 0,
the entropy of mixing dominates in the free energy over the effects of the interactions between
the molecules of the two species, and for the mixture we have G(T, p,N1, N2) ' G1(T, p,N1) +
G2(T, p,N2)− T ∆S(N1, N2).

(a) Show that for given T, p, the chemical potential of species 1 in the mixture, µ̄1(T, p), is
related to the chemical potential without the mixing species, µ1(T, p), by µ̄1(T, p) ' µ1(T, p)−
kTN2/N1.

(b) Now call species 1 “solvent” and species 2 “solute.” Suppose the mixture is separated from
a container with pure solvent by a semipermeable membrane which lets solvent molecules
through, but not solute molecules, and which can withstand pressure without moving. What
are the conditions for thermal equilibrium of the solvent molecules between the two sides?

(c) Show that the pressure of the mixture is higher than the pressure of the pure solvent by the
osmotic pressure ∆p = kTN2/V . It is as if the solute were an ideal gas added to the solvent,
and exerts the corresponding pressure on the membrane.

2. The local-density approximation of thermodynamics states that the sum of the external potential
energy per particle V (r) and the local chemical potential µ(r) (calculated as if the gas with the
given density n(r) were infinite) equals a constant, the global chemical potential µ. Let us study a
cloud of zero-temperature, single-component, N -atom Fermi gas trapped in the harmonic oscillator
potential V (r) = 1

2
mω2r2 using the local-density approximation. “Single component” means that

there is no spin degeneracy; for instance, it could be that only one z-component of the angular
momentum is confined by the trapping potential.

(a) Show that the density of the gas is of the form n(r) = n(0)[1 − (r/R)2]3/2, where R is the
radius of the cloud and n(0) is the central density.

(b) Show that the central density and the radius are related by 1
8
π2R3n(0) = N .

(c) Show that the radius equals R = (48N)1/6
√

h̄

mω
.

(d) Show that the central density is proportional to
√
N .
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3. N non-interacting quasi-particles form an ideal gas inside a crystal material of volume V . The
dispersion law ε(p) = s · p = sxpx + sypy + szpz describes the relation between the quasi-particle
energy ε and momentum p. The constant vector s(sx, sy, sz) is the quasi-particle velocity vector
specifically oriented with respect to the crystal axis i = (x, y, z). The gas temperature T is high
enough that the quasi-particles obey classical Boltzmann statistics.

(a) Calculate the partition function Z and free energy F = −kBT lnZ, if the absolute value of

the quasi-particle momentum p =
√∑

i p
2
i is restricted by the spherically symmetric condition

p ≤ pD.

(b) Calculate the free energy F of the above quasi-particle gas, if the values of the momentum
projections pi are confined to the box |pi| ≤ pD.

(c) Determine an average quasi-particle energy < ε > using the free energy F derived in part (b),
and find an asymptotic expression for < ε > if sx → 0, sy → 0 and sz → s, where s is a
positive constant.

4. An ideal gas of Bose particles at temperature T is trapped inside a macroscopically large volume
V . The dispersion relation between the particle energy ε and momentum p is ε(p) = b pα, where b
and α are positive constants.

(a) Calculate the partition function Z and show that relation between the total number of trapped
particle N and the chemical potential µ is given by the expression:

N = kBT
∂ lnZ

∂µ
=

1

exp(−βµ)− 1
+

4πV

h3αb3/α

∫ ∞
0

dε
ε3/α−1

exp[β(ε− µ)]− 1
,

where β = 1/kbT. The first term in the sum represents an average number of particles Ng(ε = 0)
in the ground state ε = 0, and the second term is the number of particles Nex(ε > 0) in excited
states ε > 0.

(b) Find the critical temperature of Bose condensation Tc in the thermodynamic limit, when the
gas density n = N/V is held constant while N →∞ and V →∞.

Hint: The integral required for this solution

1

Γ(y)

∫ ∞
0

xy−1

exp(x)− 1
dx = ζ(y)

can be expressed via the gamma function Γ(y) and the Riemann zeta function ζ(y) =
∑∞

k=1 k
−y

for all y > 1. For y ≤ 1, the integral diverges.

(c) Determine the α-values for which Bose condensation can occur as a phase transition at a
non-zero critical temperature.
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