
QUANTUM MECHANICS/ STATISTICAL PHYSICS

Preliminary Examination

August 22, 2008

9:00 - 15:00 in P-121

Answer a total of SIX questions, choosing at least TWO from Section A, and the
rest form Section B. If you turn in excess solutions, the ones to be graded will be
picked at random.

Each answer must be presented separately in an answer book. Make sure you
clearly indicate who you are, and the problem you are answering. Double-check that
you include everything you want graded, and nothing else.
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SECTION A - STATISTICAL PHYSICS

A1. Consider a gas of free, nonrelativistic electrons, with uniform density ρ.

(a) Show that the Fermi energy is given by

kF =
(

3π2ρ
)1/3

.

Hence show that the total quantum mechanical energy of the electron gas
at low temperature in a spherical volume of radius R is

EQM =
2h̄2

15πm

(

9

4
π n

)5/3 1

R2

where m is the electron mass, and n is the total number of electrons.

(b) Consider a cold star (a white dwarf) with N nucleons, of mass M and of
uniform density with radius R. Show that the gravitational energy is

Egrav = −3

5

GN2M2

R

where G is Newton’s constant.

(c) Use the results of (a) and (b) to show that for a white dwarf, there is
a radius at which the repulsive quantum mechanical degeneracy pressure
of the electrons balances the attractive gravitational pressure, and find an
expression for this radius. Assume there are q = 1/2 electrons per nucleon.

A2. The Heisenberg model for ferromagnetism is defined by the Hamiltonian

H = −J
∑

{i,j}

Si · Sj − µ
∑

i

H · Si

where Si is a three dimensional unit vector which lives on a square lattice in
d-dimensions (the index i numbers the lattice sites). The interaction is only
between the nearest neighbors on the lattice - the summation in the first term
is over all pairs {i, j} of the nearest neighbors. Consider J > 0 and let the
external field H be uniform with h = µ|H|. Using the mean field approximation
do the following:

(a) Find the critical temperature Tc (i.e., the temperature below which the
system a has nonvanishing magnetization m even in a vanishing external
field h = 0).
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(b) Find critical exponent δ defined as h ∼ mδ, at T = Tc.

(c) Find critical exponent β defined as m ∼ (Tc−T )β, at h = 0; T < Tc

(here T is close to Tc, so that the relevant expressions can be expanded in
(Tc − T )).

Hint: In the mean field approximation, we approximate the interaction of each
individual spin by an interaction with the “mean field”

H → −J
∑

i

aσ0 · Si − µ
∑

i

H · Si.

Here a is the number of the nearest neighbors with which a given spin interacts,
while σ0 is the mean magnetization determined self consistently from requiring
that

σ0 =< S > .

This mean field equation serves as the basis for the determination of the phase
structure as well as of critical exponents.

A3. Consider a heteronuclear, diatomic molecule with moment of inertia I. (In this
problem, consider only the rotational motion of the molecule.)

(a) Using classical statistical mechanics, calculate the specific heat of this sys-
tem at temperature T.

(b) Using quantum statistical mechanics, find the expression of the partition
function and the average energy of the system as a function of temperature.

(c) Derive an expression for the specific heat that is valid at very low temper-
ature by simplifying your result in (b). What is the temperature range in
which your expression is valid?

(d) Derive a high-temperature approximation to the specific heat from result
in part (b). What is the range of validity of your approximation?
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SECTION B - QUANTUM MECHANICS

B1. Consider a hydrogen atom placed in a uniform electric field of strength E . Let
the field point in the z direction, so that the perturbation energy is

HI = e E z.

(a) Show that the ground state energy is not affected by this perturbation, to
first order in E .

(b) Show that the perturbation does not mix states of different magnetic quan-
tum number ml.

(c) The first excited state of the hydrogen atom is 4-fold degenerate. In the
usual notation,

ψ200 =
1√
2πa

1

2a

(

1 − r

2a

)

e−r/(2a)

ψ211 = − 1√
πa

1

8a2
r e−r/(2a) sin θ eiφ

ψ210 =
1√
2πa

1

4a2
r e−r/(2a) cos θ

ψ21,−1 =
1√
πa

1

8a2
r e−r/(2a) sin θ e−iφ.

Use degenerate perturbation theory to find the effect of the perturbation
on the first excited state, to first order in E . Sketch the resulting energy
levels.

B2. Consider the Dirac equation

ih̄
∂

∂t
ψ =

(

−c ~α · ~p− β mc2
)

ψ

where the Dirac matrices are expressed in terms of the 2 × 2 Pauli matrices ~σ
and the 2 × 2 unit matrix 1 as

~α =
(

0 ~σ
~σ 0

)

; β =
(

1 0
0 −1

)

.

(a) Write down the charge and current densities and obtain the related con-
servation law that is satisfied.
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(b) Using the Pauli matrix relations σj σk = iεjklσk, show that for any 3-

vectors ~D and ~G

(~α · ~D)(~α · ~G) = ~D · ~G+ i~σ ′ ·
(

~D × ~G
)

where

~σ ′ ≡
(

~σ 0
0 ~σ

)

.

(c) Include the interaction with a static magnetic field ~B = ~∇ × ~A. Use the
result of part (b) to show that the Dirac equation can now be written as

(

E2 −
(

c~p− e ~A
)2 −m2c4 + eh̄c ~σ′ · ~B

)

ψ = 0

where the time dependence of the solution is ψ(x, t) = eiEtψ(x, 0). Hence,
in the nonrelativistic limit, show that one obtains the 2 × 2 Pauli Hamil-
tonian

H =
1

2m

(

~p− e

c
~A
)2

− eh̄

2mc
~σ · ~B

and comment on the significance of the numerical coefficient in front of the
last term.

B3. A particle of mass m is in the ground state of a one dimensional harmonic
oscillator potential of frequency ω. At time t = 0, the frequency of the potential
is instantaneously increased threefold to 3ω.

(a) What is the probability at time t = 0 to find the particle in the second
excited state (n = 2) of the new potential?

(b) Prove that the probability to find the particle in a state with any odd n
of the new potential is strictly zero.

(c) Starting at time zero, the particle moves in the new potential. Then at
time t = 4π/ω, the potential is switched back to the original one with
frequency ω. What is the probability that the particle is in the ground
state of the new potential at time T = 5π/ω?
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B4. In one dimensional quantum mechanics, consider the two operators

A =
1

2
(p2 + x2)

and

B =
1

2
(xp+ px).

(a) Show that the operator A acts as the rotation generator in the phase space,
namely that under its action, the vector (p, x) rotates like a vector on a
plane.

(b) Show that the operator B generates a scaling transformation under which
p and x are scaled by the inverse factors p→ αp; x→ 1

α
x.

(c) Show that any quadratic Hamiltonian of the formH = p2

2m
+ 1

2
m2ωx2+2Fxp

with F 2 < mω
4

can be brought into the canonical form

U †HU =
p2

2m
+

1

2
m2Ωx2

by a transformation of the type

U = eiαAeiβB .

Find the parameteres of the transformation α and β and the new frequency
Ω.

Hint: Find the rotation matrix that diagonalizes the quadratic form which
defines the Hamiltonian H. Thus find the rotation angle. Then apply the
scaling transformation to get the coefficient of p2 to the desired form.
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B5. Consider a particle in a symmetric potential shown in the Figure below. The
walls at x=0 and x=2a+b are infinite. Find approximate expressions of the
energy levels and the wave functions of the particle if E � V0; the penetrability
of the barrier is small (2mV0b

2/h2 � 1) but not zero!

Figure 1: For problem B5.

B6. An unpolarized beam of atoms with spin quantum number 1/2 and zero orbital
angular momentum passes through a Stern-Gerlach magnet whose magnetic
field is along the z axis.

(a) What would you detect on the other side of the Stern-Gerlach magnet?

(b) Suppose the initial beam is polarized along the x axis. What will be the
outcome of the experiment now?

(c) Now assume that the initial beam is polarized along direction A at an angle
θ to the z axis. What will be the ratio of the number of atoms with spins
parallel vs. anti-parallel to the z axis at the output of the Stern-Gerlach
apparatus?

(d) Describe how would your answer in (a) be different if the atoms with spin
quantum number 1/2 had non-zero orbital angular momentum.
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