Preliminary Exam: Electromagnetism, Thursday August 22, 2019. 9:00-12:00

Answer a total of any THREE out of the four questions. Put the solution to each problem in a
SEPARATE blue book and put the number of the problem and your name on the front of each book.
If you submit solutions to more than three problems, only the first three problems as listed on the exam
will be graded.

1. Consider a sphere of radius R centered at the origin. Suppose a point charge ¢ is put at the origin
and that is the only charge inside or outside the sphere. Furthermore, the potential is ¢ = Vj cos 6
on the surface of the sphere.

(a) What is the electric potential inside the sphere?

(b) What is the electric field outside the sphere assuming the potential goes to zero as r approaches
infinity?

2. Two single turn circular loops are mounted as shown in the figure, where b < a

(a) Find the magnetic field at the center of the small loop created by the large loop carrying a
current .

(b) Assuming the magnetic field at the center of the small loop equals the magnetic field at the wire
of the small loop, find the mutual inductance between the loops. Note: the mutual inductance
M between two loops A and B is the ratio between the magnetic flux ¢p that is produced in
one loop (e.g. B) by the current I4 driving the other one (e.g. A),i.e. M = ¢pp/ls

(c) The self-inductance of each individual loop alone without the other is represented by Lg(A)
and Lo(B), respectively. How is the self-inductance of the loop of radius a modified by the
presence of loop of radius b7 You should assume that current is free to flow around the loop
of radius b without resistance.

Radius=a

Distance between centers=c¢



3. A dielectric cylinder of radius R and length L carries an electric charge @ uniformly distributed
over the volume of the cylinder. The cylinder is rotating about the cylindrical symmetry axis z
with angular velocity & = wé,, where €, is a unit vector along the z-axis.

(a) Find the magnetic moment m of the rotating cylinder, while neglecting bound charges induced
in this perfect dielectric.

(b) Determine the value of the magnetic moment for an identical cylinder, which carries the electric
charge () distributed uniformly only over the cylinder surface, including top and bottom bases.

(c) Explain the difference in values of magnetic moments determined in parts (a) and (b).

(d) Calculate the magnetic field B and vector-potential A induced at a large distance r (r > L, R)
by the rotating cylinders considered in parts (a) and (b).

4. An infinite cloud of electrons is distributed above a grounded conducting plane lying in the hori-
zontal (x,y) plane at z = 0. The volume charge density p(z) of the distributed charge of electrons
depends on the distance z from the infinite conducting plane at z = 0: p(2) = —pg exp(—z/a) for
z > 0, where py and a are positive constants and where the vertical z-axis is perpendicular to the
horizontal conducting plane.

(a) Solve Poisson’s equation for the electric field potential ¢(z) in the entire region z > 0 above
the conducting surface. The reference surface for the electric field E(z) is chosen at z — oo:
E(z) = —&.L¢(z — 00) — 0, where &, is a unit vector in the direction of the z-axis.

(b) Calculate the electric field E(z) and find the surface charge density ¢ on the conducting plane.

(c) Determine the electric dipole moment per unit of area of the system of the conducting plane
and distributed electron cloud.



Vector Formulas

a-(bxe)=b-(cxa)=c-(axb)
ax(xc)=(a-ch-(a-b)
(@axb):-(cxd)=(@-c)b-d) — (a-d)b-c)
VxVy=0
V.(Vxa)=0
Vx(Vxa)=V(V-a) - Va
Ve(ya)=a-Vy+ ¢V-a
Vx(fa)=Vyxat+yVXa
Vi@a-by=(@-V)b+(b-V)a+ax(Vxb)+bx(Vxa)
V.@axb)y=b-(Vxa)-a-(Vxb)
Vx{axb)=aV-b)-b(V:-a) +(b:-V)a—(a-V)b

If x is the coordinate of a point with respect to some origin, with magnitude
r = |x|, n = x/r is a unit radial vector, and f(r) is a well-behaved function of r,

then
Vex =3 Vxx=0

Vol =2 f+ 2V xaf)] = 0

(a- V)nf(r) = M [a — n(a-n)] + n(a- n) —f

V(x-a)—a+x(V a) + i(L x a)

1 "
where L = 7 (x x V) is the angular-momentum operator.



Theorems from Vector Calculus

In the following ¢, ¢, and A are well-behaved scalar or vector functions, Vis a
three-dimensional volume with volume element d’x, S is a closed two-
dimensional surface bounding V, with area element da and unit outward normal
n at da.

L V- Ad'x = L A:'nda (Divergence theorem)
o T
Iuvwdx = L ¥n da
foAcF' =JnxAda
v 5
: L (¢Vi + Vo« V) d'x = L ¢n - Vi da (Green’s first identity)

L (¢Vy — yV?¢) d'x = L (¢Vy = yVd)-nda  (Green’s theorem)

In the following S is an open surface and C is the contour bounding it, with line
element dl. The normal n to S is defined by the right-hand-screw rule in relation
to the sense of the line integral around C.

L (VXA):nda= % A-dl (Stokes's theorem)
i

Ln X Vi da = i:{:dl
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(%1, X2 X3 = X, 7, 2)

Cylindrical

Spherical

(0.4, 7)

(r’ 0‘ ¢)

Explicit Forms of
Vector Operations

Let e,, e5, £; be orthogonal unit vectors associated with the coordinate directions
specified in the headings on the left, and 4,, A,, A, be the corresponding com-
ponents of A. Then
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[Note that Ser (r ar) s (ra,b).]




