Preliminary Examination: Electricity and Magnetism, 08/23/2018

Answer a total THREE questions out of FOUR. If you turn in excess solutions, the ones to be
graded will be picked at random.

Each answer must be presented separately in an answer book, or on consecutively numbered
sheets of paper stapled together. Make sure you clearly indicate who you are and the problem you
are solving. Double-check that you include everything you want graded, and nothing else.

1. An otherwise free non-relativistic charged particle having mass m and charge e moves in a
uniform magnetic field B= Bgé, where é, is the unit vector along z-axis.

a) Suppose that at t = 0 the particle is located at the origin and moving at velocity
Uy = Vg€, where €, is the unit vector along z-axis. Determine the particle’s subsequent
position 7(t) and velocity () as a function of time ¢. Describe the resulting motion in
words. You may neglect the effects of radiation damping.

b) If the initial velocity Uy = vo.€z + voy€, Where é,,é, are the unit vectors along z- and
y-axes, find the subsequent position 7(t) and describe the resulting motion.

2. Consider a very long uniform solenoid of radius R and N turns per unit length, carrying
electric current I. Concentric with the solenoid are two long cylindrical shells of length ¢,
one with radius ¢ < R and the other with radius b > R. The inner cylinder carries total
charge +@Q distributed evenly over its surface, while the outer cylinder carries total charge
—@, also uniformly distributed over its surface. You should take the limit £ > R and ignore

end effects.

a) If neither of the charged cylinders are rotating, what are the electric and magnetic fields

everywhere in space?

b) Under the conditions in part (a), what is the total angular momentum L carried by the
electromagnetic fields? Hint: You may use the fact that crossed E and B fields carry
linear momentum density § = EOE x B and then compute the angular momentum as the
integral of ¥ x d_;b over the field volume.

c) As the current in the solenoid is gradually reduced to zero, the cylinders experience
a torque about their axis. Calculate the final angular momentum of each, supposing
that they are free to rotate without friction. Show that the sum of their final angular
momenta is equal to the initial angular momentum found in part (b). You may assume
that their moments of inertia I, and [ are large enough that the magnetic induction
arising from their rotation can be neglected relative to that due to the solenoid current.



3. An ideal (point) dipole p'= pé, is held a distance 7y = 7r¢é, from the center of a grounded
conducting sphere of radius R, where r( is a positive constant (ro > R) and é,,é, are the
unit vectors along z- and z-axes. The dipole vector is perpendicular to the z-axis.

a) Determine the parameters of the induced image dipole pi,.
b) Find the potential ®(7) in the region outside the conducting sphere (r > R).

c) Calculate the energy of the dipole interaction with the conducting sphere.

Hint: The parameters of the image dipole can be obtained using the charge image value
¢im = —q R/ro and location r;,, = R?/rq induced by the point charge ¢ located at the
distance r( relative to the center of grounded sphere.

4. A thick conducting slab, extending from z = —a to z = +a, carries a non-uniform current
described by the current density ]_'(F) = jo €z, where jo is a positive constant and é, is the
unit vector parallel to the z-axis. The density of electric current is zero outside the slab.

a) Show that the magnetostatic Ampere’s law can be written in the form of a Poisson’s
equation V2A(7) = —poj(7) for the vector potential A induced by the electric current
in the two regions |z| < a and |z| > a. Justify, that the magnetic field B = V x A is
zero outside the current slab |z| > a because of the specific symmetry of j(7).

b) Find the vector potential A'in the entire space by solving Poisson’s equation from part (a)
with the boundary conditions ff(f")]z:o =0 and B(F)]ZZO = %,uojoa €y, where €, is the
unit vector of the y-axis.

¢) Calculate the force F exerted on an ideal magnetic dipole 7 = mq (€, + €,)/v/2, where

my is a positive constant, and €, and €, are the unit vectors of the y- and z-axes. The

location of the magnetic moment can be inside or outside the slab.

Hint: A(7) and B(7) are continuous functions of the coordinates because there are no surface

electric currents in this problem.



Vector Formulas

a-(bxc¢)=h-(ecxa)=c-(axh)
ax(xc)=(a-c)b - (a-b)
(axb)-(exd)=(a-c)b-d) — (a-d)b-c)
VxVy=0
V- (Vxa)=0
VXx(Vxa)=V(V-a) —Va
V-(ya)=a-Vy+ ¢yV-a
Vx(ya)=Vyxa+yV xa
V@a-b)=(a-V)b+ (b-Via+ax(Vxhb)+bx(Vxa)
V:(axb)=b-(Vxa)—a-(Vxbh)
Vx(@axb)=aWV-b)—bV-a)+(b-V)a—(a-V)hb
If x is the coordinate of a point with respect to some origin, with magnitude
r = |x|,m = x/r is a unit radial vector, and f(r) is a well-behaved function of r,
then

V:.x=3 Vxx=10
Vemf)] =2 f+ LV x o] - 0

ar
@-Vnfr) - 12

V(x-a) =a + x(V-a) + iL X a)

f

[a—n(a-n)]+n(a-n)-:;—r

1 .
where L = 3 (x x V) is the angular-momentum operator.



Theorems from Vector Calculus

In the following ¢, s, and A are well-behaved scalar or vector functions, V is a
three-dimensional volume with volume element d°x, S is a closed two-
dimensional surface bounding V, with area element da and unit outward normal
n at da.

J V-Adx = L A -nda (Divergence theorem)
v
J Vi d’x =f ym da
v s
J VxAd3x=fnxAda
v s
J (V2 + V- V§) d°x = L ¢n - Vi da (Green’s first identity)
v

JV (pVPY — YY) dx = L (Vi — V) -nda (Green’s theorem)

I the following S is an open surface and C is the contour bounding it, with line
element dl. The normal n to §'is defined by the right-hand-screw rule in relation
to the sense of the line integral around C.

L (VxA)-nda = jEC A-dl (Stokes’s theorem)

Lnxv¢da=jgc¢vdl



Explicit Forms of
Vector Operations

Let ey, e, e be orthogonal unit vectors associated with the coordinate directions
specified in the headings on the left, and A,, A,, A, be the corresponding com-

ponents of A. Then
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