
Preliminary Exam: Classical Mechanics, Monday August 24, 2020. 9:00-12:00

Answer a total of any THREE out of the four questions. If a student submits solutions to more than
three problems, only the first three problems as listed on the exam will be graded. Students should
write their solutions on blank 8.5 by 11 paper or in a blue book, putting their name on each page,
the number of the problem and the number of the page in their solution on each page (i.e. 2-1 means
first page of problem 2). Also each problem solution should be on a separate set of pages (i.e. not
putting parts of two different problems on the same page). At the end of the exam students should
scan in their solutions in sequence using a cell phone or a scanner and email them in a file or files to
the prelim committee chair philip.mannheim@uconn.edu no later than 15 minutes after the end time
of the exam. (It might be easier to transfer the files to a laptop first.) Label both the email header and
the file or files with your name and the name of the exam. In the email state which problems you have
attempted and state how many pages there are for each of the problems. The chair will immediately
check if the emailing is readable or if a resend is required.

1. An object of unit mass orbits in a central potential U(r). The equation of the orbit is given by

r = ce−bθ

where θ is the azimuthal angle measured in the plane of orbit, and b and c are constants.

(a) With ~r measured from the origin of coordinates, show that the angular momentum ~L is
conserved.

(b) To within a multiplicative constant find the U(r) that would produce this r = ce−bθ orbit
assuming that U(r) goes to 0 as r goes to infinity.

(c) In terms of the multiplicative constant in part (b), for what value L0 of L = |~L| would the
orbit be circular?

(d) What is the shape of the orbit if L is (i) less than, and, (ii) greater than the critical value
L0?
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1.  An object of unit mass orbits in a central potential U(r). The equation of the orbit is given by r 
= ce-bθ  ! where θ is the azimuthal angle measured in the plane of orbit, and c is a constant. 

(a) Show that the angular momentum (L) is conserved 

(b) Find U(r) to within a multiplicative constant assuming U(r) goes to 0 as r goes to infinity

(c)  What is the value of L for a circular orbit in terms of the multiplicative constant in part (b)

(d) What is the shape of this orbit if L is (i) less than, and, (ii) greater than this critical value?

2. A mass m hangs in equilibrium by a massless spring which exerts a force, F = -k(x-l) where x 
is the length of the spring and l is its length when F=0. At time t=0, the point of contact, to which 
the  upper  end  of  the  spring  is  attached,  begins  to  oscillate  sinusoidally  up  and  down with 
amplitude A with a frequency ω as shown in the Figure below. The driving frequency ω is off 
resonance i.e. ω is not equal to ω0 = (k/m)1/2

(a) What is the equilibrium value of x i.e. x0

(b) Set up the equation of motion for x(t) 

(c) Solve the equation of motion for x(t)

Mass = m

X

2. As shown in the figure, a mass m is suspended in equilibrium at time t < 0 in the earth’s
gravitational field by a vertical massless spring that exerts a force F = −k(x − `), where x is
the length of the spring and ` is its length when F = 0. The acceleration due to gravity can be
taken to be a constant of magnitude g. At time t = 0 the point of contact, to which the upper
end of the spring is attached, begins to oscillate sinusoidally up and down with amplitude A and
frequency ω. The driving frequency ω is off resonance, i.e. ω is not equal to ω0 = (k/m)1/2.

(a) What is the equilibrium value x0 of x at t < 0?

(b) Set up the equation of motion for x(t) for t > 0.

(c) Solve the equation of motion for x(t) for t > 0.
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3. The Lagrange function of a one-dimensional classical non-relativistic system is given by

L1(q, q̇, t) =
1

2
m q̇2 eαt − 1

2
k q2 eαt

where α and k are positive constants.

(a) Derive the equations of motion of the system. Which system do these equations of motion
correspond to?

(b) Derive from the Lagrange function L1(q, q̇, t) a new Lagrange-function L2(Q, Q̇, t) where
the new coordinate Q is related to q by Q = q eγt. Choose the constant γ such that
L2(Q, Q̇, t) = L2(Q, Q̇), i.e. the explicit time-dependence is removed in L2.

(c) Derive the equations of motion of the time-independent Lagrangian L2 derived in part (b),
and solve them for (i) k > mα2/4, (ii) k = mα2/4, (iii) k < mα2/4 for general initial
conditions.

(d) Using the solutions for Q(t) obtained in part (c) invert the transformation introduced in
part (b) to derive the corresponding forms for q(t) in each of the three cases described in
part (c).

4. Let a system with 1 ≤ k ≤ n degrees of freedom be described by the Hamiltonian H = H(pk, qk).

(a) If the quantity f = f(pk, qk) has no explicit time-dependence, i.e. ∂f/∂t = 0, show that
df/dt = [f,H], where

[u, v] =
n∑
k=1

(
∂u

∂qk

∂v

∂pk
− ∂u

∂pk

∂v

∂qk

)

denotes the [u, v] Poisson bracket.

(b) In a 3-dimensional system the Hamiltonian is given by

H =
~p 2

2m
+ a|~q|b

where a, b are constants. Use the Poisson bracket condition derived in part (a) to determine
the values of the constants a and b for which the vector

~V = ~p× ~L+ c
~q

|~q|

is conserved, where ~L = ~q × ~p denotes the angular momentum and c is a constant.
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