


British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4271-99-8
ISBN-10 981-4271-99-3

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2009 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

PUSHING THE FRONTIERS OF ATOMIC PHYSICS
Proceedings of the XXI International Conference on Atomic Physics

Alvin - Pushing the frontiers.pmd 2/11/2009, 4:27 PM1



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

v

PREFACE

The 21st International Conference on Atomic Physics (ICAP 2008) was
held July 27 — August 1, 2008 at the University of Connecticut, Storrs,
CT, USA. Approximately 600 participants from 36 countries attended. This
conference was part of an ongoing series of conferences devoted to funda-
mental studies of atoms, broadly defined. A Web site with the Conference
Program, Abstracts, Proceedings and other archival information can be
found at: http://www.phys.uconn.edu/icap2008/.

The ICAP papers encompass forefront research on basic atomic, molec-
ular and optical (AMO) physics, emphasizing atoms and their interactions
with each other and with external fields, including various kinds of laser
fields. These meetings grew out of the molecular beams conferences of the
Rabi group. The first ICAP was held at NYU in 1968. Later conferences
have been held in all even-numbered years, alternating between North
America and other locations, including Europe and recently Brazil, with
the next conference planned for Cairns, Australia in 2010. The Web site for
the Cairns meeting is: http://www.swin.edu.au/icap2010/. The growth of
ICAP in recent years reflects the health and vitality of the AMO field and
the continuing emergence of exciting and often surprising new developments
and connections with other areas of physics.

Historically, topics have included quantum electrodynamics, tests of fun-
damental symmetries, precision measurements (including atomic clocks and
fundamental constants), laser spectroscopy, ultracold atoms and molecules,
Bose-Einstein condensates, degenerate Fermi gases, optical lattices, quan-
tum computing/quantum information with atoms and ions, coherent con-
trol, and ultrafast and intense field interactions. As per tradition, all 50
invited talks were plenary, with approximately 400 contributed papers pre-
sented at one of three afternoon poster sessions. The program included
lectures by Nobel Laureates Phillips, Cornell, Glauber, Chu and Ketterle,
as well as two in memoriam talks, commemorating the scientific lives and
broad impact on atomic physics of Willis Lamb and Herbert Walther. Two
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“hot topics” sessions of five invited papers each were held, emphasizing the
most recent research and including the 2008 winner of the IUPAP Young
Scientist Prize in this area of physics. The conference was preceded by
a one-week Summer School for new AMO researchers, organized by the
Harvard-MIT Center for Ultracold Atoms in Cambridge, MA. The ICAP
Co-Chairs were Robin Côté, Phillip Gould and Winthrop Smith of the
Physics Department at the University of Connecticut. The University and
particularly its Conference Services group provided excellent institutional
and logistical support and facilities.

The conference was sponsored by IUPAP, NSF, NIST, ARO and the
Department of Physics, the College of Liberal Arts and Sciences, and the
Research Foundation of the University of Connecticut, as well as by several
industrial companies. The organizers acknowledge with thanks the generous
support of all these organizations and companies.

The Local Organizing Committee worked tirelessly to make the confer-
ence a success and the Program Committee did a great job in selecting the
invited speakers. We also thank the members of the International Advi-
sory Committee for their advice on conference organization, publicity and
promotion of ICAP 2008.

Robin Côté
Phillip L. Gould
Michael G. Rozman
Winthrop W. Smith
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HERBERT WALTHER, SCIENTIST EXTRAORDINAIRE
(January 19, 1935 — July 22, 2006)

PIERRE MEYSTRE

College of Optical Sciences, Department of Physics and B2 Institute
The University of Arizona, Tucson, AZ 85721, USA

People who have a transforming influence on science come in many vari-
ations: there are of course the extraordinary researchers whose discoveries
help open and define a new field of investigations; the great teachers who
can inspire generations of students; and the visionary administrators who
provide the financial and infrastructure support needed to carry out our
work. Many physicists excel at one of these tasks, significantly less at two
of them, and only very few at all three. Herbert Walther was one of these
rare few.

As a researcher, he produced advances and insights of the highest value.
Amongst his many achievements, he helped define the field of cavity quan-
tum electrodynamics, a field that is in turn pivotal to the emerging science
of quantum information; as a teacher, he not only distinguished himself
in the classroom, but trained and mentored an extraordinary palette of
graduate students who went on to pursue highly distinguished academic
careers — Nobel Prize winner Wolfgang Ketterle and Max-Planck direc-
tors Gerd Leuchs and Gerhard Rempe immediately come to mind — or
alternatively became influential industry leaders, and here I am thinking
for instance of Rainer Schlicher and Andreas Dorsel. Last, but not least,
starting from an empty leased building and a couple of “theory contain-
ers”, he built a world-leading quantum optics research institute, producing
Nobel-quality research and a mecca for both very senior scientists and bud-
ding young researchers from all over the world. By attracting to Garching
the likes of Marlan Scully and Ted Haensch and hosting a palette of scientific
world stars, the absolute who-is-who of our field, he made the Max-Planck
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Institute for Quantum Optics an undisputed center of gravity for AMO
science, a must-stop destination.

Herbert Walther’s scientific career took him from his PhD studies at the
University of Heidelberg to Hannover, where he obtained his Habilitation
in 1968. After extended foreign stays at JILA in Boulder and at the Lab-
oratoire Aimé Cotton in Orsay, he became a Professor at the University
of Bonn, followed soon thereafter by a move to Cologne, where he stayed
until 1975. He then became a Professor at the University of Munich, be-
coming at the same time a founding Director of the Projektgruppe fuer
Laserforschung with Siegbert Witkowski and Karl Kompa. This research
group then morphed into the permanent Max-Planck Institute for Quan-
tum Optics in 1981.

The record indicates that during his Munich years, Herbert Walther
graduated 94 PhD students, and had 10 of his collaborators receive their
Habilitation. He is the author or coauthor of over 600 publications, covering
topics from applications of narrow linewidth dye lasers to spectroscopy,
a field where he was a true pioneer, to multiphoton processes; from the
study of Rydberg atoms to cavity QED and micromasers; from trapped
ion research to molecular spectroscopy; and from surface physics to more
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applied topics such as the development of techniques to monitor the ozone
layer in the atmosphere.

Herbert Walther’s impact on science policy is just as remarkable: he
served on a number of national and international committees, where he
profoundly influenced the development and support of science in Germany,
Europe and worldwide. These activities notably included a stint on the Sci-
ence Council of the German Federal Republic as well as membership on the
Executive Council of the European Science Foundation. Most importantly
perhaps, in his role as Vice-President of the Max-Planck Society he was
charged with the difficult and enormously challenging task of initiating the
reorganization of science in the former East Germany following the reunifi-
cation of Germany. This was without a doubt a task that would have fully
consumed lesser mortals, but that he accomplished tirelessly with grace,
fairness and good taste, while at the same time continuing all of his other
activities. I remember once asking him how he could possibly carry out es-
sentially three full-time jobs, while still finding time to be an extraordinary
host and mentor, always giving the impression of having all the time in the
world for his visitors. His answer was that “yes, one can turn any job into
a full-time job, but there is no reason why this should be the case”. He
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also explained to me one of his important rules, which was to touch any
piece of paper that landed on his desk only once. Still, I remain immensely
impressed by the fact that whenever I would talk to him, he gave me the
impression that I was the most important person in the world and that he
had unlimited time to talk and listen to me. To this day, I still don’t know
how he did it.

Herbert Walther had such a profound impact on so many aspects of sci-
ence that it is not surprising that a long list of prestigious rewards, awards,
and honors were bestowed upon him. They include the Max Born Prize,
the Charles Townes Award, the King Faisal Prize in Physics, the Michelson
Medal, the Humboldt Medal, the Stern-Gerlach Medal, the Verdienstkreuz
1. Klasse des Verdienstordens der Bundesrepublik Deutschland, the Willis
E. Lamb Medal for Laser Physics, the Quantum Electronics Prize of the
European Physical Society, the Alfred Krupp Prize for Science, the Or-
der of Merit of the State of Bavaria, and the Frederic Ives Medal/Jarus
W. Quinn Endowment. He was also a Member or Honorary Member of
Academia Sinica, the Bavarian Academy of Sciences, the Akademie der
Naturforscher Leopoldina, the Roland Eötvös Physical Society of Hungary,
the American Academy of Arts and Sciences, the Heidelberg Academy of
Sciences, the Romanian Academy, the Nordrhein-Westflische Akademie der
Wissenschaften, Academia Europaea, the Russian Academy of Sciences,
the Hungarian Academy of Sciences, the Convent for Technical Sciences of
the German Academies, the German Physical Society, and the Belarusian
Physical Society.

But as impressive as they may be, these lists don’t even come close
to expressing the impact that Herbert Walther has had on AMO science
and most importantly, on generations of students and colleagues worldwide.
When confronted with a difficult situation or a thorny problem, I still find
myself asking “how would Herbert deal with that?” And this, for me, is the
biggest compliment I can make to this unforgettable mentor. I still miss
him terribly, and I know that there are very many of us who feel that way.

Last but not least: As the saying goes, behind every great man there is
a great woman. In Herbert Walther’s case, everybody who knew him also
knows how very true that was. It is very difficult indeed to imagine that
he could have achieved even a fraction of what he did without the support
and love of his wife Margot. Not to mention her wonderful hospitality and
her great dinners, which many of us have enjoyed so much!



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Herbert Walther, scientist extraordinaire 5

Acknowledgements

I am thankful to Dr. T. W. Haensch for providing me with a number of
pictures of Herbert Walther, including those shown here.



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

6

WILLIS E. LAMB
July 12, 1913 — May 15, 2008

PAUL BERMAN

Physics Department, University of Michigan, 450 Church Street
Ann Arbor, Michigan 48109-1040, USA

The atomic and optical physics community lost one of its pioneers with the
death of Willis E. Lamb, Jr. on May 15, 2008. Lamb was born on July 12,
1913, received the BS degree in Chemistry at Berkeley in 1934, and ob-
tained his PhD under the tutelage of J. Robert Oppenheimer at Berkeley
in 1938. He served on the faculties of Columbia University, Stanford Uni-
versity, Oxford University, Yale University, and the University of Arizona.
Lamb received the Nobel prize in 1955 for his work on the fine structure of
hydrogen and was awarded the President’s National Medal for Science in
2000.

The paper by Lamb and R. Retherford entitled Fine Structure of the
Hydrogen Atom by a Microwave Method that appeared in The Physical
Review in 1947 ushered in the field of quantum electrodynamics. Lamb
and Retherford used microwave spectroscopy to measure a splitting “of
about 1000 MHz” between the 2S1/2 and 2P1/2 levels of hydrogen, levels
that were predicted to be degenerate on the basis of the Dirac theory. This
paper was followed by a series of six papers in which both the theory and
accuracy of the measurements were refined, and by a paper with N. Kroll
that contained the first relativistic calculation of the level splitting. This
work provided the first step into what was to become an incredible journey
involving high precision tests of quantum electrodynamics.

Somewhat ironically, the “Lamb shift” paper is not Lamb’s most cited
work; his most cited work by far is his paper on the Theory of an Optical
Maser, published in 1964. This paper contains a detailed theory of gas
laser operation, predicting features such as a dip in the output power at
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line center, frequency pulling, and phase locking of different modes. This
work was followed by a quantum theory of laser operation (with M. Scully)
and papers on the Zeeman laser, ring laser, and laser pulse propagation.

Early in his career (1939), Lamb calculated the neutron capture cross
section by nucleons bound in a lattice and showed that the recoil of the
nucleons could be suppressed, a precursor of the Mossbauer effect. Based
on this work and a paper by Dicke in 1953, the interaction of light with
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atoms confined to distances less than a wavelength is referred to as the
Lamb-Dicke limit.

In his later years, Lamb concentrated his efforts on fundamental prob-
lems in non-relativistic quantum mechanics, a field which was his true pas-
sion. He continued an “anti-photon” campaign, stating that there were just
a precious few who qualify for a “license” to use the word “photon” in
its proper sense. He also worked on the theory of measurement and the
“classical” underpinnings of the Schrödinger equation.

Anyone who has read Lamb’s papers is impressed by his clarity of pre-
sentation. He always stressed physical understanding over mathematical
formalism. He displayed a profound mastery of scientific literature and had
a deep respect for the historical development of physical theories. Lamb
tried to instill in his students the ethic that integrity was an essential com-
ponent of any publication. His advice in writing papers was, “if it’s worth
putting in, it’s worth explaining.” Willis Lamb leaves with us a legacy that
will be appreciated for decades to come.
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WHEN IS A QUANTUM GAS A QUANTUM LIQUID?

J. M. PINO, R. J. WILD, S. B. PAPP, S. RONEN, D. S. JIN, and E. A. CORNELL∗

NIST/JILA, University of Colorado,
Boulder, CO, 80309, USA

∗E-mail: cornell@jila.colorado.edu

We report on measurements of the excitation spectrum of a strongly interact-
ing Bose-Einstein condensate (BEC). A magnetic-field Feshbach resonance is
used to tune atom-atom interactions in the condensate and to reach a regime
where quantum depletion and beyond mean-field corrections to the condensate
chemical potential are significant. We use two-photon Bragg spectroscopy to
probe the condensate excitation spectrum; our results demonstrate the onset
of beyond mean-field effects in a gaseous BEC.

Keywords: Bragg Spectroscopy; Beyond mean-field; Feshbach resonance.

The concept of an interacting but dilute Bose gas was originally devel-
oped fifty years ago as a theoretically tractable surrogate for superfluid
liquid helium. For some years after the eventual experimental realization of
dilute-gas Bose-Einstein condensates (BEC), experiments were performed
mainly in the extreme dilute limit, in which atom-atom correlations were
of negligible significance. Such correlations again assumed a central role,
however, in the 2002 experiments on a Mott state for bosons in an opti-
cal lattice1 and on atom-molecule coherence near a Feshbach resonance.2

Atom-atom correlations are also central to the current hot-topic field of
resonant fermionic condensates.3,4

In this paper we describe an experimental study of elementary excita-
tions in a system which harkens back to a previous century, in that, like
liquid helium, it is a strongly interacting, bulk, bosonic superfluid. Unlike
liquid helium, our gas of Bose-condensed 85Rb has the modern virtue of
Feshbach-tunable interactions well-described by a scattering length a that
is much larger than the reach of the actual interatomic potential. Our tool
for characterizing the sample is Bragg spectroscopy.5,6
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Our experiments are performed using a 85Rb BEC near a Feshbach
resonance at 155 G.7,8 A gas of 85Rb atoms in the |F = 2,mF = −2〉
state is first sympathetically cooled with 87Rb in a magnetic trap and then
evaporated directly to ultralow temperature in an optical dipole trap.9 We
create a single-species 85Rb condensate,10 with 40, 000 atoms and a conden-
sate fraction greater than 85%, in a weakly confining optical dipole trap at
a magnetic field above the Feshbach resonance where the scattering length
is 150 a0. Curvature of the magnetic field enhances confinement along the
axial direction of the optical trap. Following evaporative cooling, the op-
tical dipole trap is recompressed and the final trap has a measured radial
(axial) trap frequency of 2π × 134 Hz (2π × 2.9 Hz), yielding a condensate
mean density of 2.1 × 1013 cm−3.

Bragg spectroscopy via stimulated two-photon transitions provides
a direct probe of the condensate excitation spectrum. Two counter-
propagating, near-resonant laser beams are aligned along the long axis of
the condensate. The momentum imparted to a condensate excitation is
given by �k = 2 � kL where kL = 2 π

780 nm is the wave vector of a beam.
The excitation energy is scanned by adjusting the frequency difference of
the two laser beams. The average of the two frequencies is red detuned
from atomic resonance by 4.2 GHz. The intensity and pulse duration of the
Bragg beams are chosen so that the fraction of the condensate excited is
less than 10%.

Just before performing the Bragg spectroscopy, we transiently enhance
the condensate density by means of large amplitude radial and axial breath-
ing modes, which we excite by modulating the magnetic field and thus the
Feshbach-modified scattering length. The rates of the ramps are limited so
the ȧ/a never exceeds 0.06�/(ma2). The scattering length is derived from
measurements of the magnetic field and a previous measurement of the
85Rb Feshbach resonance.11 Synchronized with the inner turning point of
the radial oscillation, we ramp the scattering length to the value for a given
measurement and then pulse on the Bragg beams. During the pulse, the
cloud’s inward motion is checked and it begins to breathe outward. We
model the resulting time-dependent condensate density using a variational
solution to the Gross-Pitaevskii equation,12 which predicts that the density
of the cloud does not change by more than 30% during the Bragg pulse.
We can meet this goal only by using progressively shorter Bragg pulses for
higher values of desired a. The time- and space-averaged density during
the pulse is approximately 7.6×1013 cm−3, but this depends weakly on the
final value of a.
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After the Bragg pulse, we ramp a to 917 a0 in order to ensure that
the momentum of the excitations is spread via collisions13,14 to the entire
condensate sample. We then infer the total momentum, and thus excitation
fraction, from the amplitude of the resulting axial slosh, measured via an
absorption image taken of the cloud at a time near its axial turning point.

Fig. 1. Typical Bragg spectra at a scattering length of 100 a0 (blue triangles), 585 a0

(red circles), and 890 a0 (black squares). The excitation fraction is determined from the
measured momentum transferred to the BEC and plotted as a function of the frequency
difference between the two Bragg beams. Lines are fits of the data as described in the
text. Mean-field theory predicts a continuous increase in the line shift with increasing a,
however by 890 a0 our data display a decreasing shift with stronger interactions.

Figure 1 shows measured Bragg spectra for three values of a. We fit
each Bragg spectrum to an antisymmetric function assuming a Gaussian
peak and extract a center frequency and an RMS width. The Bragg line
shift is the difference between the fitted center and the ideal gas result
1
2π

� k2

2 m = 15.423 kHz. In Fig. 2(a) we plot our measured line shifts as a
function of the scattering length a. For a � 300a0 (where the predicted
LHY25 correction is already a 10% effect), the measured line shift (• in
Fig. 2(a) agrees with the simple mean-field result. However, as the scattering
length is increased further, the resonance line shift deviates significantly
from the mean-field prediction. The measured line shift reaches a maximum
near a = 500a0 and then decreases as the scattering length is increased
further.

At large a we find that our measured line shift exhibits a systematic
dependence on the temperature of the sample.16 Non-condensed 85Rb atoms
also respond to the Bragg pulse, and this causes an observable effect in the
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Fig. 2. (a) Bragg line shift and (b) width as a function of scattering length. In (a)
the hollow circles are our observations. The solid circles are data corrected for a fitting
systematic associated with the broad thermal atom background, and the error bars rep-
resent fit uncertainties. The solid black theory line corresponds to the simple mean-field
shift ∝ na, and the blue dotted line gives the full Bogoliubov15 theory, which includes
phonon interactions. The theory lines are calculated for the trapped gas using a local
density approximation for each of the corresponding data points. The mean BEC density
ranges from 6.3 × 1013 cm−3 to 7.6 × 1013 cm−3. Error bars on the theory lines reflect
uncertainty in these densities. Some of the error bars have been omitted for clarity. In
(b) the solid black circles are the rms width of a gaussian fit to the Bragg spectra. Black
triangles are from a fit to a convolution of various contributions to the width calcu-
lated under the conditions of our measurements. The remaining symbols characterize
constituent contributions to the convolution including the Lorentzian FWHM width due
to collisions (blue squares), and the RMS width of a Gaussian fitted to the contributions
due to the inhomogeneous density (red diamonds) and the pulse duration (green circles).
The largest contribution to the width comes from the pulse duration; because the jump
to large a initiates rapid expansion of the BEC, ever shorter pulses are used to obtain
the spectra at larger a.
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measured line shift when the spectral width of the condensate response
becomes comparable to that of the non-condensed atoms (for a > 500a0).
We vary the temperature of the gas to characterize this effect and we apply
a small empirical correction to our data to represent the expected line shift
at zero temperature (• in Fig. 2(a)).

Figure 2(b) shows the measured width of the Bragg peak as a function
of a. Several effects contribute to the total width of the Bragg resonance
including the finite duration of the pulse, the inhomogeneous density of
the trapped condensate,5 collisions between the excitations and the con-
densate,13 and Doppler broadening.5 In our case, Doppler broadening is
negligible since the axial size of the condensate is relatively large. To un-
derstand the total width we convolve the various calculated lineshapes of
the remaining three effects. We fit a Gaussian to the convolution (to match
the Gaussian fit to our data) and the RMS width from this fit is shown
in Fig. 2(b) (black �). Fig. 2(b) also shows the expected contributions to
the width from each of the three effects. For the lineshape due to collisions
we expect a Lorentzian with a full width at half maximum δν = 1

2 π
n σ k

m ,
where σ is the elastic cross section for collisions between the excitations
and low momentum atoms. In calculating σ we include the suppression in
the phonon regime predicted by Beliaev.13,17 The measured Bragg width
exceeds the predicted width in the strongly interacting regime. However,
many of the theoretical difficulties in describing the line shift apply also to
predicting the width that arises from inhomogeneous density and excitation
lifetime.

A key future goal of our work is to experimentally explore different time-
scales for the establishment of local many-body quasi-equilibrium, and for
longer-term evolution. The extreme aspect ratio of our sample hastens the
loss of density that occurs during the expansion caused by the ramp to high
a. At present, we are required to use short duration Bragg pulses, which
limits our spectral resolution, and we are prevented from tracking the time
evolution of line shifts. An ongoing redesign to a more spherical geometry
will help. In addition, the Bragg beams are being reconfigured to allow
access to the low-k, pure-phonon regime for which 1/(k ξ) � 1.

A more complete account of this work has appeared in S. B. Papp,
J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A.
Cornell, Phys. Rev. Lett. 101, 135301 (2008). We gratefully acknowledge
useful conversations with J. Bohn, M. Holland, R. Ballagh, S. Stringari and
the JILA ultracold atom collaboration. This work is supported by NSF and
ONR.
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COOPERATIVE EMISSION OF LIGHT QUANTA: A
THEORY OF COHERENT RADIATION DAMPING∗

R. J. GLAUBER

Harvard University, Cambridge, MA 02138
Email: glauber@physics.harvard.edu

A quantum emitted by any of a collection of identical atoms may be absorbed
and re-emitted by other atoms many times before it eventually emerges. The
radiation process is thus best described as collective or cooperative in nature.
The atomic excitations are shown to attenuate as linear combinations of certain
characteristic decay modes that lend a complex structure to the spectrum
radiated. Instead of a single line, it becomes a closely-spaced multiplet of lines,
the elements of which have a variety of lifetimes, line-shifts and line-widths.
We calculate these quantities, first with an abstract two-state model for the
atoms and then with an isotropic four-state model that accommodates the full
polarization dependence of the radiation.

Keywords: Cooperative emission; Coherent radiation damping.

1. Introduction

We consider a collection of identical atoms interacting with the radiation
field. If one of the atoms is raised to an excited state and radiates a single
quantum in returning to its ground state, the other unexcited atoms nearby
will have a resonantly large probability of absorbing the quantum and then
reradiating it, a cycle which may be repeated in many ways indefinitely
many times. Radiation by the atomic system is thus a collective process.
The single quantum is radiated not by any one atom but cooperatively
by the full collection. We shall show that this process is best described
by introducing certain collective excitation modes for the atomic system,
which lead to exponential decay with a range of different lifetimes. These
modes are found then to radiate with different line-shifts as well as different

∗A paper based on the first five sections of the present work was presented at the Confer-
ence “Photons, Atoms and Qubits,” PAQO7, at the Royal Society, London, September
4, 2007.
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line-widths. An arbitrary initial excitation of the atomic system decays in
general as a linear combination of these characteristic modes.

The atoms, we assume occupy fixed positions rj , (j = 1, . . . n), and we
take them, as an initial simplifying assumption, to have just two quantum
states, a ground state |gj〉 and an excited state |ej〉. We represent the op-
erators that bring about transitions between those states for the j-th atom
as σ±

j , so that

σ+
j |gj〉 = |ej〉, σ+

j |ej〉 = 0

σ−
j |ej〉 = |gj〉, σ−

j |gj〉 = 0. (1.1)

We label an oscillation mode of the electromagnetic field with an index k,
which will later be taken to specify both the propagation vector and the
polarization of a plane wave. A single quantum state for the k-th mode will
be |k〉 and will have energy �ωk. The annihilation and creation operators for
this quantum are ak and a†k, which obey the familiar commutation relations

aka
†
k′ − a†k′ak = δkk′ . (1.2)

If we take the excitation energy of the states |ej〉 to be �ω0 then we
may write the Hamiltonian for the system of atoms plus field, before their
interaction is taken into account, as

H0 = �ω0

∑
j

σ+
j σ

−
j +
∑

k

�ωka
†
kak. (1.3)

The ground state of this system, which has no excitation or quanta present,
has energy zero. That energy changes, however, when the atom-field inter-
actions are taken into account, and we shall later add a constant to H0 that
readjusts the ground state energy to zero.

We need, for the present, only to note that the atom-field interaction
permits an atom in either state to go to the other state while either emitting
or absorbing a quantum. The interaction Hamiltonian can then be written
as

H1 = �

∑
jk

(σ+
j + σ−

j )(λjkak + λ∗jka
†
k), (1.4)

in which the coupling coefficients λjk and λ∗jk are atomic matrix elements
for the radiative transition between the two atomic states.

States of the atom-field system that evolve from a single atomic excita-
tion will tend not to have many excited atoms or many quanta present. The
simplest way of labeling the states then will be to indicate only the atoms
or modes containing excitations, leaving unmentioned all that remain in
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their unexcited states. Thus |ej〉 will be a state with only the j-th atom
excited, while |k〉 will be a state with one quantum in the k-th mode and
no other excitations. We shall also encounter the states |eiejk〉 with two
atoms excited, j �= i, and one quantum present, and the states |eikk

′〉 with
one excited atom and two quanta present, which may occupy the same or
different modes.

To approximate the time-dependent Schrödinger state of the system, we
introduce a set of time-dependent coefficients to expand it in terms of the
succession of time-independent basis states we have introduced, as follows:

|t〉=
∑

j

βj(t)|ej〉 +
∑

k

αk(t)|k〉 +

∑
i<j,k

ζijk(t)|eiejk〉 +
1
2

∑
jkk′

ηjkk′ (t)|ejkk′ 〉. (1.5)

In the last term ηjkk′ is defined to be symmetric in the indices k and
k′. Further terms with more excitations will not be necessary. The time
dependence of the coefficients βj , · · · ηikk′ must be determined from the
overall Schrödinger equation

i�
d

dt
|t〉 = (H0 +H1)|t〉. (1.6)

We can project out of this equation the four equations obeyed by the time
derivatives β̇i . . . η̇jkk′ . The first, for example, is

i�β̇j = 〈ej |H0 +H1|t〉 (1.7)

and the other three are constructed analogously. The four coupled differen-
tial equations are thus

iβ̇i = ω0βi +
∑

k

λikαk +
∑

j �=i,k

λjkζijk (1.8)

iα̇k = ωkαk +
∑

j

λ∗jkβj +
∑
jk′

λjk′ηjk′k (1.9)

iζ̇ijk = (2ω0 + ωk)ζijk + λ∗ikβj + λ∗jkβi (i �= 1) (1.10)

iη̇jkk′ = (ω0 + ωk + ωk′)ηjkk′ + λ∗jkαk′ + λ∗jk′αk. (1.11)

In constructing these equations we have dropped the terms that link the
amplitudes ζijk and ηjkk′ , since they would introduce higher order correc-
tions than we need. The amplitudes ζijk and ηjkk′ themselves however must
not be neglected. To drop them would be to fall back on what has been
called the ”rotating wave” approximation which, in effect, omits those terms
of the interaction in Eq. (1.4) that cannot immediately conserve energy. The
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importance of including such transitions in the calculation of interatomic
forces has been indicated by M. Stephen1 and extended to other radiative
interactions by several authors.2,3

2. The Coupling of the Excitation Amplitudes

We assume that our system starts out with no quanta present at t = 0,
so that αk(0), ζijk(0) = 0, and ηjkk′ (0) = 0. Then the time integrals of
Eqs. (1.9)–(1.11) can be written as

αk(t) = −i
∫ t

0

∑
j

λ∗jkβj(t′) +
∑
jk′

λjk′ηjk′k(t′)

 e−iωk(t−t′)dt′(2.1)

ζijk(t) = −i
∫ t

0

{
λ∗ikβj(t′) + λ∗jkβi(t′)

}
e−i(2ω0+ωk)(t−t′)dt′ (2.2)

ηjkk′ (t) = −i
∫ t

0

{λ∗jkαk′(t′) + λ∗jk′αk(t′)}e−i(ω0+ωk+ωk′)(t−t′)dt′. (2.3)

We can use the first two of these equations to find an equation relating
only the excitation amplitudes βj . First however, let us take away the rapid
oscillation of these amplitudes by defining

β′
j = βje

iω0t. (2.4)

Then by substituting the expressions in Eqs. (2.1) and (2.2) into Eq. (1.8)
we find

β̇′
i = −

∫ t

0

∑
jk

λikλ
∗
jkβ

′
j(t

′)ei(ω0−ωk)(t−t′)dt′

−
∫ t

0

∑
j �=i,k

{|λjk|2β′
i(t

′) + λjkλ
∗
ikβ

′
j(t

′)}e−i(ω0+ωk)(t−t′)dt′. (2.5)

The coupling constants λik, as we have noted, are matrix elements of
the combined transitions of an atom and the field. In a single electron
transition, for example, in the i-th atom we would have

λ∗ik = − e

mc
〈k|p ·A(r)|ei〉, (2.6)

where p is the electron momentum and A(r) the vector potential at its
position r. The matrix element thus contains the integral∫

ψ∗
gpe

ik·rψe dr, (2.7)
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where ψe and ψg are the excited state and ground state wave functions,
respectively. If, for each atom, these wave functions are spread over a volume
with radius of magnitude R, then for kR � 1 the phase factor exp(ik · p)
will oscillate many times within each atom. In the limit kR → ∞ then we
expect the integral (2.7) to go rapidly to zero. The summations in Eq. (2.5),
which are carried out over all modes of field excitation, will then converge
to finite values.

It will be helpful at this point to recall briefly several elements of the
radiation damping calculation for a single atom.4 If only the i-th atom is
present, Eq. (2.5) takes the simpler form

β̇′
i = −

∫ t

0

∑
k

|λik|2ei(ω0−ωk)(t−t′)β′
i(t

′)dt′. (2.8)

The mode summation in its expression is ultimately an integration over the
values of k. With the factor

e−iωk(t−k′) = e−ikc(t−t′)

in its integrand, it behaves very much like a Fourier integral over k. Since the
matrix elements λik tend to vanish for kR � 1, the mode summation tends
to vanish for c(t− t′) � 1/R. In that case nearly all of the contributions to
the t′ integration in Eq. (2.8) come from the brief time interval (t−t′) ∼ R/c

near the upper limit of integration. The interval R/c, the passage time of
light through the atom is, of course shorter than the oscillation period
1/ω0, and much shorter than the damping time in which we may expect
the amplitude β′

i(t
′) to vary appreciably. It becomes accurate then simply

to evaluate the function β′
i in the integrand of Eq. (2.8) at the upper limit

t′ = t, and factor it out of the integral.
There are two other familiar steps in the treatment of a single atom. For

times t � R/c the lower limit of integration in Eq. (2.8) can be displaced
from 0 to −∞ without materially altering the integral. Furthermore the
integrals of the individual terms of the mode summation can be defined by
adding to ω0 a positive imaginary infinitesimal iε and taking the limit as
ε→ 0. These steps lead us to the differential equation

β̇′
i = − lim

ε→0

∑
k

|λik|2
ε− i(ω0 − ωk)

· β′
i. (2.9)

The limiting form of this relation can be written as

β̇′
i = −(γ + iδω0)β′

i, (2.10)
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where

γ = π
∑

k

|λik|2δ(ωk − ω0) (2.11)

is the damping constant, and the radiative frequency shift δω0 is given by
the sum

δω0 = P
∑
k

|λik|2
ω0 − ωk

, (2.12)

in which the symbol P indicates the principal value of the sum. The results
we have reached in Eqs. (2.10)– (2.12) are the familiar ones for the radiation
by a single atom. If β′

i(0) = 1, then

βi(t) = e−[γ+i(ω0+δω0)]t, (2.13)

and the damping constant γ is both the half-width of the spectrum line ra-
diated and one-half the transition rate as calculated in perturbation theory.

Our problem now is to generalize this analysis to deal with the full set of
n atoms, which have different positions rj , and may in general have differ-
ently oriented electric dipole moment vectors µi. It seems simplest to deal
with these generalizations in two stages. In the first stage we shall assume
that our two-state atoms have dipole moment matrix-element vectors µi

that are all the same µj = µ, j = 1 · · ·n. With this assumption it is clear
from the structure of the matrix element (2.6) that we can write

λjk = λke
ik·rj , (2.14)

where the coupling constants λk are the same for all atoms j = 1 · · ·n. In
Section 6 we shall extend our model to let all the electric dipole vectors vary
freely. For the present however, it suffices to consider the summations that
occur in Eq. (2.5), by using the expression (2.14) for the coupling constants.
We have then, for example,∑

j �=i,k

λikλ
∗
jke

i(ω0−ωk)(t−t′) =
∑

j �=i,k

|λk|2ei[k·(rj−rj)+(ω0−ωk)(t−t′)], (2.15)

in which the phase factors exp[ik · (ri − rj)] result from the time delays for
the passage of light from one atom to another. If the distances between the
atoms are small compared to the distance c/γ that light travels in a decay
period, we may again factor the amplitudes β′

j(t
′) out of the integrands in

Eq. (2.5), evaluating them at t′ = t.
The assumption that the interatomic propagation times are small com-

pared to the decay time does impose a limit on the size of the atomic systems
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we can discuss, but it is quite a generous one. The distances rij = |ri − rj |
can be as large as 104 or 106 times the resonant wavelength.

As a further simplification, motivated as before, we can let the lower
limits of the t′ integrations go to −∞, so that Eq. (2.5) becomes

β̇′
i = − (γ + iδω0)β′

i

− i

∫ t

−∞

∑
j �=i,k

{
λikλ

∗
jke

i(ω0−ωk)(t−t′) + λ∗ikλjke
−i(ω0+ωk)(t−t′)

}
dt′β′

j(t)

− i

∫ ∞

0

∑
j �=i,k

|λjk|2e−i(ω0+ωk)(t−t′)dt′β′
i(t). (2.16)

The integrations over t′ can then be carried out as before by letting ω0 →
ω0 + iε in the first of these three t′-integrations to keep the singularity in
the mode summation well-defined. The result is

β̇′
i = − (γ + iδω0)β′

i −
∑

j �=i,k

{
λikλ

∗
jk

ε− i(ω0 − ωk)
+

λikλ
∗
jk

i(ω0 + ωk)

}
β′

j

+ (n− 1)i
∑

k

|λk|2
ω0 + ωk

β′
i. (2.17)

We can immediately recognize the last of these terms. The energy level
shift of the ground state of an atom due to its interaction with the radiation
field is just

�δωg = −�

∑
k

|λk|2
ω0 + ωk

, (2.18)

according to second-order perturbation theory. The last term of Eq. (2.17)
thus represents the frequency shift of β′

i due to the coupling to the field of
the n− 1 atoms that remain unexcited.

It is convenient at this point to return to the discussion of βi = β′
ie

−iω0t

and to introduce the notation

k0 =
ω0

c
, k = |k| =

ωk

c
, ε′ =

ε

c
, (2.19)

so that we can rewrite Eq. (2.17) in the form

β̇i = −[γ + i(ω0 + δω0) + i(n− 1)δωg]βi − γ
∑
j �=i

Sijβj (2.20)
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in which we have defined Sij for i �= j as

Sij = − i

γ

∑
k

{
λikλ

∗
jk

k − k0 − iε′
+
λ∗ikλjk

k + k0

}
. (2.21)

3. The Radiation Amplitudes and Energy Renormalization

It is helpful, before solving more explicitly for the coupled excitation ampli-
tudes, to show how the field amplitudes αk(t) may be derived from them.
We return, for this purpose, to Eq. (1.9) for α̇k(t) and substitute in it the
expression (2.3) for the amplitudes njkk′ (t). By then carrying out in it the
same sequence of approximations we made in deriving the equation (2.17)
that couples the amplitudes β′

i, we find

iα̇k = (ωk + nδωg)αk +
∑

j

λ∗jikβj − 1
ω0 + ωk

∑
j,k′

λ∗jkλjk′αk′ . (3.1)

The term nδωg that is added to ωk in this equation has essentially the
same origin as the term (n − 1)δωg added to ω0 in Eq. (2.20). We have
begun by taking the state of zero energy for our system to be the one in
which no photons are present and all n atoms are in their “bare” ground
states. Those are the ground states in the absence of interaction with the
field. When the atoms are coupled to the field their ground state energy
becomes n�δωg, and it is this state to which an excited atom decays.

We can reset the final state energy of the n atoms to zero by subtracting
from the HamiltonianH0, given by Eq. (1.3), the “self-energy” n�δωg. That
subtraction multiplies all the amplitudes αk and βi, in effect, by the same
phase factor exp(inδωgt) which then subtracts away the nδωg terms in
Eqs. (2.20) and (3.1).

A further simplification is that the last term of Eq. (3.1) leads to higher
order corrections than we need for the discussion of single photon radiation,
so we may drop it for the present, (although it does play a role in the
scattering of pre-existing photons.) With that term omitted, and the ground
state energies suitably adjusted, we may integrate Eq. (3.1), noting αk(0) =
0, to find that

αk(t) = −ie−iωkt

∫ t

0

∑
j

λ∗jkβj(t′)eiωkt′dt′. (3.2)

With the nδωg term subtracted away Eq. (2.20) takes the form

β̇i = −[γ + i(ω0 + δω0 − δωg)]βi − γ
∑
j �=i

Sijβj . (3.3)
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If we write the renormalized resonant frequency as

ω′
0 = ω0 + δω0 − δωg (3.4)

and redefine β′
i as

β′
i = βie

iω′
0t, (3.5)

then the equation for the coupled excitation amplitudes becomes

β̇′
i = −γβ′

i − γ
∑
j �=i

Sijβ
′
i. (3.6)

4. Solution for the Excitation Amplitudes

Only the off-diagonal matrix elements Sij for i �= j have been defined by
Eq. (2.21). If we now define the diagonal elements as

Sii = 1, i = 1 · · ·n (4.1)

then the equation for the coupled amplitudes assumes the compact form

β̇′
i = −γ

∑
j

Sijβ
′
j. (4.2)

If we think of the set of n amplitudes β′
1 · · ·β′

n as the components of an n-
dimensional complex vector B, we may write the set of coupled equations
in the still more compact form

Ḃ = −γSB. (4.3)

The matrix S in these equations is complex-valued in general and in fact
symmetric, Sij = Sji. The symmetry property follows from Eq. (2.14) and
the fact that for each propagation vector k in the mode sum given by
Eq. (2.21) there is also a propagation vector −k.

The total excitation probability of the atomic system is the scalar prod-
uct

B∗ ·B =
∑

i

|βi|2, (4.4)

and its time derivative is
d

dt
(B∗ ·B) = −γB∗ · (S + S∗) · B

= −2γB∗(Re S)B (4.5)

It can easily be shown that the real part of Sij is a positive definite matrix,
so the total excitation probability of the system always decreases monoton-
ically.
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Since the matrix S is symmetric it can be diagonalized. If we write its
eigenvalues as s� for � = 1 · · ·n, and the corresponding eigenvectors as B(�)

we have

SB(�) = s�B
(�) (4.6)

and the vectors B(�)(t) then denote excitation modes that decay exponen-
tially

B(�)(t) = B(�)(0)e−γs�t. (4.7)

These are, in a sense, the normal modes of the collective radiative damping
process.

The eigenvalues s� are in general complex. The real parts Re s� can
never be negative, and γ Re s� will govern the rate of exponential decay of
each mode. The imaginary part of the root s� will lead to a frequency shift
characteristic of the mode. It will be a shift due explicitly to the presence
of other atoms nearby. In the �-th mode then the excitation amplitudes will
oscillate with the frequency

ω′
0 + γ Im s� = ω0 + δω0 − δωg + γ Im s�. (4.8)

The single atomic spectrum line is split in general into an n-fold multiplet,
(many components of which may be very closely spaced).

The orthogonal transformation that diagonalizes the matrix S preserves
its trace. Since all the diagonal elements of Sij are equal to one, the trace
is n, and the roots must obey the identity∑

�

s� = n. (4.9)

The real and imaginary parts of this relation constitute two interesting sum
rules. The first is ∑

�

Re s� = n, (4.10)

which severely constrains the individual decay rates. If any mode, for ex-
ample, has the maximal decay rate nγ, all the remaining decay rates must
vanish. They characterize “dark” modes from which no radiation can es-
cape. The second sum rule ∑

�

Im s� = 0, (4.11)

implies that the sum of the frequency displacements in the n-fold multiplet
is zero. The multiplet remains centered on ω0 + δω0 − δωg.
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The exponential time dependence of the mode amplitudes B(�)(t) makes
it easy to find the radiation amplitudes αk(t). The result may be written
compactly by recalling the position dependence of the coupling constants
λjk given by Eq. (2.14) and gathering the phase factors eik·rj into an n-
component vector

V = (eik·r1 , . . . , eikrn), (4.12)

so that we can write ∑
j

e−ik·rjβ′
j(t) = V ∗ ·B(t). (4.13)

If we then evaluate the integrand in Eq. (3.2) for the �-th mode we find the
radiation amplitude

αk(t) = λ∗ke
−iωkt (1 − e−[γs�−i(ωk−ω′

0)]t)
ωk − ω′

0 + iγs�
(V ∗ ·B(�)) (4.14)

for times t > (γ Re s�)−1 then, the �-th mode radiates a Lorentzian spec-
trum line centered at ωk = ω′

0 + γ Im s� with half-width γ Re s�. The mode
vectors B(�) can be assumed to form a complete orthonormal set so an
arbitrary initial excitation B(0) may be expanded in terms of them as

B(0) =
∑

�

B(�)(B(�) ·B(0)). (4.15)

The �-th line of the radiated multiplet then, if it is well enough separated
from the others, will have an intensity proportional to

|V ∗ · B(�)|2|B(�) ·B(0)|2. (4.16)

5. The Radiative Decay Matrix

To find the time-dependent atomic excitation modes we solve the equa-
tion (4.2). We shall have first to evaluate the elements Sij of the matrix
that describes the mutual induction of radiative decay processes by the
individual atoms. These matrix elements are expressed by Eq. (2.21) as
summations over all the excitation modes k of the field. For radiation in
free space then, they are integrations over the space of plane wave prop-
agation vectors k together with sums over the pair of transverse polariza-
tions associated with each k. To evaluate the Sij then we shall need more
explicit expressions for the coupling coefficients λjk, which include their
polarization dependence and their dependence on the atomic positions rj.
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The interaction of the atomic electric dipole moments with the electric field
(in rationalized units) is characterized by the coupling constants

λjk = −i
√

ωk

2�V
µj · ê(p)(k)eik·rj . (5.1)

In this expression µj is the transition matrix element of the dipole moment
vector for the j-th atom, ê(p) is one of the two polarization basis vectors
(assumed real-valued) associated with the propagation vector, k, and V is
the quantization volume.

The expression for Sij given by Eq. (2.21) then, as an integral over
k-space and a polarization sum is

Sij = − i

2�γ

∫
k dk
(2π)3

∑
p

µi · ê(p)ê(p) · µj

{
eik·rij

k − k0 − iε
+
e−ik·rij

k + k0

}
, (5.2)

where we have introduced the abbreviation rij = ri − rj . We can carry out
the polarization sum by noting the dyadic relation∑

p=1,2

ê(p)(k)ê(p)(k) = 1 − k̂k̂, (5.3)

in which 1 is the unit dyadic and k̂ = k/k is a unit vector in the direction
of k. Then we have∑

p

µi · ê(p)ê(p) · µj = µi · µj − (µi · k̂)(µj · k̂) (5.4)

as an expression to include in the integrand of Eq. (5.2).
If, as in the preceding sections of this paper, we assume our two-level

atoms all have the same dipole moment orientation, i.e., µ1 = µ2 = · · · =
µn, then the polarization sum reduces to

µ2 − (µ · k̂)2, (5.5)

where µ is the common value of the µj . We shall extend our model to in-
clude arbitrary and indepedent orientations of the µj in the next section,
but find it expedient meanwhile to separate that problem from the integra-
tion to be carried out in Eq. (5.2) by replacing the sum (5.4) by its value
averaged over all directions of the dipole vector µ.

〈µ2 − (µ · k̂)2〉av =
2
3
µ2. (5.6)

The polarization sum will be treated more fully in due course.
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With the expression (5.6) substituted for the polarization sum in
Eq. (5.2) we can write the averaged matrix element S̄ij as

S̄ij = − i

3�γ

µ2

(2π)3

∫
k3dk dΩ

{
1

k − k0 − iε′
+

1
k + k0

}
eik·rij (5.7)

in which dΩ is an element of solid angle in k-space. We can write this
integral as

S̄ij = − i

3�γ

µ2

(2π)3
∇2

∫
k dk dΩ

{
1

k − k0 − iε′
+

1
k + k0

}
eik·rij (5.8)

where ∇2 is the Laplacian differential operator in the space of rij .
Let us now recall that in the first term in brackets in Eq. (5.8), the

infinitesimal term iε′ has been added to k0 to define the behavior of a
fraction that is otherwise singular for k = k0. The second fraction in the
brackets, on the other hand, is not singular in the range of integration, so
adding iε′ to k0 in it makes no change at all in the limit ε′ → 0. If indeed
we add this term and also carry out the unrelated angular integration we
find

S̄ij =
iµ2

6π2�γ
∇2 1

rij

∫ ∞

0

dk

{
1

k − k0 − iε′
+

1
k + k0 + iε′

}
sin krij . (5.9)

The two integrals from 0 to ∞ can equally well be combined as a single
integral from −∞ to ∞, and evaluated as∫ ∞

−∞

sinkr
k − k0 − iε′

dk =
1
2i

∫ ∞

−∞

eikr − e−ikr

k − k0 − iε′
dk

= πeik0r, (5.10)

so that we have

S̄ij =
iµ2

6π�γ
∇2 e

ik0rij

rij

= − iµ
2k2

0

6π�γ

eik0rij

rij
. (5.11)

The coefficient simplifies as well. We can write the photon emission rate γ
defined by Eq. (2.11) with λjk expressed by Eq. (5.1) as

γ =
µ2η3

0

6π�
, (5.12)

so we are led to the simple result

S̄ij = −i e
ik0rij

k0rij
. (5.13)
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It will be useful for the construction of recursion relations to note that this
is just the spherical Hankel function5

S̄ij = h
(1)
0 (k0rij). (5.14)

6. A More General Atomic Model

Our two-state model for the atoms, as we have noted earlier, makes their be-
havior quite anisotropic. It provides for each atom a spatial direction along
which its electric dipole moment oscillates. We have thus had to specify a
spatial direction for each of the dipole matrix elements µj . Taking those
directions all to be the same and averaging over them was, as noted, an
oversimplification. Real atoms can have dipole moments that oscillate in
any direction. They achieve that isotropy by having an abundance of rota-
tional quantum states available. For atoms with the appropriate rotational
symmetry we can no longer specify directions for the dipole moments as if
they were classical variables. The dipole moments µj then become quantum
variables; they can fluctuate in direction. We can describe this fluctuation
while still retaining the assumption that the atoms have just two energy
levels by introducing rotational states that are degenerate in energy.

Let us assume, for example, that the atomic ground state has zero an-
gular momentum and that there are three degenerate excited states with
unit angular momentum. The S-state and three P-states then form a four-
state model of the atom with the same two energy levels we have considered
earlier. It will be convenient as a matter of notation to choose the three
P-states to be the ones with zero component of angular momentum along
the three coordinate axes. This orthogonal set has real-valued wave func-
tions and transforms under rotations like the components of a 3-vector.
An excited state of the j-th atom can then be any linear combination of
these three states. We must regard the operators σ±

j defined by Eq. (1.1),
which excite or de-excite these states, as forming vectors σ±

j . The coupling
constants λjk must likewise be regarded as vectors λjk referring to the
three-component excited states. The interaction Hamiltonian of Eq. (1.4)
then becomes a sum of scalar products,

H1 = �

∑
jk

(σ+
j + σ−

j ) · (λjkak + λ∗
jka

†
k). (6.1)

The coupling coefficient vectors analogous to the constants of Eq. (5.1) are
then

λjk = −i
√

ωk

2�V
µê(p)(k) eik·ri , (6.2)
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in which µ is simply the magnitude of the matrix element for the P to S
transition.

The excitation amplitude for the j-th atom, which we have written
earlier as βj will now be replaced by a set of three amplitudes which we
can represent as the components of a 3-vector amplitude βj. There will be
corresponding changes in the amplitudes ζijk and ηjkk′ defined earlier in
Eq. (1.5), but these are sufficiently straightforward that there is no need
to detail them explicitly. Suffice it to say that repeating the steps we have
gone through in Sections 2 and 3 leads to a set of coupled equations relating
the vector excitation amplitudes β′

j = βj(t) exp[i(ω0 + δω0 − δωg)t]. These
are

β̇′
i = −γβ′

i − γ
∑
j±i

Sij · β′
j , (6.3)

in which each of the matrix elements Sij must be regarded as a dyadic

Sij = − i

γ

∑
k

{
λikλ∗

jk

k − k0 − iε′
+

λ∗
ikλjk

k + k0

}
. (6.4)

When the vector coupling coefficients of Eq. (6.2) are inserted in this ex-
pression it preserves much of the same form as the integral in Eq. (5.7),
except that the factor 2/3 that resulted from the directional average in
Eq. (5.6) is replaced by the dyadic polarization sum∑

p

ê(p)(k)ê(p)(k). (6.5)

If we let 1 be the unit dyadic and introduce k̂ = k/k as a unit vector in
the direction of k we need only insert∑

p

ê(p)(k)ê(p)(k) = 1− k̂k̂ (6.6)

into the integrand of Eq. (5.7) and remove the factor 2/3 in order to have
the value of Sij .

Then by following essentially the same steps as took us from Eq. (5.7)
to Eq. (5.13) we are led to the result

Sij =
iµ2

4π�γ
(1∇2 −∇∇)

eik0rij

rij
. (6.7)
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By again using Eqs. (5.11) and (5.12) we find

Sij =
3
2

(
1 +

1
k2
0

∇∇
)(

−i e
ik0rij

k0rij

)
=

3
2

(
1 +

1
k2
0

∇∇
)
h

(1)
0 (k0rij). (6.8)

There is now a certain convenience in identifying the spherical Hankel func-
tion h(1)

0 , since we can use familiar recursion relations6 for the Hankel func-
tions and their derivatives to evaluate the double gradient term in Eq. (6.8).
If we let r̂ be the unit vector r/r in the direction of rij we find

1
k2
0

∇∇h(1)
0 (krij) = −1

3
(h(1)

0 + h
(1)
2 )1 + r̂r̂h(1)

2 (6.9)

so that the dyadic matrix elements of Eq. (6.7) are finally

Sij =
(
h

(1)
0 − 1

2
h

(1)
2

)
1 + r̂r̂ · 3

2
h

(1)
2 for i �= j. (6.10)

If we take the diagonal element Sii to be the unit dyadic, 1, we can
write the equations that govern the coupled excitation amplitudes as

β̇′
i = −γ

∑
Sij · β′

j . (6.11)

The set of n vectors βi now comprise 3n excitation amplitudes and the
symmetric matrix of dyadics S will have 3n (generally complex) eigenvalues
s�, and 3n eigenvectors associated with them. Together they define what
we have called the eigenmodes of radiative decay. The real and imaginary
parts of the s� will now obey the sum rules

3n∑
�=1

Re s� = 3n,
3n∑
�=1

Im s� = 0. (6.12)

We can easily illustrate the calculation of the eigenvalues s� and their
eigenmodes for the interaction of two atoms since in that case the equations
for the excitation amplitudes separate into uncoupled blocks corresponding
to longitudinal and transverse polarizations. For this purpose we can express
the dyadics Sij given by Eq. (6.10) in terms of the longitudinal projection
dyadic PL = r̂r̂ and the transverse projection dyadic PT = 1− r̂r̂ as

Sij =
(
h

(1)
0 − 1

2
h

(1)
0

)
PT +

(
h

(1)
0 + h

(1)
2

)
PL (i �= j). (6.13)
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The longitudinal projections PLβ′
j of the excitation amplitudes will then

obey the matrix equation(PLβ̇′
1

PLβ̇′
2

)
= −γ

(
1 h

(1)
0 + h

(1)
2

h
(1)
0 + h

(1)
2 1

)(PLβ′
1

PLβ′
2

)
. (6.14)

The two eigenvalues are obviously s±L = 1 ± (h(1)
0 + h

(1)
2 ), with s+L corre-

sponding to the symmetric longitudinal mode,

PLβ′
1 = PLβ′

2 ∼ e−γs+
Lt (6.15)

and s−L corresponding to the antisymmetric mode

PLβ′
1 = −PLβ′

2 ∼ e−γs−
L t. (6.16)

The transverse projections PT β′
j can be further subdivided into two

orthogonal polarizations which will provide pairs of degenerate modes, one
pair with the eigenvalue s+T = 1 + h

(1)
0 − 1

2h
(1)
2 corresponding to symmetric

excitations and another with the eigenvalue s−T = 1 − h
(1)
0 + 1

2h
(1)
2 and

antisymmetric excitations.
These six decay modes form a complete orthogonal set. Their decay

constants are given by the real parts of the complex eigenvalues

γ Re s±L = γ[1 ± (j0 + j2)] (6.17)

γ Re s±T = γ

[
1 ±
(
j0 − 1

2
j2

)]
, (6.18)

in which the functions jn(k0r12) are spherical Bessel functions.5

The excitation amplitudes αk for the field radiated by the �-th decay
mode β(�)

j will still be given by an expression similar to that of Eq. (4.14). It
is reached by replacing λ∗kV

∗ ·B(�) in that expression by the factor
∑

j λ∗
kj ·

β
(�)
j .

7. Three Colinear Atoms

Another example which can be analyzed in elementary terms is that of three
atoms equally spaced along a line. If the neighboring atoms are a distance
r apart we shall find it convenient to define the quantities

C = h
(1)
0 (k0r) + h

(1)
2 (k0r) (7.1)

D = h
(1)
0 (2k0r) + h

(1)
2 (2k0r). (7.2)
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Then the equation that defines the longitudinal eigenmodes PLβj will be 1 C D

C 1 C

D C 1

PLβ1

PLβ2

PLβ3

 = s

PLβ1

PLβ2

PLβ3

 , (7.3)

where s is the corresponding eigenvalue.
An obvious choice for an eigen-mode is the antisymmetric one PLβ2 = 0,

PLβ3 = −PLβ1 for which the eigenvalue is

s = 1 −D. (7.4)

We can find the two remaining eigenvalues by factorizing the secular
equation∣∣∣∣∣∣

1 − s C D

C 1 − s C

D C 1 − s

∣∣∣∣∣∣ = (1 −D − s)

[(
1 +

1
2
D − s

)2

− 1
4
(D2 + 8C2)

]
= 0

(7.5)
to reveal the two remaining roots

s± = 1 +
1
2
D ± 1

2

√
D2 + 8C2. (7.6)

These correspond to symmetrical patterns of longitudinal excitation.
To find the degenerate pairs of transverse excitation modes we need only

redefine the quantities C and D of Eqs. (7.1) and (7.2), letting them be

C′ = h
(1)
0 (k0r) − 1

2
h

(1)
2 (k0r) (7.7)

D′ = h
(1)
0 (2k0r) − 1

2
h

(1)
2 (2k0r). (7.8)

The doubly degenerate roots for the transverse modes are then given by
Eqs. (7.4) and (7.6) with C and D, replaced by C′ and D′, respectively.
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We describe our efforts to study the physics of the fractional quantum Hall
effect using ultracold quantum gases in an optical lattice and to perform pre-
cision measurements using large-area atom interferometry.
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gas; atom interferometry.

1. Highly Correlated States in the Fractional Quantum
Hall Regime of a Rotating Bose Gas

Early after achievement of Bose-Einstein condensation of neutral atoms it
was recognized that a key aspect of superfluidity in these gases was the
presence of irrotational flow and quantized vorticity. It was quickly demon-
strated in a series of experiments that long-lived vortices could be excited
and observed in a variety of ways.1,2 Large numbers (on order of 100) vor-
tices were soon produced in individual trapped condensates, forming the
expected Abrikosov lattice of vortex cores.3 Much theoretical effort was
eventually devoted to the case of extremely high vorticity, where the num-
ber of vortices is comparable to the total number of particles N in the gas,
or equivalently the total angular momentum is of order N(N − 1). In this
fractional quantum Hall (FQH) regime, the rotation rate of the trapped gas
Ω approaches the centrifugal limit Ω → ω, where ω is the harmonic trapping
frequency, and the system becomes closely analogous to a two-dimensional
electron gas in a magnetic field.4 In this limit, the single-particle energy
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levels are organized into nearly degenerate Landau levels separated by twice
the harmonic trap frequency, and the energy for the system confined to the
lowest Landau level may be written as H = (Ω − ω)L + V . Here, L is the
total angular momentum of the system, and V represents repulsive contact
interactions bewteen the atoms. It was shown that many of the ground
state wavefunctions discussed in the context of the FQH effect for electrons
appear as ground states near the centrifugal limit of the rotating Bose gas,
where the contribution to the total energy from interactions is sufficient to
mix single particle states in the lowest Landau level. Similar to the situa-
tion for electrons, strong correlations are expected to occur as a result of
this lifting of the large-scale single particle degeneracy. Additionally, excited
states of the system have been shown to possess fractional statistical char-
acter,5 owing to the presence of reduced dimensionality and the presence
of a gauge potential. Unfortunately, reaching the fractional quantum Hall
regime with a single gas consisting of an easily probed number of atoms of
order N = 104 particles requires both temperatures and precision in trap
manipulation beyond the reach of previous experiments, due primarily to
the inverse dependence of excitation energy on particle number. To cir-
cumvent these limitations, we describe work performed with an ensemble
of rotating gases confined near the potential minima of an optical lattice
potential, each of which contains a small number of particles.

To produce an optical lattice of locally rotating potentials, three laser
beams of equal intensity detuned far from atomic resonance are combined
with their propagation directions evenly distributed on the surface of a
cone with a small apex angle of θ = 8◦ (see Fig. 1(a)). The optical inter-
ference pattern created by these beams consists of a triangular lattice of
intensity maxima, whose light shifts form a conservative trapping potential
for atomic motion. Near to the minima, the potential is locally harmonic,
approximately cylindrically symmetric, and may be described by V (x, y) =
−V0

∑3
j=1 cos(

√
(3)kerj), where rj = x cos(2πj/3)+y sin(2πj/3), with x, y

coordinates in the plane of the lattice, and ke = k sin θ is the reduced
wavevector caused by shallow intersection.

By choosing a small intersection angle, the spacing between lattice sites
may be made large, in this case 3.5µm, which has the effect of reducing
the tunneling rate of atoms between lattice sites in the 2D potential to a
value negligible for the experiment timescale, and simultaneously making
the trapping potential effectively more harmonic by reducing its vibration
frequency at a fixed total depth. The three lattice beams are combined
and focused to 150µm by a single lens; each is derived from a common
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1.5W, fiber-coupled beam, intensity stablized by an acousto-optic mod-
ulator and sourced from a 10W single-mode 1064nm Nd:YAG ring laser
injection-locked to a stable non-planar ring oscillator (Lightwave NPRO).
In order to produce a nominally cylindrically-symmetric potential near the
bottom of each two-dimensional lattice site, center-of-mass vibration fre-
quencies for loaded atoms are measured, and beam intensities adjusted to
equalize these frequencies to a typical precision of 0.3%. To rotate the local
potential, two electrooptic phase modulators are inserted into two of the
beams forming the 2D lattice potential. By adiabatically manipulating the
relative optical phase of the beams (see Fig. 1), the time-averaged potential
near the lattice minima may be made to appoximate a rotating anisotropic
harmonic oscillator.

������

�

����

(a) (b) (c)

Fig. 1. A two-dimensional triangular optical lattice is formed by the intersection of
three far-detuned laser beams (a). By manipulating the relative phases of the beams, an
arbitrary translation of the lattice potential in two dimensions is possible; scanning the
potential rapidly (500kHz) along a given direction effectively time-averages the potential,
weakening the trap curvature along the axis of translation. By slowly pivoting this axis
in time (b), the time-averaged local potential approximates an anisotropic harmonic
oscillator whose principal axes rotate at the rate of pivot Ω (c).

In order to enhance the effect of interactions between atoms loaded into
this potential, an additional optical potential is applied along the axis of ro-
tation. For this purpose two additional beams, frequency-offset from those
forming the 2D potential are added, counterpropagating along the normal
to the plane of the 2D lattice potential. The final potential is then a three-
dimensional array of highly oblate and strongly confining ‘dot-like’ traps,
approximately harmonic with radial trapping frequencies of up to 3kHz and
axial frequencies up to 30kHz. Interaction strength is characterized by the
dimensionless ratio of scattering length as to oscillator length � from con-
finement along the rotation direction, η = as/

√
2π�. For this experiment,

η ∼ 0.07.
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Fig. 2. Energy levels for interacting few-atom system in a rotating trap. (a) Shows the
levels for a cylindrically symmetric trap as viewed in a rotating coordinate frame for two
particles interacting via a repulsive contact potential. Plot (b) shows the same spectrum

after a small corotating asymmetry is added to the trap via a quadrupolar deformation
(ε = 0.04). In this case, the ground state level crossing (circled) between zero angular
momentum (L=0) and the L=2 ( 1

2
-Laughlin) state is made avoided by the perturbation

to the trap, which couples levels whose angular momenta differ by 2�. In plot c, the
energy gap between the lowest energy state and first excited is plotted as a function of
trap deformation strength and rotation rate.

Atoms are loaded from a 87Rb Bose-Einstein condensate of 105 particles
in the |F = 2,mF = 2〉 state at a temperature T = 30nK formed by evapo-
rative cooling in a time-orbiting-potential magnetic trap with final average
trap frequency ω̄ = 2π× 46Hz. After evaporation, the two-dimensional lat-
tice potential is adiabatically increased from zero intensity to its full value
of 0.5W per beam, loading the atoms at a peak linear density of approx-
imately 300 atoms/µm per tube. In order to reduce the density, the TOP
trap is deformed into a quadrupole trap whose center is pulled below the
position of the atoms loaded into the tubelike 2D lattice potential, and the
axial confinement of atoms trapped in the two-dimensional lattice potential
is adiabatically released from 42Hz to 3Hz over a time of 1s by reducing
the magnetic quadrupole field, during which time the size of the cloud in-
creases from a Thomas-Fermi diameter of 20µm to a full-width half-max
of 220µm. Following this, the axial standing wave intensity is increased to
inhibit axial motion. In order to produce a well-defined mean occupancy
in the full three-dimensional lattice potential, a tomographic technique is
used to remove atoms far from the center of the lattice volume along the
axial direction, creating a top-hat density profile. A weak magnetic field
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gradient is applied, and a microwave field is applied to transfer atoms from
the |2, 2〉 state into |1, 1〉. By slowly sweeping the microwave frequency,
atoms are adiabatically transferred between internal states at the edges of
the cloud. Following this, a strong field gradient is applied to completely
remove atoms in the state |1, 1〉. The two-dimensional lattice intensity is
then slowly reduced to evaporate atoms from the center of the trap, until
the desired mean occupancy is reached as inferred from absorption imag-
ing performed transverse to the rotation axis. The lattice intensity is then
returned to its full value in order to begin interrogating atoms in rotation.

In order to drive atoms from the non-rotating ground state into corre-
lated states at nonzero angular momentum, an adiabatic pathway is fol-
lowed in trap rotation rate and deformation strength. The deformation is
characterized by ε = δω, where ω and ω+ δω are the minor and major axis
vibration frequencies, respectively. A promising pathway can be inferred
from a plot of the excitation energy from the lowest to first excited state as
a function of these sweep parameters. This is shown in Figure 2, the result
of a full numerical calculation for the interacting few-body system (in this
case for four particles), taking into account single-particle basis functions
up to a cutoff total angular momentum, here L < 12�. It is important to
note that as the particle number and angular momentum is increased, the
energy of the first excited state in the centrifugal limit decreases roughly
as 1/N, suggesting the necessary ramp rate and trap precision to reach cor-
related ground states scale favorably only for small particle numbers. For
the case of four particles, assuming an experimentally feasible interaction
size of η ∼ 0.07, the gap at the first ground state crossing (the four-particle
Pfaffian state) is expected to be approximately 0.028�ω = h 84Hz in an
ω = 2π×3kHz trap. It is also important to note that the adiabatic transfer
need not be sensitively tuned for a particular occupancy, provided in all
cases one follows the ground state contour adiabatically. A representative
pathway chosen for this experiment is illustrated in Figure 2c ; this pathway
is translated horizontally (in rotation rate) by a variable amount to provide
a control parameter to probe the onset of interparticle correlations shown
in Figure 3.

Once the adiabatic transfer has been completed, short range correlation
in the gas is probed by applying a brief pulse of light tuned to a pho-
toassociative transition to an electronically excited molecular state. This
transfers pairs of particles found at short range (determined by the extent
of the excited molecule) into short-lived molecules, whose decay is accom-
panied by sufficient energy to remove the constituents from the lattice trap.
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The rate of observed photoassociation loss is shown in Figure 3 as a func-
tion of the final frequency of the adiabatic rotation sequence, showing a
strong depression near the centrifugal limit.

Fig. 3. Loss of atoms following a short photoassociation pulse probes local pair cor-
relation as a function of final rotation rate (plotted here in units of the harmonic trap
frequency ω) in the adiabatic pathway (a), showing strong suppression near the centrifu-
gal limit. Average occupancy for this data set is < N >= 5 atoms per lattice site, as
inferred from absorption imaging. Qualitative agreement can be found with full numeric
evolution (b) of the four-body system, including effects of interaction, anharmonicity,
and nonadiabaticity. In (b), two predicted responses are shown for differing degrees of
anharmonicity, illustrating the lower-frequency downturn expected for this case. Here, α
refers to the fractional deviation of the second single-particle vibrational splitting from
the first; the parameters in part (a) correspond to α = 0.02 at the center of the lattice
volume.

A qualitative agreement can be found by comparing the measured loss
to a zero-free-parameter numeric evolution (similar to that described pre-
viously by Popp, et al6) of the dynamic few-body system, accounting for
nonadiabaticity and anharmonicity , as shown in figure 3. Proper inclusion
of the effects of anharmonicity in the local lattice potential is necessary in
order to account for the detailed downturn of the photoassociation rate,
as well as observed time-of-flight momentum distributions; this strongly
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reduces the inferred fidelity of coupling to the strongly correlated states
known from the fractional quantum Hall effect. However it is likely, given
the strong modification of photoassociation rates, that these states exhibit
reasonably strong correlations, as is to be expected from the strength of
interactions and the relative proximity to the centrifugal limit.

2. Large-Area Atom Interferometry

Light-pulse atom interferometers7 have been used for experiments of out-
standing precision, like gravimeters,8 gravity gradiometers,9 gyroscopes,10

measurements of Newton’s gravitational constant G,11,12 the fine-structure
constant α,13,14 or tests of gravitational theories.15,16 They apply the mo-
mentum �k of photons to direct an atom on two (or more) paths which in-
terfere when recombined. The sensitivity of atom interferometers increases
with the phase shift between the arms. This depends linearly on the momen-
tum splitting between the interferometer arms in gravimeters or gyroscopes
— or even quadratically, like in measurements of α or certain gradiometers.
However, many interferometers to date are limited to a splitting of 2�k by
the use of two-photon Raman transitions. Larger splittings of up to 6�k

have been achieved with multiple two-photon pulses or Bragg diffraction in
atomic beam setups17–19 and up to 12�k using Bloch oscillations.20

We have recently made progress towards increased sensitivity in atom
interferometry in several ways, that we will briefly discuss below.

2.1. Atom Interferometry with 24-Photon-Momentum-Transfer

Bragg Beam Splitters

We have demonstrated the use of up to 24-photon Bragg diffraction21 as
a beam splitter in light-pulse atom interferometers, the largest splitting
in momentum space so far. Relative to the 2-photon processes used in
the most sensitive present interferometers, these large momentum trans-
fer (LMT) beam splitters increase the phase shift 12-fold for Mach-Zehnder
(MZ-) and 144-fold for Ramsey-Bordé (RB-) geometries. We achieve a high
visibility of the interference fringes (up to 52% for MZ or 36% for RB) and
long pulse separation times and superior control of systematic effects that
are typical of atomic fountain setups. As the atom’s internal state is not
changed, important systematic effects can cancel. Figure 4 shows a gallery
of interference fringes obtained in MZ and RB geometry at momentum
transfers between 12-24�k. More details will be found in Ref. 22.
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Fig. 4. A-D show MZ fringes with between 12 and 20�k momentum transfer; E and F
are RB fringes with 12 and 24�k. G and H show a conjugate 20�k RB-pair. Throughout,
T = 1ms, T ′ = 2ms. Each data point is from a single launch (that takes 2 s), except for
F, where 5-point adjacent averaging was used. The lines represent a sinewave fit.

2.2. Noise-Immune, Recoil-Sensitive, Large-Area

Atom Interferometers

We have created a pair of simultaneous conjugate RB atom interferometers,
see Fig. 5, left. Their sensitivity towards the photon recoil is similar, but
the one towards inertial forces is reversed. That allows us to cancel the
influence of gravity and, with simultaneous operation, noise.

Cancellation of vibrations between similar interferometers at separate
locations has been demonstrated before.9 In some important applications,
however, the interferometers must be dissimilar so that a large differen-
tial signal can be picked up. Here, we present a method to cancel vibra-
tional noise between dissimilar interferometers, with LMT beam splitters,
see Fig. 5.

The cancellation of vibrations is based on the simultaneous application
of the beam splitters for the conjugate interferometers. Our experimental
setup is optimized to provide the laser radiation needed with an extremely
tight phase relationship; any vibrationally-induced phase shifts are thus
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Fig. 5. Correlating the fringes of two interferometers creates an ellipse whose shape
(eccentricity and major axis) allows to determine the relative phase.

common mode and can be taken out in an ellipse-fitting analysis of the
correlation. At short pulse separation times of 1ms, a contrast of around
25-31% is achieved at momentum transfers between (8−20)�k, see Fig. 6 for
examples. This should be compared to the theoretical contrast of 50%. Also,
it is evident that the strong dependence of the contrast upon the momentum
transfer, observed in previous LMT interferometers,22 is absent.
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Fig. 6. A: 12�k, 1ms, 25% contrast. B: 14�k, 1ms, 25% contrast; C: 20�k, 1ms, 27%

For 20�k interferometers, about 10% contrast can be obtained at
T = 50 ms. Without simultaneous conjugate interferometers (SCIs), this
is only possible at T = 1 ms,22 so the use of SCIs allows us to improve
the pulse separation time T to 50ms from 1ms, without loss of contrast.
This corresponds to a 2,500-fold increase in the enclosed area. At 70ms, a
contrast of 4.1% is still observable. and paves the path towards enhanced
sensitivity in many cutting-edge applications. Examples include improved
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measurements of the photon recoil and the fine structure constant13,14,23

and tests of the equivalence principle.16

To further confirm the applicability of our method, we have taken 15,000
pairs of data for a 10�k interferometer with a pulse separation time of 50ms
over a 12-h period, see Fig. 7. By ellipse-specific fitting, we extract the
differential phase to a resolution of 6.6 ppb. This is also the resolution to
which the interferometers can determine �/M ; correspondingly, they are
sensitive to the fine structure constant α via α2 = (2R∞/c)(M/me)(h/M)
to a resolution of 3.3 ppb.

Fig. 7. Left: 9958 Data pairs out of 15,000 that were taken during a 12-h session. Right:
Histogram showing the distribution of ellipse fitting results.

2.3. Very large area atom interferometers by differential

optical acceleration

The Bragg diffraction beam splitters used for LMT so far require ex-
tremely large laser power for increased momentum transfer. Even using our
injection-locked 6.2 W Ti:sapph laser, which, we believe, is the strongest
laser at a wavelength of 852nm, we are limited to 20�k for a reasonable
contrast of the interference fringes. To increase the diffraction order, a fur-
ther increase of the laser power would be required, which seems hard to
achieve.

Adiabatic transfer13 or Bloch oscillations of matter waves in an accel-
erated optical lattice14 can been used to transfer a thousand �k, but this
affects the common momentum of the arms, not the splitting. Here, we have
developed a method that can increase the momentum transfer without be-
ing limited by the laser power.

To do so, we have first demonstrated the differential acceleration of
atomic samples by Bloch oscillations in two superimposed optical lattices.
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Decoupling of the samples is due to their initial momentum separation,
provided by a 4th order Bragg diffraction. A Bloch oscillation — Bragg
diffraction — Bloch oscillation sequence forms a “BBB” beam splitter. Four
BBB splitters make a RB atom interferometer, see Fig. 8. Two of them,
running simultaneously to reject noise and systematic effects, show 15%
contrast at 24-photon-momentum splitting each, see Fig. 9.
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Fig. 8. Space-Time diagram of simultaneous conjugate Ramsey-Bordé BBB-
Interferometers. 1: Dual optical lattice; 2: Single Bragg beam splitter; 3: Quadruple
optical lattice; 4: Dual Bragg beam splitter; a-d: outputs. The dashed lines indicate
trajectories that do not interfere.
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Fig. 9. Ellipses from simultaneous conjugate interferometers with Bragg-Bloch beam
splitters. The x and y axes show the normalized flourescence of the upper and lower
interferometer. (a) ∆p = 12�k, C = 16.5%. (b) ∆p = 18�k, C = 20.3%; (c) ∆p =
20�k, C = 16.9%, (d) ∆p = 24�k, C = 15.1%.

2.4. Towards fundamental physics measurements by

atom interferometry

Taken together, the advances we just reported allow for a tremendous in-
crease in the sensitivity of atom interferometers. We will soon apply them
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for a measurement of the fine structure constant α at the part per billion
level of accuracy. By comparison to the value derived from the electron’s
anomalous gyromagnetic moment g − 2,24 this will correspond to testing
the theory of quantum electrodynamics at the highest precision ever. The
influence of muons and hadrons on g− 2 will be revealed for the first time.
Moreover, this measurement would provide a limit on low-energy dark mat-
ter candidates or supersymmetric particles, and serve as a probe for the
internal structure of the electron. Indeed, a measurement to 0.1 ppb would
correspond to a search for physics beyond the standard model on the TeV
energy scale.
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MORE ACCURATE MEASUREMENT OF THE
ELECTRON MAGNETIC MOMENT AND THE

FINE STRUCTURE CONSTANT
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A measurement reported in 2008 uses a one-electron quantum cyclotron
to determine the electron magnetic moment in Bohr magnetons, g/2 =
1.001 159 652 180 73 (28) [0.28ppt], with an uncertainty 2.7 and 15 times smaller
than for previous measurements in 2006 and 1987. The electron is used as a
magnetometer to allow lineshape statistics to accumulate, and its spontaneous
emission rate determines the correction for its interaction with a cylindrical
trap cavity. The new measurement and QED theory determine the fine struc-
ture constant, with α−1 = 137.035 999 084 (51) [0.37 ppb], and an uncertainty
20 times smaller than for any independent determination of α.

Keywords: Electron magnetic moment, electron g value, fine structure constant,
quantum cyclotron.

1. New Measurement of the Electron g/2

A 2008 measurement1 of the electron magnetic moment µ determines g/2,
which is the magnitude of µ scaled by the Bohr magneton, µB = e�/(2m).
For an eigenstate of spin S,

µ = −g
2
µB

S
�/2

. (1)

This is one of the few measurable properties of one of the simplest of el-
ementary particles – quantifying its interaction with the fluctuating QED
vacuum, and probing for electron size or composite structure that has not
yet been detected. For a point electron in the simplest renormalizable Dirac
description, g/2 = 1. QED predicts that vacuum fluctuations and polar-
ization slightly increase this value. Physics beyond the standard model of
particle physics could make g/2 deviate from the Dirac/QED prediction,
as internal quark-gluon substructure does for a proton.
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The 1987 measurement that provided the accepted g/2 for nearly 20
years2 was superceded in 2006 by a measurement that used a one-electron
quantum cyclotron.3 Key elements that made the measurement possible
included quantum jump spectroscopy and quantum non-demolition (QND)
measurements of the lowest cyclotron and spin levels,4 a cylindrical Penning
trap cavity5 (Fig. 2(a)), inhibited spontaneous emission,6 and a one-particle
self-excited oscillator (SEO).7 The 2008 measurement1 has an uncertainty
that is 2.7 and 15 times lower than the 2006 and 1987 measurements, re-
spectively, and confirms a 1.8 standard deviation shift from the 1987 value
(Fig. 1(a)).
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Fig. 1. (a) Most accurate measurements of the electron g/2, and (b) most accurate
determinations of α.

2. Most Accurate Determination of α

The fine structure constant, α = e2/(4πε0�c), is the fundamental measure
of the strength of the electromagnetic interaction in the low energy limit.
The fine structure constant is also a crucial ingredient of our system of
fundamental constants.8

The new measurement of the electron g/2, with the help of recently
updated QED theory,9 determines α with an uncertainty nearly 20 times
smaller than does any independent method (Fig. 1(b)). The uncertainty in
α is now limited a bit more by the need for a higher-order QED calculation
(underway9) than by the measurement uncertainty in g/2.

The standard model relates g and α by
g

2
= 1 +C2

(α
π

)
+ C4

(α
π

)2

+ C6

(α
π

)3

+ C8

(α
π

)4

+ C10

(α
π

)5

+ ...+ aµτ + ahadronic + aweak, (1)
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with the asymptotic series and aµτ coming from QED. Unambiguously pre-
scribed QED calculations (recently summarized10) give exact C2, C4 and
C6 (all checked numerically), along with a numerical value and uncertainty
for C8, and a small aµτ . Very small hadronic and weak contributions are in-
cluded, along with the assumption that there is no significant modification
from electron substructure or other physics beyond the standard model.

The fine structure constant is determined by solving Eq. 1 for α in terms
of the measured electron g/2:

α−1 = 137.035 999 084 (33) (39) [0.24 ppb] [0.28 ppb],

= 137.035 999 084 (51) [0.37 ppb]. (2)

The first line shows experimental (first) and theoretical (second) uncertain-
ties that are nearly the same. The theory uncertainty contribution to α is
divided as (12) and (37) for C8 and C10. It should decrease when a calcula-
tion underway9 replaces the crude estimate C10 = 0.0 (4.6).8,10 The α−1 of
Eq. 2 will then shift by 2α3π−4C10, which is 8.0C10×10−9. A small change
∆8 in the calculated C8 = −1.9144 (35) would add 2α2π−3∆8.

The total 0.37 ppb uncertainty in α is nearly 20 times smaller than for
the next most precise independent methods (Fig. 1(b)). These so-called
atom recoil methods11,12 utilize measurements of transition frequencies
and mass ratios, as well as either a Rb recoil velocity (in an optical lat-
tice) or a Cs recoil velocity (in an atom interferometer). (A report in
these proceedings may slightly decrease the reported uncertainty in the Rb
measurement.)

3. Other Applications of the New Measurement

The accuracy of the new g/2 sets the stage for an improved CPT test
with leptons. With a one-positron quantum cyclotron we hope to measure
the positron g/2 at the same level of accuracy as we did for the electron.
The goal is a CPT test with leptons that is much more than an order of
magnitude more precise than any other.

Already the most precise test of QED comes from comparing our mea-
sured g/2 to what can be calculated using Eq. 1 using α from the atom
recoil measurements.10 The accuracy of the QED test is limited almost en-
tirely by the uncertainties in the atom recoils measurements, and not by
the much smaller uncertainties in the measured g/2 and the QED theory
calculation.

Finally, a report13 suggests that the the accurately measured electron
g/2 will make possible the discovery of low-mass dark-matter particles, or



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

More accurate measurement of the electron magnetic moment 49

will exclude of this possibility. An improved sensitivity requires the new
g/2 along with a better independent measurement of α.

4. One Electron Quantum Cyclotron

Fig. 2(b) represents the lowest cyclotron and spin energy levels for an elec-
tron weakly confined in a vertical magnetic field Bẑ and an electrostatic
quadrupole potential. The latter is produced by biasing the trap electrodes
of Fig. 2(a). The measured g/2 value is primarily determined by the cy-
clotron frequency f̄c ≈ 149 GHz (blue in Fig. 2(b)) and the measured
anomaly frequency ν̄a ≈ 173 MHz (red in Fig. 2(b)),3

g

2
� 1 +

ν̄a − ν̄2
z/(2f̄c)

f̄c + 3δ/2 + ν̄2
z/(2f̄c)

+
∆gcav

2
. (1)

Small adjustments are needed for the measured axial frequency, ν̄z ≈ 200
MHz, and for the relativistic shift, δ/νc ≡ hνc/(mc2) ≈ 10−9. A cavity shift
∆gcav/2 is the fractional shift of the cyclotron frequency caused by the in-
teraction with radiation modes of the trap cavity. Small terms of higher
order in ν̄z/f̄c are neglected. The Brown-Gabrielse invariance theorem14

has been used to eliminate from Eq. 1 the effect of the lowest order imper-
fections of a real trap – quadratic distortions of the electrostatic potential
and misalignments of the trap electrode axis with B.
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Fig. 2. (a) Cylindrical Penning trap cavity used to confine a single electron and inhibit
spontaneous emission, and (b) the cyclotron and spin levels of an electron confined
within it.

Quantum jump spectroscopy determines f̄c and ν̄a. For each of many
trials the system is prepared in the spin-up ground state, |n = 0,ms = 1/2〉,
after which the preparation drives and detection amplifier are turned off for
1 s. Either a cyclotron drive at a frequency near to f̄c, or an anomaly drive
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at frequency near ν̄a, is then applied for 2 s. The amplifier and a feedback
system are turned on to provide QND detection of either a one-quantum
cyclotron excitation or a spin flip. Cavity-inhibited spontaneous emission
makes the cyclotron excitation persist long enough to allow such detection.
The fraction of the excitation trials resulting in excitations is measured.

The cyclotron drive is microwave field injected into the trap cavity
through a cold attenuator that keeps black body photons from entering the
trap. The anomaly drive is an oscillatory potential applied to electrodes at
frequencies near ν̄a to drive off-resonant axial motion through the magnetic
bottle gradient from two nickel rings (Fig. 2(a)). The electron, radially dis-
tributed as a cyclotron energy eigenstate, sees an oscillating magnetic field
perpendicular to B as needed to flip its spin, with a gradient that allows
a simultaneous cyclotron transition.15 To ensure that the electron samples
the same magnetic variations while ν̄a and f̄c transitions are driven, both
drives are kept on with one detuned slightly so that only the other causes
transitions. Low drive strengths keep transition probabilities below 20% to
avoid saturation effects.

QND detection of one-quantum changes in the cyclotron and spin ener-
gies takes place because the magnetic bottle shifts the oscillation frequency
of the self-excited axial oscillation as ∆ν̄z ≈ 4 (n + ms) Hz. After a cy-
clotron excitation, cavity-inhibited spontaneous emission provides the time
needed to turn on the electronic amplification and feedback, so the SEO
can reach an oscillation amplitude at which the shift can be detected.7 An
anomaly transition is followed by a spontaneous decay to the spin-down
ground state, |n = 0,ms = −1/2〉, and the QND detection reveals the low-
ered spin energy.

5. Uncertainties and Corrections

Expected asymmetric lineshapes arise from the thermal axial motion of the
electron through the magnetic bottle gradient. The axial motion is cooled
by a resonant circuit in about 0.2 s to as low as Tz = 230 mK (from
5 K) when the detection amplifier is off. For the cyclotron motion these
fluctuations are slow enough that the lineshape is essentially a Boltzmann
distribution with a width proportional to Tz.16 For the anomaly resonance,
the fluctuations are effectively more rapid, leading to a resonance shifted
in proportion to Tz.

The weighted averages of ν̄a and f̄c from the lineshapes determine g/2
via Eq. 1. With saturation effects avoided, these pertain to the magnetic
field averaged over the thermal motion. It is crucial that any additional
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fluctuations in B that are symmetric about a central value will broaden
such lineshapes without changing the mean frequency.

To test this weighted mean method we compare maximum likelihood
fits to lineshape models. The data fit well to a convolution of a Gaussian
resolution function and a thermal-axial-motion lineshape.16 The broaden-
ing may arise from vibrations of the trap and electron through the slightly
inhomogeneous field of the external solenoid, or from fluctuations of the
solenoid field itself. Because we have not yet identified its source we add
a “lineshape” uncertainty based upon the discrepancy (beyond statistical
uncertainty) between the g/2 values from the mean and fit for the four
measurements. To be cautious we take the minimum discrepancy as a cor-
related uncertainty, and then add the rest as an uncorrelated uncertainty.
An additional probe of the broadening comes from slowly increasing the
microwave frequency until a one-quantum cyclotron excitation is seen. The
distribution of excitations is consistent with the Gaussian resolution func-
tions determined from the fits.

Drifts of B are reduced below 10−9/hr by regulating five He and N2

pressures in the solenoid and experiment cryostats, and the surrounding air
temperature.3 Remaining slow B drift is corrected based upon lineshapes
measured once every three hours. Unlike the one-night-at-a-time analysis
used in 2006, all data taken in four narrow ranges of B values (Table 1)
are combined, giving a lineshape signal-to-noise that allows the systematic
investigation of lineshape uncertainty.

Better measurement and understanding of the electron-cavity interac-
tion removes cavity shifts as a major uncertainty. Cavity shifts are the
downside of the cavity-inhibited spontaneous emission which usefully nar-
rows resonance lines and gives the averaging time we need to turn on the
SEO and determine the cyclotron state. The shifts arise when the cyclotron
oscillator has its frequency pulled by the coupling to nearby radiation modes
of the cavity. The cylindrical trap cavity was invented5 and developed17 to
deliberately modify the density of states of the free space radiation modes
in a controllable and understandable way (though not enough to require
modified QED calculations18). Radiation mode frequencies must still be
measured to determine the effective dimensions of a right-circular cylindri-
cal cavity which has been imperfectly machined, which has been slit (so
sections of the cavity can be separately biased trap electrodes), and whose
dimensions change as the electrodes cool from 300 to 0.1 K.

To the synchronized-electrons method used in 2006, the 2008 measure-
ment also adds a new method – using the electron itself to determine the
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Fig. 3. (a) Modes of the trap cavity are observed with synchronized electrons,3 as well
as (b) with a single electron damping rate γ0 and (c) its amplitude dependence γ2.
(d) Offset of g/2 from our result in Eq. 1 without (open circle) and with (points) cavity-
shift corrections, with an uncertainty band for the average.

cavity-electron interaction. The measured spontaneous emission rate for its
cyclotron motion, γ = γ0 + γ2A

2, depends upon the amplitude A of the
axial oscillation through the standing waves of cavity radiation modes. The
amplitude is varied by adjusting the SEO,7 and it is measured by fitting to
a cyclotron quantum-jump lineshape.7,16 Fits of γ0 and γ2 (Fig. 3(b)–(c))
to a renormalized calculation of the coupling of the electron and cavity19

determine the frequencies (with uncertainties represented by the vertical
gray bands in Fig. 3(a)–(c)) and Q values of the nearest cavity modes,
and the cavity-shift corrections for g/2 (Table 1). (Subtleties in applying
this calculation to measurements will be reported.) Substantially different
cavity-shift corrections bring the four g/2 measurements into good agree-
ment (Fig. 3(d)).

6. Results

The measured values, shifts, and uncertainties for the four separate
measurements of g/2 are in Table 1. The uncertainties are lower for mea-
surements with smaller cavity shifts and smaller linewidths, as might be
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Table 1. Measurements and shifts with uncertainties multiplied by
1012. The cavity-shifted “g/2 raw” and corrected “g/2” are offset from
our result in Eq. 1.

f̄c 147.5 GHz 149.2 GHz 150.3 GHz 151.3 GHz

g/2 raw -5.24 (0.39) 0.31 (0.17) 2.17 (0.17) 5.70 (0.24)

Cav. shift 4.36 (0.13) -0.16 (0.06) -2.25 (0.07) -6.02 (0.28)
Lineshape
correlated (0.24) (0.24) (0.24) (0.24)
uncorrelated (0.56) (0.00) (0.15) (0.30)

g/2 -0.88 (0.73) 0.15 (0.30) -0.08 (0.34) -0.32 (0.53)

expected. Uncertainties for variations of the power of the ν̄a and f̄c drives
are estimated to be too small to show up in the table. A weighted average of
the four measurements, with uncorrelated and correlated errors combined
appropriately, gives the electron magnetic moment in Bohr magnetons,

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt]. (1)

The uncertainty is 2.7 and 15 times smaller than the 2006 and 1987 mea-
surements, and 2300 times smaller than has been achieved for the heavier
muon lepton.20

Items that warrant further study could lead to a future measurement of
g/2 to higher precision. First is the broadening of the expected lineshapes
which limits the splitting of the resonance lines. Second, a variation in
measured axial temperatures, not understood, increases the uncertainty
contributed by the wider lineshapes. Third, cavity sideband cooling could
cool the axial motion to near its quantum ground state for a more controlled
measurement. Fourth, a new apparatus should be much less sensitive to
vibration and other variations in the laboratory environment.

7. Self-Excited Proton

The self-excited one-electron oscillator was a crucial ingredient of accurate
measurements of the electron g/2. Fig. 4 shows one of the first electrical
signals detected from a self-excited single proton. Our hope is to improve
the sensitivity of this oscillator until non-destructive spin flips of a single
trapped proton can be observed as a way to measure g for a proton, and
then for an antiproton. If this approach is successful it may be possible to
improve the accuracy with which the magnetic moment of the antiproton
is measured by a factor of a million or more. An proton/antiproton spin
flip is much harder to observe than that of an electron/positron because a
nuclear magneton is 2000 times smaller than a Bohr magneton.
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Fig. 4. First example of the signal from a self-excited proton oscillator.

8. Directly Driven Electron Spin Flip

The two electron spin states could potentially be a very high fidelity q-bit.
As one small step, Fig. 5 shows the first line shape for a electron driven
directly near its spin frequency, rather than at the difference between the
spin and cyclotron frequencies.

Fig. 5. First example of the lineshape for electron spin flips driven directly at the spin
frequency.

9. Conclusion and Acknowledgments

In conclusion, a new measurement of the electron g/2 is 15 times more ac-
curate than the 1987 measurement that provided g/2 and α for nearly 20
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years, and 2.7 times more accurate than the 2006 measurement that super-
seded it. Achieving the reported electron g/2 uncertainty with a positron
seems feasible, and would make the most stringent lepton CPT test. With
QED and the assumption of no new physics beyond the standard model of
particle physics, the new measurement determines α almost 20 times more
accurately than any independent method. The measured g/2 is accurate
enough to allow testing QED, probing for electron size, and searching for a
low mass dark matter particle if a more accurate independent measurement
of α is realized.

More details are in the thesis of D. Hanneke, and being readied for
publication. This work was supported by the NSF AMO program.
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We use Bloch oscillations to coherently transfer many photon momenta to
atoms. Then we can measure accurately the recoil velocity �k/m and deduce
the fine structure constant α. The velocity variation due to Bloch oscillations
is measured using atom interferometry. This method yields a value of the fine
structure constant α−1 = 137.035 999 45 (62) with a relative uncertainty of
about 4.5 × 10−9.

Keywords: Fundamental constants, fine structure constant, Bloch oscillations,
atom interferometry.

1. Introduction

The fine structure constant α is the fundamental physical constant charac-
terizing the strength of the electromagnetic interaction. It is a dimensionless
quantity, i.e. independent of the system of units used. It is defined as:

α =
e2

4πε0�c
(1)

where ε0 is the permittivity of vacuum, c is the speed of light, e is the elec-
tron charge and � = h/2π is the reduced Planck constant. The fine struc-
ture constant is a key part of the adjustment of the fundamental physical
constants.1,2 The different measurements of α are shown on Fig. 1. These
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values are obtained from experiments in different domains of physics, such
as the quantum Hall effect and Josephson effect in solid state physics, or
the measurement of the muonium hyperfine structure in atomic physics.
The most precise determinations of α are deduced from the measurements
of the electron anomaly ae made in the eighties at the University of Wash-
ington3 and recently at Harvard.4–6 This last experiment and an impressive
improvement of QED calculations7,8 have lead to a new determination of
α with a relative uncertainty of 3.7 × 10−10. Nevertheless this last deter-
mination of α relies on very difficult QED calculations. To test it, other
determinations of α are required, such as the values deduced from the mea-
surements of h/mCs

9 and h/mRb (mCs and mRb are the masses of Cesium
and Rubidium atoms) which are also indicated in Figure 1. In this paper,
we present the measurements of h/mRb made in Paris in 2005 and 2008.

The principle of our experiment is the measurement of the recoil velocity
vr of a Rubidium atom absorbing or emitting a photon (vr = �k/m , where
k is the wave vector of the photon absorbed by the atom of mass m). As the
relative atomic masses Ar are measured very precisely, the measurement of
h/mRb is a way to accurately determine α via the Rydberg constant R∞:

α2 =
2R∞
c

Ar(Rb)
Ar(e)

h

mRb
(2)

In this equation, the relative atomic mass of the electron Ar(e) and the
Rubidium Ar(Rb) are known with the relative uncertainties of 4.4× 10−10

and 2.0 × 10−10, respectively.10,11 As the fractional uncertainty of R∞ is
7 × 10−12,12,13 the factor limiting the accuracy of α is the ratio h/mRb.

2. Principle of the experiment

The principle of the experiment is to coherently transfer as many recoils as
possible to the atoms (i.e. to accelerate them) and to measure the final ve-
locity distribution. In our experiment, the atoms are efficiently accelerated
by means of N Bloch oscillations (BO). The velocity selection and velocity
measurement are done with Raman transitions. The experiment develops in
three steps. i) Firstly, we select from a cold atomic cloud of 87Rb a bunch of
atoms with a very narrow velocity distribution. This selection is performed
by a Doppler velocity sensitive counter-propagating Raman transition. In
2005, we have used a π-pulse to transfer the atoms from the F = 2 to the
F = 1 hyperfine level of 87Rb. In 2008, we have modified the experimental
scheme to take advantage of Ramsey spectroscopy: we use a pair of π/2
pulses which produces a fringe pattern in velocity space. ii) Secondly, we
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Fig. 1. Determinations of the fine structure constant in different domains of physics.
The most precise measurements are shown in the lower part of the figure. They are
deduced from the anomaly of electron and from the ratios h/mCs and h/mRb. We have
taken into account the most recent result of the group of Gabrielse.6 The two values
deduced for h/mRb are presented in this paper.

transfer to these selected atoms as many recoils as possible by means of
Bloch oscillations as explained later. iii) Finally, we measure the final ve-
locity of the atoms by a second Raman transition which transfers the atoms
from the F = 1 to the F = 2 hyperfine level. In short, we have used two
different pulse sequences, the π−BO− π and π/2− π/2−BO− π/2− π/2
configurations.

The accuracy of our measurement of the recoil velocity relies in the
number of recoils (2N) that we are able to transfer to the atoms. Indeed, if
we measure the final velocity with an accuracy of σv, the accuracy on the
recoil velocity measurement σvr is:

σvr =
σv

2N
(3)

Bloch oscillations have been first observed in atomic physics by the
groups of Salomon in Paris and Raizen in Austin.14–16 In a simple way,
Bloch oscillations can be seen as Raman transitions where the atom begins
and ends in the same energy level, so that its internal state (F = 1 for 87Rb)
is unchanged while its velocity has increased by 2vr per Bloch oscillation.
This is illustrated on Fig. 2 which shows the atomic kinetic energy versus
the atomic momentum. The velocity distribution obtained after the π/2 −
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Fig. 2. Acceleration of cold atoms with a frequency chirped standing wave. The vari-
ation of energy versus momentum in the laboratory frame is given by a parabola. The
energy of the atoms increases by the quantity 4(2j + 1)Er in each cycle. The Ramsey
fringe patterns represents the momenta distribution of the atoms in the F = 1 hyperfine
level.

π/2 selection is also represented. Bloch oscillations are produced in a one
dimensional optical lattice which is accelerated by linearly sweeping the
relative frequency of two counter propagating laser beams (frequencies ν1
and ν2). The frequency difference ∆ν is increased so that, because of the
Doppler effect, the beams are periodically resonant with the atoms (∆ν =
4(2j + 1)Er/h, j = 0, 1, 2, 3.. where Er/h is the recoil energy in frequency
units and j the number of transitions). This leads to a succession of rapid
adiabatic passages between momentum states differing by 2�k. In the solid-
state physics approach, this phenomenon is known as Bloch oscillations in
the fundamental energy band of a periodic optical potential. The atoms
are subject to a constant inertial force obtained by the introduction of the
tunable frequency difference ∆ν between the two waves that create the
optical potential.14

We now describe the acceleration process following the Bloch formalism.
If, after the selection, the atom has a well defined momentum �q0 with
|q0| < k, the atomic wave function is modified when the optical potential
is increased adiabatically (without acceleration) and becomes in the first
energy band:

|Ψ0,q0〉 =
∑

l

φ0(q0 + 2lk)|q0 + 2lk〉 (4)

with l ∈ Z. Here |q0〉 denotes the ket associated with a plane wave of mo-
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mentum q0 and the amplitudes φ0 correspond to the Wannier function17

in momentum space of the first band. When the potential depth is close
to zero, the limit of the Wannier function φ0 is 1 over the first Brillouin
zone and zero outside. On the contrary, if the potential depth is large, the
Wannier function selects several components in velocity space. When the
optical lattice is accelerated adiabatically, the Wannier function is contin-
uously shifted in momentum space following the relation:

|Ψ(t)〉 =
∑

l

φ0(q0 + 2lk −mv(t)/�)|q0 + 2lk〉 (5)

where v(t) is the velocity of the optical lattice. The enveloping Wannier
function φ0 is shifted by mv(t) in momentum space. After the accelera-
tion, the potential depth is decreased adiabatically and, in equation 5, the
Wannier function selects only one component of the velocity distribution.
At the end, the wave function is |Ψ〉 = |q0 + 2Nk〉. If ∆v is the velocity
variation due to the acceleration, the number of Bloch oscillations N is such
that |�q0 + m∆v − 2N�k| < �k. Consequently, if the initial atomic veloc-
ity distribution fits within the first Brillouin zone, it is exactly shifted by
2Nvr without deformation, as shown in Fig. 2 for the velocity distribution
produced by a pair of π/2 pulses.

3. Results in the π − BO − π configuration

Our experimental setup has been previously described in detail.18,19 Briefly,
we use a magneto-optical trap (MOT) and an optical molasses to cool
the atoms to about 3 µK. The determination of the velocity distribu-
tion is performed using a π − π pulse sequence of two vertical counter-
propagating laser beams (Raman beams):20 the first pulse with a fixed fre-
quency δsel, transfers atoms from the 5S1/2, |F = 2,mF = 0〉 state to the
5S1/2, |F = 1,mF = 0〉 state, into a narrow velocity class (width of about
vr/15). Then a laser beam resonant with the 5S1/2 (F = 2) to 5P3/2 (F = 3)
cycling transition pushes away the atoms remaining in the ground state
F = 2. Atoms in the state F = 1 make N Bloch oscillations in a vertical
accelerated optical lattice. We then perform the final velocity measurement
using the second Raman π-pulse, whose frequency is δmeas. The popula-
tions of the F = 1 and F = 2 levels are measured separately by using a
time of flight technique. To plot the final velocity distribution we repeat
this procedure by scanning the Raman beam frequency δmeas of the second
pulse.

To avoid spontaneous emission and to reduce other stray effects (light
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Fig. 3. Velocity spectra obtained in the π − BO − π configuration. Here N1 and N2

are respectively the number of atoms in F = 1 and F = 2 after the acceleration pro-
cess. These two spectra are obtained by performing the Bloch acceleration upwards or
downwards. The frequency difference between these spectra corresponds to 1780 recoil
velocities.

shifts and refraction index), the Raman lasers and the optical lattice are
blue detuned by ∼ 1 THz and ∼ 40 GHz respectively from the one photon
transition. The delay between the two π-pulses is 12 ms and their dura-
tion 3.4 ms. The optical potential depth is 70 Er. For an acceleration of
about 2000 ms−2 we transfer about 900 recoil momenta in 3 ms with an
efficiency greater than 99.97% per recoil. To avoid atoms from reaching
the upper windows of the vacuum chamber, we use a double acceleration
scheme: instead of selecting atoms at rest, we first accelerate them using
Bloch oscillations and then we make the three step sequence: selection-
acceleration-measurement. This way, the atomic velocity at the measure-
ment step is close to zero. In order to eliminate the effect of gravity, we
make a differential measurement by accelerating the atoms in opposite di-
rections (up and down trajectories) keeping the same delay between the
selection and measurement π-pulses. The ratio �/m can then be deduced
from the formula:

�

m
=

(δsel − δmeas)up − (δsel − δmeas)down

2(Nup +Ndown)kB(k1 + k2)
(6)

where (δmeas − δsel)up/down corresponds respectively to the center of the
final velocity distribution for the up and the down trajectories, Nup/down

are the number of Bloch oscillations in both opposite directions, kB is the
Bloch wave vector, and k1 and k2 are the wave vectors of the Raman beams.
Moreover, the contribution of some systematic effects (energy level shifts)
is inverted when the direction of the Raman beams are exchanged: for each
up or down trajectory, the Raman beams directions are reversed and we
record two velocity spectra. Finally, each determination of h/mRb and α is
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obtained from 4 velocity spectra. Fig. 3 shows two velocity spectra for the
up and down trajectories.

The determinations of h/mRb and α have been derived from 72 ex-
perimental data point taken during four days. In these measurements, the
number of Bloch oscillations were Nup = 430 and Ndown = 460. Then, the
effective recoil number is 2(Nup + Ndown)=1780. The dispersion of these
n = 72 measurements is χ2/(n− 1) = 1.3 and the resulting statistical rel-
ative uncertainty in h/mRb is 8.8 × 10−9. This corresponds to a relative
statistical uncertainty in α of 4.4 × 10−9. All systematic effects affecting
the experimental measurement have been analyzed in detail in reference.19

The total correction due to the systematic effects is (10.98 ± 10.0) × 10−9

on the determination of h/mRb. With this correction, we obtain for α:

α−1 = 137.035 998 84 (91) [6.7 × 10−9] (7)

This value of the fine structure constant is labeled h/m(Rb)2005 in Fig. 1.
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Fig. 4. Scheme of the interferometer used for the measurement of h/mRb. The first pair
of π/2 pulses produces a fringe pattern in the velocity distribution which is measured by
the second pair of π/2 pulses. Between these two pairs of pulses, the atoms are accelerated
upwards or downwards. The solid line corresponds to the atom in the F = 2 state, and
the dashed line to the F = 1 state.

4. Measurement of the fine structure constant by
atom interferometry

We describe in this section the results obtained in the π/2−π/2−BO−π/2−
π/2 configuration. The scheme of this interferometric method is shown in
Fig. 4. The frequency resolution is now determined by the time TR within
each pair of pulses while the duration of each π/2 pulse determines the
spectral width of the pulses and the number of atoms which contribute to



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Determination of the fine structure constant with atom interferometry 63

the signal. This interferometer is similar to the one of reference,9 except that
effective Ramsey k-wavevectors point in the same direction. Consequently,
this interferometer is not sensitive to the recoil energy, but only to the
velocity variation due to Bloch oscillations which take place between the
two sets of π/2 pulses.
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Fig. 5. Velocity spectra obtained in the π/2 − π/2 − BO − π/2 − π/2 configuration.
Here N1 and N2 are respectively the number of atoms in F = 1 and F = 2 after the
acceleration process. The spectrum on the left corresponds to the downwards acceleration
(600 Bloch oscillations) and on the right to the up acceleration (400 Bloch oscillations).
The frequency difference between these spectra corresponds 2000 recoil velocities.

As in the π − BO − π configuration, a value of h/mRb is deduced from
four spectra obtained with the upwards or downwards acceleration and by
exchanging the directions of the Raman beams. An example of two spectra
is shown in Fig. 5. In this case, the total number of Bloch oscillations is
Nup + Ndown = 1000, corresponding to 2000 recoil velocities between the
up and down trajectories. The duration of each π/2 pulse is 400 µs and the
time TR is 2.6 ms (the total time of a pair of π/2 pulses is 3.4 ms). For
these experiments, the blue detuning of the Raman lasers is 310 GHz. By
comparison with the π−BO−π configuration (see Fig. 3) the resolution is
better: the half period of the fringes is about 160 Hz while the line width of
the spectra of Fig. 3 was about 500 Hz. Nevertheless, the reduction of the
uncertainties is not in the same ratio. This is due to the phase noise of the
Raman laser which becomes more important. To lower this effect, we have
set up an active anti vibration system: then the precision of each frequency
measurement increases by about a factor of two. After this amelioration,
to improve the resolution, it is tempting to increase the time TR between
the π/2 pulses. Nevertheless, another limitation appears, which is the size
of the vacuum cell. Indeed, when we make the selection, the velocity of
the atoms is close to 2Nvr and, during the selection, the atom travels a
distance of 2NvrTR. For example, in the case of the spectra of Fig. 5, the
total displacement of the atoms is about 88 mm and 53 mm for the down
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and up trajectories (the upper window of the vacuum cell is 70 mm above
the center of the cell): practically, with the parameters corresponding to
the spectra of Fig. 5, we use all the size of the cell. Consequently, if we
want to increase the delay TR, we have to reduce the number N of Bloch
oscillations and there is no benefit.

To surpass this limit, we have developed a method, called the atomic
elevator, to better use the volume of the vacuum cell. The idea is to move
the atoms to the top or the bottom of the cell before making the sequence
described above. Then, we use the total size of the cell to accelerate and
decelerate the atoms. To displace the atoms, we accelerate the atoms with
300 Bloch oscillations during 4 ms and, after a dead time of 13 ms, we
decelerate the atoms with 300 Bloch oscillations. This sequence displaces
the atoms by about 50 mm. With this technique, we have increased at the
same time N to 800 and TR to 5.7 ms. Fig. 6 shows two records obtained
with these parameters. The visibility of the fringes is similar to the one of
Fig. 5 and the half period of the fringe is about 90 Hz. Now the frequency
difference between the two spectra corresponds to 3200vr. During the selec-
tion, the atomic velocity is about 10 m/s and the atom travels a distance
close to 6 cm. This shows the limitation due to the size of the vacuum cell.
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Fig. 6. Velocity spectra obtained in the π/2−π/2−BO−π/2−π/2 configuration with the
atomic elevator. The spectrum on the left corresponds to the downwards acceleration (800
Bloch oscillations) and on the right to the upwards acceleration (800 Bloch oscillations).
The frequency difference between these spectra corresponds 3200 recoil velocities.

We present now the result deduced from 221 measurements of h/mRb.
For these measurements, we have used the two methods described previ-
ously, with and without the atomic elevator. The total number of Bloch
oscillations Nup +Ndown varies from 200 to 1600. The dispersion of these
n = 221 measurements is χ2/(n− 1) = 1.85 and the resulting relative sta-
tistical uncertainty in α is 3 × 10−9. The systematic effects are similar to
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the ones described in Ref. 19. The two main effects are due to the geome-
try of the laser beams and to the second order Zeeman effect. To evaluate
the first effect, we have measured the wave front curvatures with a Shack-
Hartmann wave front analyzer (HASO 128 from Imagine Optics). From
these measurements, we have obtained a correction of (−11.9± 2.5)× 10−9

in the determination of α. As explained above, the effect of parasitic level
shifts is eliminated by inverting the direction of the Raman beams. Never-
theless, this assumes that the measurements are made exactly at the same
position when the direction of the Raman beam is inverted. In fact, these
positions are not exactly the same because the directions of the recoils given
in the first Raman transition are opposite. For the timing used in our ex-
periment, they differ by about δz = 300 µm. We have precisely measured
the spatial magnetic field variations to control this effect. This correction
depends of the number of Bloch oscillations. For example, in the case of the
records of Fig. 6, its value is (7±1)×10−9. Finally the relative uncertainty
due to the systematic effects is 3.4 × 10−9 and we obtain for α:

α−1 = 137.035 999 45 (62) [4.5 × 10−9] (8)

This value corresponds to the point labeled h/m(Rb)2008 in Fig. 1 and
is in agreement with our 2005 measurement. Our two results are also in
agreement with the most precise value deduced from the electron anomaly
(labeled ae(Harvard) in Fig. 1).

5. Conclusion

We have presented two determinations of the fine structure constant α.
Depending on the Raman pulse arrangement (π−BO−π or π/2−π/2−BO−
π/2−π/2 configurations), our experiment can run as an atom interferometer
or not. The comparison of the two resulting values, which are in good
agreement, provides an accurate test of these methods. The comparison
with the value extracted from the electron anomaly experiment6 is either
a strong test of QED calculations or, assuming these calculations exact,
it gives a limit to test a possible internal structure of the electron. Our
goal is now to reduce the relative uncertainty of α. We are building a new
experimental setup with a larger vacuum chamber. With the new cell, we
plan to multiply the number of Bloch oscillations by a factor of three. Then,
it will be possible to reduce the uncertainty to the 10−9 level to obtain an
unprecedented test of the QED calculations.
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PRECISE MEASUREMENTS OF S-WAVE SCATTERING
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We demonstrate an interferometric scattering technique that allows highly pre-
cise measurements of s-wave scattering phase shifts. We collide two clouds of
cesium atoms in a juggling fountain clock. The atoms in one cloud are pre-
pared in a coherent superposition of the two clock states and the atoms in
the other cloud are prepared in one of the F,mF ground states. When the two
clouds collide, the clock states experience s-wave phase shifts as they scatter
off of the atoms in the other cloud. We detect only the scattered part of the
clock atom’s wavefunction for which the relative phase of the clock coherence
is shifted by the difference of the s-wave phase shifts. In this way, we unam-
biguously observe the differences of scattering phase shifts. These phase shifts
are independent of the atomic density to lowest order, enabling measurements
of scattering phase shifts with atomic clock accuracy. Recently, we have ob-
served the changes in scattering phase shifts as a function of magnetic field
over a range of values where Feshbach resonances may be expected and where
inelastic scattering channels open and close. A number of these measurements
will precisely test and tightly constrain our knowledge of cesium-cesium inter-

actions. With such knowledge, future measurements may place stringent limits
on the time variation of fundamental constants, such as the electron-proton
mass ratio, by precisely probing phase shifts near a Feshbach resonance.

Keywords: Precise measurements of s-wave scattering phase shifts; juggling
fountain clock.

1. Introduction

We have recently demonstrated a fundamentally new type of scattering
experiment that allows us to directly observe scattering phase shifts with
atomic-clock-like accuracy.1 Our statistical uncertainty is currently as good
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as 6 mrad after 5 minutes of data collection. This precision will allows us
to observe small changes in scattering phase shifts, for example as inelastic
scattering channels open and close. We describe the experimental technique
and demonstrate that we directly observe the scattering phase shift which
behaves very differently than the cold collision frequency shift.2 We also
show some recent measurements of s-wave phase shifts as a function of
magnetic field.

Fig. 1. We collide an atom in a coherent superposition of the two cesium clock states
with a cesium atom in a pure |F, m〉 state, such as |4, 4〉. When the clock states scatter,
they experience different s-wave phase shifts, shifting the phase of the clock coherence
by the difference of the s-wave phase shifts. By detecting only a scattered part of the
clock atom’s wavefunction, we directly observe the difference of the s-wave phase shifts
as a large phase shift of the clock Ramsey fringes.

2. Description of the Experiment

The experiment is schematically illustrated in Fig. 1. We juggle atoms3 in
our cesium fountain clock by launching two clouds of atoms with a short
time delay ∆t so that the two clouds have a small relative velocity, of order
vr = g∆t = 10 cm/s. Both clouds of atoms pass through the microwave
clock cavity which puts the atoms in the second cloud into a coherent
superposition of the two Cs clock states |Fm〉 = |40〉 and |30〉. These atoms
collide with the atoms in the first cloud, which are prepared in a pure |Fm〉
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state, such as |44〉. The spherically incoming s-wave component of the |30〉
state experiences an s-wave phase shift δs,30,Fm, or simply δ3. Similarly, the
s-wave component of |40〉 acquires a phase shift of δ4. The collision therefore
shifts the relative phase of the s-wave scattered clock states by Φ = δ3− δ4.
After colliding, the atoms return downwardly through the microwave cavity
which drives a second π/2 pulse, converting the phase difference between
the clock coherence and the microwave field into a population difference.
This gives Ramsey fringes as in Fig. 2. By detecting only the scattered
part of each clock atom’s wavefunction, the Ramsey fringes we detect are
shifted by δ3 − δ4, the difference of the s-wave phase shifts. Therefore we
can directly observe the difference of scattering phase shifts with atomic-
clock-like accuracy.

Fig. 2. Central Ramsey fringe for clock atoms that have s-wave scattered from |33〉
atoms at 90◦ (dashed) and unscattered clock atoms (solid). Here, the difference of the
s-wave scattering phase shifts is Φ = δ3−δ4 = 0.35 for vr = 8.6 cm/s. The fringes for the
scattered atoms (dashed) have a much smaller amplitude than those for the unscattered
atoms (solid).

A key feature of this technique is that the measurement is indepen-
dent of the atomic density (Fig. 3(a)). It is independent of density to 0th

order because each scattered clock atom that is detected experiences the
two s-wave phase shifts. The density independence, combined with clock
techniques, will allow highly precise measurements of the difference of scat-
tering phase shifts which will allow unambiguous tests of cesium-cesium
interactions and potentially precise tests of fundamental physics.
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Fig. 3. (a) The phase shift is independent of the density of cloud 1, n1, in contrast to the
usual cold-collision frequency shift which is proportional to density. The Ramsey fringe
amplitude of scattered atoms A (inset) is proportional to the density as expected. (b) The
phase shift Φ is independent of the free precession time T, as opposed to proportional
to T for a frequency shift (dashed line). For the clock states scattering off of |4, 4〉, the
best fit is Φ = 0.141(8).

Highly precise scattering measurements have not been possible because
the atomic density n needs to be known to relate the measured number
of scattered atoms N during some time interval ∆t to the cross section,
via N = nvrσ∆t. To date, the best atomic density measurements do not
approach even 1% accuracy.4,5 Here, we can expect 100 microradian accu-
racy. Our first measurements have a statistical uncertainty of 7.6 mrad1

and we expect improvements to better than 100 µrad accuracy. Our recent
measurements have shown a statistical uncertainty of 6 mrad in 20 minutes
of data collection. However, 75% of the data collection time was spent mea-
suring three relatively small backgrounds. With optimal data collection,
our current signal-to-noise reduces the averaging time to 5 minutes, or, for
100 µrad, about 2 weeks of data taking.

The phase shift of the scattered atoms’ Ramsey fringes is also indepen-
dent of the interrogation time T between the two Ramsey pulses (Fig. 3(b)).
This is in contrast to the usual frequency shift in a clock2 for which Φ in-
creases linearly with the T (dashed line). As an example, the largest cold-
collision frequency shift observed in a Cs clock was 5.5 mHz,2 which is a
very small phase shift of a 100 Hz Ramsey fringe (and just a fairly small
phase shift of a 1 Hz fringe). These frequency shifts can be very large by
comparison; for T = 0.127 s in Fig. 3(b), the frequency shift is 180 mHz for
a relatively small phase shift of Φ = −0.14. Near a Feshbach resonance,6,7

the scattering phase shifts go through π and so the frequency shift of the
Ramsey fringes will be several Hertz.
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We now briefly describe the sequence to juggle and obtain Ramsey
fringes. Our juggling fountain is based on a double magneto-optic trap
(MOT)8 in which the vapor cell MOT repeatedly loads the UHV MOT to
collect the first cloud. We hold the first cloud while the second cloud is
loaded in the vapor cell MOT below. The second cloud is then launched
and, shortly before it reaches the UHV MOT, the first cloud is launched up-
ward. Within 1 ms, a 9.2 GHz red-detuned moving-frame 3D optical lattice
is switched on and, with degenerate Raman sideband cooling, the atoms are
cooled to 300–500 nK9 and optically pumped into |33〉. The second cloud
is captured in the UHV MOT, trapped for as little as 1 ms, launched, and
then cooled in the optical lattice. One of the experimental challenges is
launching two clouds essentially on top of one another without heating the
atoms by more than a photon recoil. For a 7 ms launch delay (E = 20 µK),
the two clouds are only separated by 1 cm, about their diameter, when
launched. We “hide” the atoms in |33〉, carefully control the UHV and lat-
tice beams,3 and reduce the launch velocity of the second cloud1 so that we
can access collision energies as low as 16 µK (vr = 6.3 cm/s). At the high
end, our collision energies can exceed 200 µK (vr = 22.4 cm/s).

The atoms are state prepared in four microwave cavities right above the
UHV MOT & optical lattice.1 When scattering off of |44〉, the first cloud
is transferred from |33〉 to |44〉 and the second cloud goes from |33〉 to
|43〉 to |32〉 to |41〉 with composite π pulses.10 Finally, a velocity-selective
two-photon Raman transition11 transfers the atoms in cloud 2 from |41〉 to
|30〉.

We isolate the scattered atoms by using the velocity-selection of another
two-photon Raman transition. After the two clouds collide, we eliminate the
|44〉 atoms in the first cloud and the |40〉 atoms in the second cloud with a
pulse of a clearing beam. We detect the velocity distribution of the |30〉3,8
atoms, with a second velocity-selective two-photon Raman transition to
the |40〉 state, the solid “collisions” curves in Fig. 4(a) and (b). We also
detect a “no-collisions” background (dashed curve) by clearing the first
cloud right after the second cloud is transferred to the |30〉 state, well before
the two clouds collide. The difference of the collision and no-collisions curves
(solid – dashed) in Fig. 4(c) is the velocity distribution of the scattered
atoms.

To observe the Ramsey fringes of the scattered atoms, we tune the two-
photon Raman transition to select atoms at a particular scattering angle,
such as 90◦ (vz = 0 in Fig. 4(c)). We apply two π/2 pulses with the clock
cavity and scan their frequency to obtain the Ramsey fringes in Fig. 2.
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Fig. 4. (a) Velocity distribution of clock atoms in cloud 2, prepared in |3, 0〉 and cloud
1 in |4, 4〉, with vr = 9.92 cm/s. The solid (dashed) curves show the velocity distribution
of cloud 2 for ‘collisions’ (‘no-collisions’) when we clear cloud 1 from the fountain late
(early). (b) Magnification of (a) by 100. In this center-of-mass frame, cloud 1 is centered
at vz1 = −4.96 cm/s (dashed) and cloud 2 at vz2 = 4.96 cm/s. (c) The difference between
the ‘collisions’ and ‘no-collisions’ curves represents scattered atoms, visible between vz =
−5 cm/s and 2 cm/s. (d) Background for ‘collisions’ (solid) and ‘no-collisions’ (dashed).
The Ramsey fringes in Fig. 2 for scattered atoms (dashed) are taken at vz = 0 and, for
unscattered atoms (solid), at vz2. About 0.1% of the atoms scatter into the 1.4 cm/s
detected velocity width at 90◦.

3. Brief Theory

Here we theoretically describe the scattering of an atom in a coherent super-
position of two clock states off of an atom in a pure state |Fm〉. We relate
the familiar cold collision clock shift and the interferometric scattering to
the underlying s-wave phase shifts. In the center of mass frame, we take the
wavefunction of the clock atom to be ψ(r) = (2vr)−1/2(|30〉+i|40〉) exp(ikz)
after its upward passage through the clock cavity where vr = �k/µ and µ

is the reduced mass. The clock states acquire s-wave phase shifts as they
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scatter from atoms in the first cloud, giving:

ψ(r) =
1√
2vr

[
eikz + eδ3 sin (δ3)

eikr

kr

]
|30〉

+
i√
2vr

[
eikz + eδ4 sin (δ4)

eikr

kr

]
|40〉. (1)

Here δ3 and δ4 are the s-wave phase shifts for states |30〉 and |40〉 scattering
from |Fm〉.

After scattering, the atoms return back through the microwave cav-
ity where the atoms experience a second π/2 pulse, but with a variable
phase φ. Projecting the wavefunction onto the excited state |40〉, we get
exp(iφ/2)〈30|ψ(r)〉 + exp(−iφ/2)〈40|ψ(r)〉.

The population of |40〉 has three contributions. One is from the unscat-
tered part of each clock atom, one from the scattered part, and one from the
interference between the scattered and unscattered waves. The unscattered
probability current is

�junsc = cos2
(
φ

2

)
ẑ, (2)

which represents the usual Ramsey fringes. The interference term is

�jint =
π

k2

(
2 cos2

(
φ

2

)[
sin2 (δ3) + sin2 (δ4)

]
+

1
2

sin (φ) [sin (2δ3) − sin (2δ4)]
)
ẑ. (3)

This term represents the cold collision frequency shift or mean field shift.
In the limit of small phase shifts, it reduces to

�jint =
π

k2
(δ3 − δ4) sin (φ) ẑ, (4)

which is an odd function of φ, producing a frequency shift of the Ramsey
fringes. This acts as a phase shift of δΦ = nvr∆t2π(δ3 − δ4)/k2 of the
Ramsey fringes for atoms detected in the forward direction.

The more interesting term that we detect here is the scattered prob-
ability current. By excluding the part of each atom’s wavefunction in the
forward direction, we detect

�jsc =
π

k2

[
sin2 (δ3) + sin2 (δ4) + 2 sin (δ3) sin (δ4) cos (φ+ δ3 − δ4)

]
r̂. (5)

Here, the difference of the s-wave scattering phase shifts, δ3 − δ4 is directly
observed as a phase shift of the Ramsey fringes. The probability flux in any
direction is proportional to the density of scatterers in the first cloud and
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a2
3 +a2

4 for small k, where ai is the s-wave scattering length. If δ3 and δ4 are
not equal, the fringe contrast is not 100%. But, because the Ramsey fringes
represent an interference of the amplitudes of two states, fringes are visible
for a wide range of δ3/δ4. Even for scattering cross-sections that differ by
an order of magnitude, the contrast is more than 60%.12 Similar expression
can be written for higher partial waves, including the interference between
different partial waves (e.g. the interference between s and p-waves).

4. Feshbach Resonances and Scattering Thresholds

The ability to precisely measure s-wave phase shifts will allow a number of
scattering experiments. Several Feshbach resonances for the cesium clock
states have been found at magnetic field values below 20 mG by measuring
cold collision frequency shifts.13 Using the cold collision shift is difficult
because the phase shifts are so small, especially in comparison to the clock’s
quadratic Zeeman shift of 427 Hz/G2. In comparison, for our interferometric
technique, as the magnetic field is scanned through a Feshbach resonance,
the s-wave phase shift will change by ±π/2 so that the frequency shifts can
be greater than 1 Hz.

Fig. 5. (a) Inelastic collisions between Cs hyperfine states |40〉 and |33〉 must conserve
both z angular momentum (mF) and energy. At Ec = 30 µK and B = 0.25 G, the dashed

lines show the energy thresholds for ∆m = 4 changing collisions which are energetically
forbidden. (b) The predicted s-wave phase shifts Φ for the |3, 3〉 state colliding with the
clock states as a function of magnetic field for several collision energies. There are a
series of thresholds between 0.1 and 0.4 G for collision energies Ec = 15 to 40 µK.

A second effect that we may observe are inelastic threshold effects as a
function of magnetic field as depicted in Fig. 5(a). Considering the scatter-
ing of the |40〉 state off of |33〉, all inelastic scattering channels are ener-
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getically allowed for small magnetic fields. As the magnetic field increases
above 0.23 G, the inelastic collision channel |44〉|33〉 → |44〉|3−1〉 closes and
is no longer energetically allowed. As the field increase further, the |44〉|33〉
→ |43〉|30〉 channel closes, then |44〉|33〉 → |42〉|31〉, and finally |44〉|33〉 →
|41〉|32〉 closes at 0.89 G. In Fig. 5(b) we show a calculation of the s-wave
phase shift as a function of magnetic field. The s-wave phase shift shows
a threshold effect as each inelastic channel closes, often accompanied by a
change in phase shift that can be as large as 100 mrad. The curves also show
the expected threshold behavior that channels close at a higher magnetic
field for higher collision energies.

Preliminary measurements of the phase shifts are shown in Fig. 6 for
the clock states scattering off of the |3m〉 states. Over a 0.5 G range of
magnetic fields, the s-wave phase shifts can change by more than 100 mrad.
These variations could be caused by the opening and closing of inelastic
scattering channels as in Fig. 5 or by Feshbach resonances.14 Measurements
are ongoing to extend the range of magnetic fields to greater than 1 G.

The quadratic Zeeman shift is an important systematic error. At 1 G,
the sensitivity to changes and gradients is 0.854 Hz/mG, or 63 mrad/mG
for our typical interrogation time of 0.23 s. So that we can easily increase
the magnetic field, our fountain has an active control of the bias field and no
passive shielding. We probe the magnitude of the field and its fluctuations
over the atoms trajectories by detecting on each fountain launch both the
scattered and unscattered atoms. The unscattered atoms serve as a probe
of the magnetic field for that fountain cycle. In addition, on some fountain
cycles we scatter the clock atoms off of atoms prepared in the |3− 3〉 state
to probe the gradients in the fountain region. The |3 − 3〉 collision chan-
nels should have no scattering thresholds and no Feshbach resonances are
predicted. After scattering off of |3 − 3〉, the clock atoms follow the same
trajectories and therefore sample the same gradients as when they scatter
off of atoms in the other |3m〉 states. For the data in Fig. 6, we observe a
linear variation of the phase shift for scattering off of |3 − 3〉 of -0.13 rad
which is removed from the data in Fig. 6. With field shimming, we should
be able to reduce the field gradients by a factor of 20.

5. Conclusions

We have demonstrated a new scattering technique in which we interfer-
ometrically observe the difference of s-wave phase shifts. With the high
precision that atomic clock techniques enable, we can see small variations
in the scattering phase shifts due to Feshbach resonances and the opening
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Fig. 6. Preliminary measurements of the difference of s-wave phase shifts ∆Φ for the
|3m〉 state colliding with the clock states as a function of magnetic field at 30 µK. The first
and second cloud temperatures are 300 and 500 nK which produces a thermal broadening
of ±10 µK. There are a series of thresholds as shown in Fig. 5 in this region and there
may also be Feshbach resonances in this range of magnetic fields. Future measurements
will extend to higher fields.

and closing of inelastic scattering channels. Precise measurements near Fes-
hbach resonances15–17 will highly constrain the interatomic interactions18

and can also place stringent limits on the time variation of fundamental
constants, such as the electron to proton mass ratio.19
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The detection of weak magnetic fields with high spatial resolution is an out-
standing problem in diverse areas ranging from fundamental physics and mate-
rial science to data storage and bio-imaging. Here we describe a new approach
to magnetometry that takes advantage of recently developed techniques for co-
herent control of solid-state spin qubits. We experimentally demonstrate this
novel magnetometer employing an individual electronic spin associated with
a Nitrogen-Vacancy (NV) center in diamond. Using an ultra-pure diamond
sample, we achieve shot-noise-limited detection of nanotesla magnetic fields at
kHz frequencies after 100 seconds of averaging. In addition, we demonstrate
0.5 microtesla/

√
Hz sensitivity for a diamond nanocrystal with a volume of

(30 nm)3. This magnetic sensor provides an unprecedented combination of
high sensitivity and spatial resolution – potentially allowing for the detection
of a single nuclear spin’s precession within one second.

Keywords: Quantum control, solid-state qubits, magnetometry.

1. Introduction

Magnetic field sensing has historically been achieved by using
atomic/molecular systems or solid-state devices with distinctly different
underlying physics. Precision measurement techniques in atomic and molec-
ular systems,1,2 which are also widely used to implement ultra-stable atomic
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clocks,3–5 rely on monitoring the precession of angular momentum via the
Zeeman effect for magnetic field sensing.6,7 Sensitive solid-state magne-
tometers are generally based on many-body macroscopic phenomena such
as the Josephson effect in SQUIDs8,9 or the Hall effect in semiconduc-
tors.10 However, even state-of-the-art techniques have difficulty detecting
weak fields in small regions of space. Of particular interest would be the
detection and localization of the magnetic field produced by a single elec-
tronic or nuclear spin. Some intriguing techniques — such as magnetic
force microscopy11,12 — could potentially yield better spatial resolution.
Here we investigate a novel approach to the detection of weak magnetic
fields using systems currently explored as qubits: isolated electronic spins in
diamond.13–15 Our approach to magnetic sensing16–18 combines the coher-
ent manipulation of individual electronic spin qubits embedded in a solid-
state environment with optical read-out, to yield an unprecedented combi-
nation of high sensitivity and spatial resolution.

2. Concept of a magnetic sensor based on a single spin

As illustrated in Figure 1(a), the electronic spin of an individual NV im-
purity in diamond can be polarized via optical pumping and measured
through spin state-selective fluorescence. Conventional ESR techniques are
used to coherently manipulate the spin angular momentum via microwave
fields. To achieve magnetic sensing, we monitor the electronic spin preces-
sion, which depends on external magnetic fields through the Zeeman effect.
This method is directly analogous to precision magnetometry techniques in
atomic and molecular systems.

Ultimately, sensitivity is determined by the spin coherence time and by
spin projection-noise. Although solid-state electronic spins have shorter co-
herence times than gaseous atoms, quantum control techniques can decou-
ple them from the local environment, leading to a substantial improvement
in their sensitivity to external, time-varying magnetic fields. Even if this
is less sensitive than for state-of-the-art macroscopic magnetometers, a key
feature of our sensor is that it can be localized within a region of about 10
nm, either in direct proximity to a diamond surface or within a nano-sized
diamond crystal, yielding high spatial resolution.

The canonical approach to detecting a Zeeman shift uses a Ramsey-type
sequence. A π/2-pulse creates a superposition of two Zeeman levels, which
acquire a relative phase φ = δω τ ∝ gµB

�
Bτ from the external field B during

the free evolution interval τ (here µB is the Bohr magneton and g ≈ 2 for
NV centers). Another π/2-pulse transforms the relative phase into a popula-
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b signal

(c) Waveguide for 

photon collection

Nano-

crystal

Sample

Fig. 1. Principles of the individual NV electronic spin diamond magnetic sensor. (a)
Energy levels for a single NV impurity. (b) Example of the pulse sequence structure of the
experimental approach. (c) Scanning tip setup for high-spatial resolution magnetometry.

tion difference, which is measured optically. For small φ, the magnetometer
signal S (proportional to the induced population difference) depends lin-
early on the magnetic field: S ≈ gµB

�
Bτ . During the total averaging interval

T , T/τ measurements can be made, yielding a shot-noise-limited sensitivity
δB given by the minimum detectable field, Bmin ≡ δB/

√
T = �

gµB

1√
τT

.
Increasing the interrogation time τ improves the sensitivity until interac-

tions with the environment lead to signal decay. For solid-state spin systems,
the coherence is limited by interactions with nearby lattice nuclei and para-
magnetic impurities, resulting in an ensemble dephasing time T ∗

2 ∼ 1 µs.
Coherent control techniques can improve the sensitivity for AC fields. Due
to the long correlation times characteristic of dipolar interactions between
nuclear spins — the principal source of dephasing — spin echo techniques
can dramatically extend the coherence time. Specifically, by adding an ad-
ditional microwave π-pulse to the Ramsey sequence at time τ/2, the Hahn
echo sequence19 removes the effect of environmental perturbations whose
correlation time is long compared to τ . Thus a signal field B(t) oscillating
in-phase with the pulse sequence produces an overall additive phase shift,
leading to a total phase accumulation, δφ = gµB

�
[
∫ τ/2

0 B(t)dt−∫ τ

τ/2B(t)dt].
Correspondingly, the probability of the spin being in the ms = 0 state at
the end of the sequence is P0(τ) = [1 + F (τ) cos(δφ)]/2, where F (τ) is the
amplitude of the spin-echo signal envelope in the absence of a time varying
field (Fig. 2(a)). For maximal response to CW signals BAC sin (νt+ ϕ0)
with known frequency and phase (assuming small BAC), we find τ = 2π/ν



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Quantum control of spins and photons at nanoscales 81

and ϕ0 = 0 to be optimal. The resulting sensitivity per averaging time is

δBAC ∼ π�

2gµBC
√
T2

. (1)

Here we introduced the parameter C ≤ 1, which describes photon shot
noise and a finite contrast to the Ramsey fringes.

The optimum sensitivity is achieved only for fields oscillating near
ν ∼ 1/T2. These results can be extended to higher frequency signals, by
using composite pulse sequences such as CPMG20 that may provide an even
longer coherence time at the expense of a reduced bandwidth.

3. Implementation with Nitrogen-Vacancy centers

3.1. Regimes of operation and achievable sensitivity

In our work we use NV centers for magnetic sensing. The fine structure of
the electronic ground state of a NV center, shown in Fig. 1(a), is a spin
triplet. The crystal field splits the ms = ±1 Zeeman sublevels from the
ms = 0 sublevel by ∆ = 2π × 2.87 GHz, setting the spin quantization axis
parallel to the nitrogen-to-vacancy direction. There are two possible regimes
of operations for the magnetometer, each providing a different compromise
between the ease of control and achievable sensitivity.

In the presence of a low static magnetic field BDC ≤ 10 mT, it is prefer-
able to use the ms = ±1 manifold which provides a better sensitivity. It has
twice the energy splitting of the 0-1 manifold and is less affected by nuclear
spin-induced decoherence at low fields, since inter-nuclear interactions are
suppressed by the large hyperfine field.21 For diamond where natural abun-
dance (1.1%) Carbon-13 nuclei are the principal cause of decoherence, the
signal decays as F (τ) = exp[−(τ/T2)3] with T2 ∼ 300µs.22 We can opti-
mize the sensitivity as a function of τ , δBAC = π�

2gµB
e(τ/T2)

3√
τ + tm/Cτ ,

obtaining a sensitivity of δBAC ≈ 18 nT Hz−1/2 for a single NV center
under current experimental conditions (C ≈ 0.05 and measurement time
tm ≤ 2 µs). Improved collection efficiencies (C = 0.3) would yield δBAC = 3
nT/Hz−1/2.

At high magnetic fields, it becomes more convenient to address the
ms = {0, 1} manifold. The dynamics imposed on the electronic spin by the
nuclear spin bath is however more complex. Figure 2(a) shows a typical
spin-echo signal observed from an individual NV center. The periodic mod-
ulation of the echo is caused by a bath of 13C nuclear spins, which create
an effective precessing magnetic field of a few microtesla at the NV center.
The precession of the nuclear spins around BDC causes the NV spin-echo
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Fig. 2. Spin-echo-based magnetometry with an individual NV electronic spin in a bulk
diamond sample. (a) Example electronic spin-echo measurement (dots) and fitting (solid
line, see text). (b) Spin-echo signal as a function of applied AC magnetic field ampli-
tude for two operating frequencies ν1 = 3.15 kHz (dashed line) and ν2 = 4.21 kHz,
corresponding to revivals 1 and 2 in Fig. 2(a).

signal to collapse and revive15 at half the rate of the 13C Larmor frequency,
ωL = γ13CBDC . Note that substantial spin-echo revivals exist even after
a free evolution of 0.6 ms. The decay of the echo signal envelope does not
follow a simple exponential decay associated with typical ESR on bulk sam-
ples. This can be understood by noting that echo dynamics of a single NV
center near the revivals is likely determined by a few 13C that interact
strongly with the electronic spin,13–15,22,23 yielding multiple characteristic
time scales for the echo decay. The envelope of the spin echo signal in Figure
2(a) has been modeled with an exponential decay F (τ) ∝ exp(−(τ/T2)4)
modulated by a pair of strongly interacting 13C. The sensitivity is then

δBAC =
π�

gµB
F (τ)

√
τ + tm/Cτ. (1)

With T2 ∼ 600 µs, the predicted optimal sensitivity is δBAC ≈ 4 nT/Hz−1/2

for an ideal spin readout, while we expect a sensitivity � 25 nT/Hz−1/2 with
current collection efficiencies, corresponding to C ∼ 0.05.

3.2. First experimental realization

To establish the sensitivity limits of our magnetometer, we performed a
series of proof-of-principle experiments involving single NV centers in bulk
ultra-pure single crystal diamond and in commercially available diamond
nanocrystals. Our experimental methodology is depicted in Figure 1. Single
NV centers are imaged and localized with ∼ 170 nm resolution using con-
focal microscopy. The position of the focal point is moved near the sample
surface using a galvanometer mounted mirror to change the beam path and
a piezo-driven objective mount. A 20 micron diameter wire generates mi-
crowave pulses to manipulate the electronic spin states (see Figure 1(b)). A
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pair of Helmholtz coils are used to provide both AC and DC magnetic fields.
An individual center is first polarized into the mS = 0 sublevel. In Figure
1(b), a coherent superposition between the states mS = 0 and mS = 1 is
created by applying a π/2 pulse tuned to this transition. The system freely
evolves for a period of time τ/2, followed by a π refocusing pulse. After a
second τ/2 evolution period, the electronic spin state is projected onto the
mS = {0, 1} basis by a final π/2 pulse, at which point the ground state
population is detected optically via spin-dependent fluorescence.

We consider first a single crystal diamond bulk sample, operating in the
ms = {0, 1} manifold. To achieve the highest sensitivity, the revival rate of
the spin-echo signal is adjusted by varying the strength of the applied DC
magnetic field BDC , such that the frequency of the echo revival peaks coin-
cides with multiples of the AC field frequency ν to be detected. As shown
in Figure 2(b), the observed peak of the spin-echo signal varies periodically
as the amplitude of the external AC field (BAC) is increased. The signal
variation results from the accumulated phase due to the AC magnetic field,
which is converted into a spin population difference, leading to variations
in the detected fluorescence signal. Maximal signal in Figure 2 corresponds
to an average number of photons n̄ = 0.03 detected during the 324 ns
photon counting window of a single experimental run. In Figure 2(b), each
displayed point is a result of N = 7 × 105 averages of spin-echo sequences.
The magnetometer is most sensitive to variations in the AC magnetic field
amplitude (δB) at the point of maximum slope, with the sensitivity being
limited by the uncertainty in the spin-echo signal measurement (δS).

Figure 3(a) shows the measured sensitivity δB after one second of aver-
aging as a function of the AC magnetic field frequency ν = 1/τ . At high fre-
quencies or short times, F (1/ν) → 1, and the sensitivity scales as

√
ν, while

at low frequencies decoherence degrades the sensitivity. For comparison we
plot Eq. (1), with F (τ) = exp(−(τ/T2)4)(1− (a2−b2)

a2 sin2 aτ sin2 bτ),23 with
the parameters found from the fitting of the echo envelope (T2 = 676µs,
b = 478Hz and a = 626Hz). The absolute sensitivity depends on the signal
to noise ratio in the readout of the NV electronic spin state. In our case,
this is limited by photon collection efficiency ≈ 0.1%. The resulting photon
shot noise7,16 results in a degradation of the ideal magnetometer sensitivity
given by Eq. (1). Our theoretical prediction of magnetometer sensitivity
(solid curve in Figure 3(a)) combines the NV coherence properties shown
in Figure 2(a) with the noise due to photon counting statistics and imper-
fect collection efficiency.16,17 This prediction is in excellent agreement with
the experimental results, indicating that our magnetometer is photon-shot-
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Fig. 3. Magnetometer sensitivity characterization. (a) Measured sensitivity of a single
NV spin magnetometer in bulk diamond after one second averaging. Error bars represent
standard deviation for a sample size of 30. Also shown is the theoretically predicted sen-
sitivity (solid line), with the shaded region representing uncertainty due to variations in
photon collection efficiency. Measurements were carried out at two DC fields, BDC = 13
(diamond) and 22 G (square). (b) Minimum measurable AC magnetic field as a function
of averaging time, for AC field frequency ν = 3.2 kHz and BDC = 13 G (diamonds). Fit
to the data shows that the sensitivity improves as the square root of averaging time, in
agreement with theoretical estimates based on photon shot-noise limited detection.

noise limited. Figure 3(b) shows sensitivity for a fixed AC magnetic field
frequency ν as a function of measurement time T . The solid line is a fit to
Bmin ∝ T−α, where α = 0.5 ± 0.01. This indicates that magnetic fields as
small as few nanotesla are resolvable after 100 seconds of averaging.

We also performed similar experiments with single NV centers in di-
amond nanocrystals (30 nm diameter) to demonstrate magnetic sensing
within a nanoscale detection volume. The available nanocrystals contain
a large number of impurities (probably paramagnetic substitutional nitro-
gen atoms containing unpaired electron spins) that shorten the electronic
spin coherence time29 to values ranging from 4 to 10 µs. Sensitive detec-
tion of AC magnetic fields is still possible as demonstrated experimentally in
Figure 4. A magnetometer sensitivity of δB ∼ 0.5±0.1 µT/

√
Hz is achieved

for this nanocrystal at ν = 380 kHz. In Figure 4(b), the maximum signal
corresponds to an average number of photons n̄ = 0.02 counted during a 324
ns photon counting window; N = 2 × 106 averages of spin-echo sequences
were used.

4. Outlook

The high magnetic field sensitivity in a small volume offered by solid state
spin-qubits such as NV centers in diamond can find a wide range of applica-
tions, from fundamental physics tests or quantum computing applications
to detection of NMR signals, surface physics and material science, and med-
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Fig. 4. Example of magnetic sensing with a single NV electronic spin in a diamond
nanocrystal. (a) Spin-echo signal from a single NV center contained in a diamond
nanocrystal with diameter of 34 ± 12 nm as determined by AFM. The arrow indicates
the time at which magnetic sensing is performed in Fig. 4b. (b) Spin-echo signal as a
function of the applied AC magnetic field amplitude at a frequency of ν = 380 kHz. The
resulting standard deviation yields a magnetometer sensitivity of 0.5 ± 0.1 µT/Hz1/2.

ical imaging and biomagnetism. In particular, this robust technology could
be invaluable both in nanoscale magnetic field imaging and in macroscopic
field detection scenarios, such as low-field MRI.

For example, one of the outstanding challenges in magnetic sensing is the
detection and real space imaging of single electronic and nuclear dipoles.
Since the magnetic field from a single dipole decreases with distance as
∼ 1/r3, a magnetometer that can be brought into close proximity of the
dipole offers a clear advantage. This can be achieved by using a diamond
nanocrystal. For example, a ∼ 25 nm diameter nanocrystal attached to the
end of an optical fiber or plasmonic waveguide,24 would provide a spatial
resolution ∼ 25 nm, while achieving orders of magnitude higher magnetic
field sensitivity than magnetic force microscopy.12 Provided the waveguide
can yield high collection efficiency (C � 0.3), a sensitivity better than 3
nT Hz−1/2 could be achieved using echo-based techniques. This surpasses
the sensitivity of Hall-bar25 or SQUID8 based microscopes by more than an
order of magnitude, with 10 times better spatial resolution. For example,
the magnetic field from a single proton is ∼ 3 nT at 10-nm separation,
which an NV nanocrystal magnetometer would be able to detect within
one second. The ultimate limits to miniaturization of such nanocrystals,
which are likely due to surface effects, are not yet well understood, but
experiments have already demonstrated control of single NV centers in sub
50-nm nanocrystals,27–29 as well as the use of such nanocrystals in scanning
probe setups.30

Further improvements can be obtained by using multiple pulses. The
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narrow bandwidth associated with such an approach can also be exploited
for a frequency selective measurement, ranging from tens of kHz up to MHz.
This will enable distinguishing different isotopes, due to their unique gyro-
magnetic ratios, and could improve the spatial resolution when used in com-
bination with a strong magnetic field gradient. Much longer coherence and
interrogation times should be possible by using isotopically pure diamond
with low concentrations of both 13C and nitrogen electron spin impurities.
The signal-to-noise ratio may also be increased by improving the measure-
ment readout efficiency. Near single-shot readout of an electronic spin in
diamond has been achieved with cryogenic cooling using resonant excita-
tion.26 Photon collection efficiency at room temperature can also be sub-
stantially improved using either conventional far-field optics or evanescent,
near-field coupling to optical waveguides.24 Finally, another way to improve
the magnetometer sensitivity is to use many sensing spins,16 where we can
take advantage of the relatively high achievable density of spins in the solid-
state (∼ 1017 cm−3) compared to atomic magnetometers(∼ 1013 cm−3).7

Further extensions could include the use of non-classical spin states, such
as squeezed states induced by the spin-spin coupling.

These considerations indicate that coherent control of electronic spins
in diamond can be used to create a magnetic field sensor with an unprece-
dented combination of sensitivity and spatial resolution in a small, robust
device. On a more general level, these ideas could apply to a variety of
paramagnetic systems or even qubits sensitive to other perturbations of
their environment. The vast range of potential applications for sensitive,
spatially resolved measurements warrants a re-examination of solid-state
quantum devices from the perspective of metrology.
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A key ingredient for a practical quantum repeater is a long memory coher-
ence time. We describe a quantum memory using the magnetically-insensitive
clock transition in atomic rubidium confined in a 1D optical lattice. We ob-
serve quantum lifetimes exceeding 6 milliseconds. We also demonstrate a dozen
independent quantum memory elements within a single cold sample, and de-
scribe matter-light entanglement generation involving arbitrary pairs of these
elements.

Keywords: Quantum memory; quantum repeater; matter-light entanglement.

1. Introduction

Quantum mechanics provides a mechanism for absolutely secure communi-
cation between remote parties, see for example Ref. 1. For distances greater
than about a 100 kilometers direct quantum communication via optical
fiber is difficult, due to fiber losses. To overcome this difficulty, interme-
diate storage of the quantum information along the transmission channel
using a quantum repeater protocol has been suggested.2 The optically thick
atomic ensemble has emerged as an attractive medium for quantum stor-
age, matter-light qubit entanglement generation and distribution.3 Efficient
quantum state transfer between ensemble-based qubits and single photons
can be achieved in free space by utilizing a very weak interaction at a single
photon/single atom level. The realization of coherent quantum state trans-
fer from a matter qubit to a photon qubit was achieved using cold rubidium
at Georgia Tech in 2004,4 followed by the first light-matter qubit conversion
and entanglement of remote atomic qubits in 2005.5 A scheme to achieve
long-distance quantum communication at the absorption minimum of
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optical fibers, employing atomic cascade transitions, has been proposed and
its critical elements experimentally verified.6 In order to boost communi-
cation rates under conditions of limited quantum memory time, a modified
quantum repeater based on dynamic allocation of quantum resources, mul-
tiplexed quantum repeater, has been proposed.7

Here we would like to report our recent progress on long-lived storage
and retrieval of single quantum excitations, including a two order of mag-
nitude increase in the quantum memory lifetime,8 and the realization of
multiple memory elements within a single cold atomic sample.

2. Long-lived quantum memory

Protocols for quantum communication are typically based on remote parties
sharing and storing an entangled quantum state. The generation of such
remote entanglement must necessarily be done locally and distributed by
light transmission over optical fiber links or through free space.16 For the
distribution of entanglement over a length L the characteristic timescale
for storage is the light travel time L/c, where c is the speed of light in the
medium. For L = 1000 km, L/c ≈ 5 ms for an optical fiber.

In recent advances involving atomic ensembles,4–6,8–15 the quantum
memory lifetime, was limited by residual magnetic fields, with the longest
measured time of 32 µs.8 To circumvent this limit one can use the ground-
state hyperfine coherence of the m = 0 Zeeman levels as the basis of quan-
tum storage. This so-called clock transition is only second-order sensitive
to external magnetic fields, leading to a memory coherence time limit

τ = [4π · 575[Hz/G2]B0B
′l]−1.

Under our experimental conditions, with bias magnetic field B0 ∼ 0.5 G,
gradient B′ � 30 mG/cm, and sample length l ∼ 1 mm, we find
τ � 100 ms.

Ballistic expansion of the freely falling gas provides a memory time limi-
tation which can be estimated from the time τ = Λ/(2πv) it takes an atomic
spin grating to dephase by atomic motion. For representative MOT param-
eters, grating wavelength Λ = 50 µm, atomic velocity v =

√
kBT/M �

8 cm/s for T = 70 µK, we find τ ∼ 100 µs. These estimates indicate that
in order to demonstrate quantum memory lifetimes of many milliseconds
we must suppress atomic motion and use a magnetically-insensitive atomic
coherence as the basis of the quantum memory.
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Fig. 1. Essential elements of the experimental set-up. Between 105 and 106 sub-Doppler
cooled 87Rb atoms are loaded into an optical lattice, and detection of the signal field
generated by Raman scattering of the write laser pulse heralds the presence of a write
spin wave excitation. A read/control field converts the surviving atomic excitation into
an idler field after a storage period Ts. The inset shows the atomic level scheme of 87Rb
with levels a and b the hyperfine components of the ground 5S1/2 level, and level c
a hyperfine component of the excited 5P1/2 level. The write laser excites the b ↔ c
transition, with Raman emission of the signal field on c → a. The read laser excites the
a ↔ c transition, with Raman emission of the idler field on c → b.

2.1. Description of the system

In order to suppress atomic motion, we load an atomic cloud of 87Rb into
a one-dimensional optical lattice, as shown in Fig. 1. The ground hyper-
fine levels a and b of 87Rb have angular momenta Fa = 1 and Fb = 2,
and the upper and lower clock states are written as |+〉 ≡ |b,m = 0〉 and
|−〉 ≡ |a,m = 0〉, respectively. If the atoms are prepared in the upper clock
state by optical pumping, the |+〉 and |−〉 states can be coupled by Raman
scattering of a weak linearly polarized write laser field into an orthogo-
nally polarized signal field detected in the near-forward direction. Ideally,
after a controllable storage period, the read pulse converts atomic spin ex-
citations into an idler field propagating along the quantization axis z, and
linearly polarized in the x -direction. Under these conditions the medium
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exhibits electromagnetically induced transparency with susceptibility for
x -polarized idler field controlled by the read laser intensity

χx(∆) = − 1
ωcb

n|κ|2∆
∆(∆ + iΓc/2) − 1

2 |Ωr|2
,

where ωcb is the transition frequency between levels c and b, ∆ and Γc are
the read laser detuning and spontaneous decay rate, Ωr is the read laser
Rabi frequency and

√
n|κ| is the collective Rabi frequency, where n is the

atomic density. The corresponding group velocity of the idler field is

vg = c
|Ωc|2

|Ωc|2 + n|κ|2 .

In order to maximize the retrieval efficiency, the signal and idler spatial
mode functions should be matched and the condition ki = kw − ks + kr

satisfied, where kw, ks, ki and kr are wavevectors for the write, signal, idler
and read fields, respectively.

The detection of the signal photon after a write pulse implies a momen-
tum change �(kw − ks) of the atoms (along the x′-axis). The excitation
amplitude for an atom at position r is proportional to e−i(kw−ks)·r. Since
the period of the lattice, 25 µm, is shorter than the spin grating wavelength
Λ � λ/θ ≈ 50 µm, determined by the angle θ ≈ 0.9◦ between the write
and signal fields of wavelength λ = 795 nm, optical confinement helps to
preserve the spin wave coherence by suppressing atomic motion along the
kw − ks direction.

2.2. Retrieval of single quantum excitations

We characterize how well the retrieved idler field compares to a single pho-
ton state by measuring the α-parameter of Grangier et al.,18 which is de-
fined by

α =
p1p123

p12p13
.

Here p1, p2, p3 are the photoelectric detection probabilities on the three de-
tectors, D1-3, respectively, Fig. 1. A field in a single-photon state incident
on a beamsplitter is either transmitted or reflected, and the joint photo-
electric detection probability vanishes, Fig. 2. The measured idler field is
gated by detection of the signal field by D1.

In Table 1 we give the measured values of α, demonstrating quantum
memory for storage times up to 6 ms. The value α = 0 corresponds to an
ideal, heralded single-photon state, whereas for classical fields α ≥ 1.
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Fig. 2. A single photon incident on a beamsplitter takes one of two paths leading to
anti-correlated photoelectron counting events at D2 and D3. This forms the basis of the
α-parameter measurement scheme.18

Table 1. Measured values of α and intrin-
sic efficiency ηint.

storage time, ms α ηint

0.0012 0.02 ± 0.01 0.25
1 0.12 ± 0.04 0.11
4 0.17 ± 0.07 0.05
6 0.10 ± 0.10 0.045

Table 2. Measured values of g
(2)
D and intrinsic

source efficiency εint.

protocol duration, ms g
(2)
D εint

4 0.06 ± 0.04 0.08
5 0 ± 0.06 0.06

An important, immediate application of this long quantum memory is
the realization of a deterministic single photon source based on quantum
measurement and feedback, as proposed in Ref. 8. As the protocol’s success
is based on long memory times, we are now able to significantly improve the
quality of the single-photon source. It is demonstrated by measuring sub-
Poissonian photoelectron statistics of the second-order coherence function
0 ≤ g

(2)
D < 1, which is defined by

g
(2)
D = p23/(p2p3).

The source efficiency, defined as the probability ε to detect a photoelec-
tric event per trial, is the second important figure of merit, ideally, g(2)

D = 0
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Fig. 3. Retrieval efficiency as a function of storage time for optically pumped atoms in
an optical lattice with depth U0 = 40 µK.

and ε = 1. The measured passive losses from the atomic sample to the
detector in the idler channel produce an efficiency factor of 0.25 ± 10%.
The measured values of g(2)

D and ε normalized by passive losses are given in
Table 2.2.

In Fig. 3 we show the behavior of the measured retrieval efficiency —
not normalized by passive losses — on the millisecond time-scale. The decay
time is consistent with atomic motion in the lattice potential accompanied
by differential light shifts of the clock states.17

3. Multiplexed quantum memory

The presence of multiple memory elements per node in a quantum repeater
allows dynamic reallocation of resources improving the rate of quantum
communication for short memory times.7 Here we describe such a multi-
plexed quantum node. Individual addressing of memory elements within
a single cold sample is achieved by means of 1D scanning with acoustic-
optical deflectors (AODs). This allows us to demonstrate matter-light en-
tanglement using an arbitrary pair of memory elements in the array.

3.1. Quantum memory array

Our experimental setup is illustrated in Fig. 4. Two AODs are used to
scan write and read beams, respectively. Each mode from the write AOD
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Fig. 4. Schematic illustration of the experimental setup for the multiplexed memory
array. The inset shows the relevant 85Rb energy levels.

is matched to the read AOD. Another two AODs are employed for the
collection of the signal and idler fields. The phase matching condition k(j)

w +
k(j)

r = k(j)
s + k(j)

i is satisfied at each memory element address j = 1 − 12.
A field-programmable gate array (FPGA) controls addressing of the

memory elements via a digital-to-analog converter. Sequential pulses gen-
erated by the control logic with different voltage levels are fed into a voltage-
controlled oscillator (VCO) which converts them into rf pulses with differ-
ent frequencies. After amplification these are directed into the write AOD,
which produces write pulses into a set of spatial modes. These pulses en-
able individual addressing of a localized sub-region of the atomic cloud that
forms a memory element.

Using a MOT, 85Rb atoms are prepared in the |5S1/2, F = 3〉 ground
level. The protocol begins when the atoms are released from the trap.
By electronic control the driving frequency of the write AOD is changed
and within 1 µs the deflector points to the desired memory element. A
300 ns optical pulse, red detuned from the |5S1/2, F = 3〉 → |5P1/2,

F = 3〉 transition by 10 MHz (we use an additional acousto-optical modu-
lator to compensate the frequency shift of the write AOD), is then sent to
the memory element. Synchronously the signal AOD directs the scattered
signal field from the memory element to the single photon detector. In this
way, a 12 pulse train scans the atomic array in temporal order with a time
interval of 1.3 µs. The detection of the signal field in a specific gate interval
of 250 ns indicates the origin of the signal field.
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3.2. Matter-light entanglement with a quantum memory

array

Fig. 5. Measured photoelectric coincidences for elements j=5 and 8 as a function of φs

for φi = 0, squares and φi = π/4, circles. The solid curves are sinusoidal fits.

The AODs can be used as dynamic beam splitters, allowing to realize
matter qubits based on pairs of elements of the memory array.

The write AOD aligned in +1 Bragg diffraction order is provided
with two different rf frequencies, fj and fk (fj > fk), to generate two
spatially distinct pulses. These two write pulses, red detuned from the
|5S1/2, F = 3〉 → |5P1/2, F = 3〉 transition by -10 MHz and -10+(fj-fk)
MHz, respectively, illuminate two different elements simultaneously. The
signal fields are collected by the signal AOD, which is aligned and modu-
lated, at frequencies fj and fk, in order to combine the signal fields into a
common spatial mode with a relative phase φs, coupled to the optical fiber
for detection.

After a 150 ns delay, two 200 ns long read pulses generated by the read
AOD aligned in +1 Bragg order with frequencies fj and fk are sent through
the two elements to convert the atomic excitations to the idler fields. The
idler AOD, driven at at frequencies fj and fk, combines the idler frequency
components into a single spatial mode, with a relative phase φi.

The rf phase shifters on the signal and idler AODs allow to vary φs

and φi. The photoelectric coincidence counts of signal and idler fields as a
function of these phases is shown in Fig. 5. We have measured violation of
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Bell’s inequality (|S| ≤ 2), with Sexp = 2.38 ± 0.03. Table 3.2 shows the
interference fringe visibility V for different combinations of elements.

Table 3. Measured inter-
ference visibility with differ-
ent combinations of quan-
tum memory elements.

j k fringe visibility

5 8 88 ± 1%
7 8 86 ± 2%
7 10 79 ± 1%
5 10 81 ± 2%
1 12 73 ± 3%

4. Conclusion

We have observed a quantum memory with a lifetime in excess of six mil-
liseconds and used it to implement a high-quality deterministic single pho-
ton source. We have also demonstrated matter-light entanglement with a
quantum memory array in a single cold atomic sample.

This work was supported by the National Science Foundation, A. P.
Sloan Foundation, Office of Naval Research, and the Army Research Office
through the Georgia Tech Quantum Institute.
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We describe Cavity QED experiments in which a beam of circular Rydberg
atoms is used to manipulate and probe non-destructively microwave photons
trapped in a very high-Q superconducting cavity. We realize an ideal quantum
non-demolition (QND) measurement of light, observe the radiation quantum
jumps due to cavity relaxation and prepare non-classical fields such as Fock and
Schrödinger cat states. Combining QND photon counting with a homodyne
mixing method, we reconstruct the Wigner functions of these non-classical
states and, by taking snapshots of these functions at increasing times, obtain
movies of the decoherence process in the cavity.

Keywords: Cavity QED, QND measurements, Zeno effect, quantum state
reconstruction

1. A weak dissipation photon trap to look at light in a
new way

In atom or ion trap experiments, small particle ensembles held in a local-
ized region of space are studied and probed by light beams. A wide range
of experiments has been realized on these systems, demonstrating vari-
ous kinds of multi-atom state engineering and tomographic reconstruction
processes.1 We have realized the opposite situation in which microwave
quanta confined in a cavity are manipulated and interrogated by an atomic
beam. By extracting information from the trapped field, we can count pho-
tons without destroying them, follow single realizations of the field exhibit-
ing photon number quantum jumps, engineer various non-classical states
of light, fully reconstruct them and observe how these states evolve under
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the effect of decoherence. In these experiments, the radiation field becomes
“an object of investigation”, which can be tailored and repeatedly looked
upon, as is done with material particles in ion trap studies.

To perform these experiments, we use circular Rydberg atoms, very sen-
sitive to microwave radiation, which cross the cavity one at a time.2 The
main challenge has been to assemble a cavity storing the field without losing
a single photon while hundreds of atoms interact with it. We have realized
such a cavity,3 made of two mirrors in a Fabry Perot configuration, between
which light bounces more than a billion time before decaying (Figure 1).
The field lifetime, Tc = 0.13 s, is three to four orders of magnitude larger
than the time each atom spends in the cavity. This exceptional long damp-
ing time has been obtained with superconducting-Niobium-coated copper
mirrors machined to a very high precision. The combination of extremely
small surface roughness minimizing scattering losses with the near-zero re-
sistance of the superconducting layer yields an unprecedented finesse of
4.2 109, about four orders of magnitude larger than that of the best optical
Fabry Perot resonators.

Fig. 1. The Fabry Perot superconducting cavity trapping microwave photons (mirror
diameter: 5 cm, the mirror distance – 2.7 cm in the real set-up – is here exaggerated for
clarity).
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2. Quantum non-demolition photon counting

Usual photon counting methods are generally destructive. Light quanta are
absorbed by photosensitive materials and transformed into electrical sig-
nals, so that the photons disappear while being counted. The principle of
non-destructive light intensity detection (of the quantum non-demolition or
QND type) has been proposed in the 1970s and demonstrated in the 1990s
with signal laser beams propagating in transparent dispersive media whose
refractive index was changed by the light irradiation.4 This change affects
the phase of a probe beam co-propagating with the signal in the medium
and an interferometric detection of this phase change is used to measure in
a non-destructive way the intensity of the signal beam. These experiments,
relying on non-linear optical processes, require relatively intense fields and
do not have the sensitivity of single photon detection. In our Cavity QED
experiment, we implement a different kind of QND method, proposed by
our group in 1990,5 which uses as probes circular Rydberg atoms exhibiting
a transition between two nearby excited states e and g that is slightly off-
resonant with the field to be measured. (e and g are the circular Rydberg
states with principal quantum numbers 51 and 50 respectively.) We take
advantage of the extremely large coupling of Rydberg atoms to microwave
radiation in order to induce on this transition light shifts sensitive to sin-
gle photons. Measuring the frequency of the atomic transition amounts
to counting the photons without destroying them, since the non-resonant
atoms cannot absorb radiation.

The experimental set-up is a Ramsey interferometer with two auxiliary
cavities R1 and R2 between which the high-Q cavity C containing the
field to be measured is inserted (Figure 2). In short, it is an atomic clock
with trapped photons inside. The atoms, which cross the apparatus one by
one, are prepared in a symmetric superposition of e and g by a microwave
pulse in R1 and the evolution of this superposition after it has crossed C is
analysed with a second pulse applied in R2. The final detection of the atoms
in e or g by the field ionization detectorD provides the information required
to determine the atomic clock’s phase. This phase is affected by the field in
C and the resulting delay of the clock allows us to count non-destructively
the light quanta.

We have started by studying the simple situation where the cavity stores
a weak thermal field, fluctuating between 0 and 1 photon.6 The light-shift is
adjusted to produce, for a single photon, a π-phase shift of the atomic state
superposition. The QND measurement then yields a telegraphic signal. A
time interval during which hundreds of atoms are mostly detected in level
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Fig. 2. Scheme of experimental set-up. Atoms are prepared in the circular Rydberg state
g in box B. They are brought to the symmetric superposition of e and g by a microwave
pulse applied in the auxiliary microwave cavity R1, then cross the superconducting cavity
C which stores the photons to be counted. They are finally subjected to an analyzing
microwave pulse in cavity R2, before being counted by the detector D. The classical
source S feeds the Ramsey cavities R1 and R2.

g, signalling that the cavity is empty, suddenly switches to a long sequence
of atoms mostly detected in e, signalling that one photon has appeared
between the mirrors. The sequences reverts back to level g when this photon
subsequently disappears (Figure 3). These signals reveal for the first time
the quantum jumps of light associated to the gain or the loss of a single
light quantum exchanged with the cavity mirrors.

The method was then generalized to deal with stored fields containing
on average several photons.7 The field is produced by a coherent microwave
source coupled to the cavity mode by diffraction on the mirror edges (source
not shown in Figure 2). The field prepared in this way exhibits a poissonian
statistics of its photon number. Each atom provides a partial information
about this number. The phase shift per photon is adjusted to a fraction
2π/(nm +1) where nm is the maximum number of photons to be measured.
We have considered fields with up to nm = 7 photons. After about a hun-
dred atoms has been detected, there is enough information to pin down
precisely the atomic state superposition phase and hence the field intensity.
The experiment realizes in this way a progressive projection of the initial
coherent state onto a Fock state with a well-defined photon number. If the
experiment is resumed under the same conditions after preparing anew the
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Fig. 3. QND detection of one photon. (a) The atoms mostly found in g (lower bars)
signal that the cavity is in vacuum (0 photon) while the atoms detected mostly in e
(upper bars) signal that the cavity stores 1 photon. (b) Photon number determined by
a majority vote involving 8 consecutive atomic detections. The quantum jumps from 0
to 1 and back are clearly visible. The photon detected on this trace survives about 0.5 s,
i.e. four cavity damping times. Reproduced with permission of MacMillan publishers ltd:
Nature 446, 297 (2007).

same initial state, we again obtain a Fock state, generally different from
the previous one, according to a random process. By accumulating enough
statistics on a large number of realizations, we reconstruct the photon num-
ber distribution of the initially prepared state. This experiment verifies all
the postulates of a quantum measurement of light. It also provides a prac-
tical way of generating Fock states with large photon numbers. Such states
are very hard to generate by other means.

Once the field has been projected onto a Fock state, we can go on
measuring its energy with a longer atomic sequence and observe in this way
the relaxing field in the cavity. We then observe a staircase-like evolution
of the field energy. It reveals the random times at which the field, evolving
irreversibly towards vacuum, jumps from one photon number to the next
(Figure 4). These signals provide a quantum picture of the field evolution
quite different from that given by classical physics which predicts a smooth
exponential decay. This continuous behaviour is recovered by averaging a
large number of staircase like signals.

The QND recording of the photon number can have strange conse-
quences if one tries to observe continuously the evolution of a field de-
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Fig. 4. Evolution of the mean photon number in the cavity along some realizations
of the field. The traces (a) correspond to an initial projection of the field in the Fock
state n = 5 (left) and n = 7 (right) respectively. The inset expands the time scale and
shows that a quantum jump requires several milliseconds to be detected (time interval
corresponding to the crossing of a few atoms). The traces (b) exhibit four examples of
realizations corresponding to the initial projection of the field in the Fock state n = 4.
Reproduced with permission of MacMillan publishers ltd: Nature 448, 889 (2007).

scribed by a unitary coherent process. In this case, the mere observation of
the photon number prevents the field from evolving. This is the quantum
Zeno effect.8 We have demonstrated it in an experiment in which we have
tried to build a coherent field in the cavity by coupling it to a periodic
sequence of radiation pulses produced by a classical source.9 If the field is
not measured between the pulses, its amplitude increases proportionally to
the number of pulses and the average photon number starts to build up as
the square of the elapsed time. If the field is instead measured in a QND
way between the pulses, it is repeatedly projected back onto vacuum and
the field growth is practically frozen. This experiment demonstrates for the
first time the Zeno effect on an harmonic oscillator (here a field mode). It
can also be interpreted as a manifestation of the backaction of the QND
measurement of the field intensity on its phase. As the phase of the field in-
jected by each pulse is periodically scrambled by the QND measurement, its
complex amplitude undergoes a two dimensional Brownian motion which
keeps the field near the phase space origin.
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3. Reconstructing the quantum state of a non-classical field
and observing its decoherence

The QND measurement of the field intensity allows us, by repeating the
procedure on a large sample of realizations, to reconstruct the photon num-
ber distribution of the initial field. This quantity provides only a partial
information about the field’s quantum state. It does not tell us anything
about the coherences between Fock states. This additional information can
however be obtained by a homodyne mixing method. We translate the field
in its phase space (by mixing it with a reference field of known ampli-
tude and phase) and we subsequently measure in a QND way the photon
number distribution of the translated field. By resuming the procedure on
many realizations, with translations corresponding to various amplitudes
and phases, we obtain enough information to reconstruct completely the
state of the field. It is equivalently represented either by a density operator
or by a Wigner function.10 The latter is a real distribution in the phase
plane which looks like a three dimension geographical map. Each of its
points, defined by its distance to the plane origin and its direction, is as-
sociated to a value of the light field amplitude and phase. Usual radiation
(emitted by heated bodies, by lasers or by a combination of such sources)
is quite generally described by a landscape of positive peaks centred at the
points corresponding to the most probable values of the field.

Non-classical fields have much less intuitive features. Their Wigner func-
tions present oscillations exhibiting negative values in some areas of the
phase plane. By measuring the field with QND Rydberg atom probes, we
have reconstructed the maps of these strange states.11 Fields with well-
defined photon numbers have Wigner functions presenting concentric oscil-
lations. So called Schrödinger cat states, which are quantum superpositions
of classical states with different phases, are described by Wigner functions
with two positive peaks corresponding to their classical components and,
in between, a landscape of alternating positive ridges and negative valleys.
We have initially prepared these states in the cavity (using a first atom dis-
persively interacting with a coherent field12) and then reconstructed these
states at increasing times, performing field translations and using subse-
quent probe atoms serving as QND probes of the translated field inten-
sity. We have obtained in this way snapshots of Schrödinger cat Wigner
functions and observed the progressive vanishing of their negative features
(Figure 5). This experiment reveals the fragility of the non-classical states
which rapidly evolve under the effect of decoherence into classical states
represented by strictly positive Wigner functions. Note that non-classical
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Fig. 5. Reconstructed Wigner function of a Schrödinger cat state at four successive
times (3.3, 15.0, 32.2 and 46.3 ms after state preparation). Initially (lower left), the
Wigner map exhibits two positive peaks corresponding to the cat’s classical components.
Between them, an oscillatory interference structure reveals the non-classical nature of the
cat state. The interference pattern progressively vanishes as time goes. Finally (upper
right) only the positive classical components remain.

field states with Wigner functions having features similar to those of the
Schrödinger cat states described here have been recently reconstructed
on propagating optical fields.13 Decoherence was not observed in this
experiment.

Being able to reconstruct in details the dynamics of the phenomenon
that is at the heart of the quantum to classical boundary opens the way
to the manipulation and control of decoherence. Procedures of quantum-
feedback14 become possible, in which atoms will be used to maintain in
real time the non-classical features of a light field, and thus preserve the
quantum properties which are essential for the realization of quantum in-
formation operations with light.
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We generate input states with reduced quantum uncertainty (spin-squeezed
states) for a hyperfine atomic clock by collectively coupling an ensemble of
laser-cooled and trapped 87Rb atoms to an optical resonator. A quantum non-
demolition measurement of the population difference between the two clock
states with far-detuned light produces an entangled state whose projection
noise is reduced by as much as 9.4(8) dB below the standard quantum limit
(SQL) for uncorrelated atoms. When the observed decoherence is taken into
account, we attain 4.2(8) dB of spin squeezing, confirming entanglement, and
3.2(8) dB of improvement in clock precision over the SQL. The method holds
promise for improving the performance of optical-frequency clocks.

Keywords: Spin squeezing; quantum noise; atomic clock.

1. Introduction: Projection Noise and the Standard
Quantum Limit

In an atomic clock1–3 or an atom interferometer,4–6 the energy difference
between two states is measured as a quantum mechanical phase accumu-
lated in a given time, and the result read out as a population difference
between the two states. An elegant and insightful description of the signal
and noise7,8 uses the angular-momentum formalism, where each individual
atom i is formally associated with a spin si = 1

2 system, while the ensemble
is described by the total spin vector S =

∑
i si. Symmetric states of the

ensemble of N0 particles are then characterized by an ensemble spin quan-
tum number S given by S = 1

2N0, while non-symmetric states correspond
to a smaller quantum number, S < 1

2N0. An arbitrary symmetric state of
N0 uncorrelated particles (coherent spin state, or CSS) is described by an
ensemble spin vector with maximal projection S1 = S along some direction
e1 (see Fig. 1). Note that the length of the spin vector,

√〈S2〉 =
√
S(S + 1)
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〈S〉 = Se1

Fig. 1. Illustration of a coherent spin state (CSS). For N0 atoms, the state is represented
by a circle of radius

√
S on a Bloch sphere of radius

√
S(S + 1), where S = N0/2.

(in units of �) is larger than S, due to the fact that quantum mechanics
imposes non-vanishing expectation values 〈S2

2 〉, 〈S2
3〉 for the transverse spin

components S2, S3. Graphically, the CSS thus corresponds to the circular
intersection of a sphere of radius

√
S(S + 1) with the plane perpendicu-

lar to e1 at distance S from the origin. The finite radius
√
S of the circle

represents the angular momentum uncertainties ∆S2 = ∆S3 =
√
S/2. The

possible measurement outcomes along any direction correspond to planes
slicing the sphere at positions M = −S,−S+ 1, . . . S relative to the origin.
For a CSS in the xy equatorial plane, which is the final state of a Ramsey
clock sequence, the binomial distribution of possible M = Sz values as-
sociated with the statistically independent measurement outcomes for the
individual particles constitutes a fundamental source of noise that limits
the precision of the measurement7–9 at the standard quantum limit (SQL).

The SQL is the fundamental limit for measurements with ensembles
of uncorrelated particles. However, quantum mechanics allows one to re-
distribute the quantum noise between different degrees of freedom by en-
tangling the atoms in the ensemble. In Fig. 2(c) we represent the state of
the system by a quasiprobability distribution of the noncommuting angular
momentum components. The projection noise can be suppressed by reduc-
ing the quantum uncertainty in the variable of interest Sz at the expense
of another variable, e.g. Sy, that is not directly affecting the experiment
precision;7,8 this corresponds to squeezing the circular uncertainty region
of the CSS into an elliptical one. The redistribution of quantum noise for
a system with a finite number of discrete states is referred to as “spin
squeezing”.10 A state with reduced quantum uncertainty Sz is called
“number squeezed”. A state along x with reduced Sy is called “phase
squeezed” (Fig. 2(c) iii, iv). The two states can be converted into each
other by a common rotation of all individual spins.



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Spin squeezing on an atomic-clock transition 109

Note that to demonstrate spin squeezing, it is necessary not only to mea-
sure the spin noise along some direction, but also to determine the length
of the spin vector S, since processes that differently affect the individual
spins si reduce the ensemble spin vector S =

∑
si. The ensemble spin can

be measured by determining the visibility of Rabi or Ramsey oscillations.7,8

For an ensemble spin vector S oriented along the x axis, a state is number
squeezed or phase squeezed10–13 if (∆Sz)

2
< |〈Sx〉|/2 or (∆Sy)

2
< |〈Sx〉|/2,

respectively.
Spin squeezing requires a Hamiltonian that is at least quadratic in the

spin components, or equivalently, some form of interaction between the par-
ticles. While it is possible to use interatomic collisions in a Bose-Einstein
condensate (BEC) for that purpose,14,15 these density-dependent interac-
tions are difficult to control in the setting of a precision measurement. An
alternative proposal is to use the collective interaction of an atomic en-
semble with a mode of an electromagnetic field.16 In this approach, the
ensemble interacts with a far-detuned light field, resulting in an entangle-
ment between the ensemble spin Sz and the phase or amplitude of the
light field. A subsequent near-quantum-limited measurement of the light
results in a conditionally spin-squeezed state of the ensemble. The word
“conditionally” signifies here that the particular spin-squeezed state that
is created depends on the outcome of the measurement on the light field.
If one were to ignore (trace over) the state of the light, no entanglement
would be evident in the atomic state.

Nevertheless, even conditionally spin-squeezed input states can improve
the sensitivity of an atomic clock,17 since one can use the outcome of the
measurement of the light field to determine the clock phase with improved
precision compared to the SQL. A perhaps even more attractive possibility
is to use the information gained during the measurement of the light field to
steer the atomic quantum state to a desired location,12,13,18 thus converting
the conditional into unconditional spin squeezing.

In atomic Bose-Einstein condensates, interaction-induced spin-noise re-
duction below the projection noise limit has been inferred from an increased
noise in another spin component,19 and from a lengthening in coherence
time in a system with atom-number-dependent mean-field energy.15 In
room-temperature vapor, spin squeezing20 has been achieved by absorp-
tion of squeezed light,21 and two-mode squeezing has been attained by a
quantum non-demolition (QND) measurement on a light beam that has
interacted with two ensembles.22 A QND measurement16 has been used to
reduce the noise of a rotating spin in a room-temperature vapor below the
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projection noise limit, (∆Sz)
2 < S0/2, but the length of the spin vector

|〈Sx〉| was not measured.23 The papers by Geremia et al. reporting spin
squeezing for atoms with s > 1

2 using a similar QND approach for cold
atoms were recently retracted.24 Light-induced squeezing within individual
atoms of large spin s = 3, without squeezing the ensemble spin, has recently
been demonstrated.25

2. Spin Squeezing by Optical Quantum
Non-Demolition Measurement

Non-Polarizing
Splitter

Interference
Filter

Probe Laser 

Trap Laser
Photodiode

Cavity Mirrors

52P3/2

52S1/2

δ23

6.835 GHz
Clock
Transition

|F = 2, m = 0〉

|F = 1, m = 0〉

87Rb D2 line

Probe
Laser
and

Cavity
Resonance

a) b)

c)
i) ii) iii) iv)

Phase-SqueezedNumber-SqueezedCoherent
Superposition

Initial
(Pumped)

Fig. 2. Measurement-induced pseudo-spin squeezing on an atomic clock tran-
sition. (a) Setup. A laser-cooled ensemble of 87Rb atoms is loaded into a far-detuned
optical dipole trap inside an optical resonator. A population difference N between hy-
perfine clock states |1〉 , |2〉 produces a resonator frequency shift that is measured with
a probe laser. (b) Atomic level structure. The resonator is tuned such that atoms
in the two clock states produce equal and opposite resonator frequency shifts via the
state-dependent atomic index of refraction. (c) Preparing a squeezed input state
for an atomic clock. A number-squeezed state (iii) can be generated from a CSS along
x (ii) by measurement of N . It can then be rotated by a microwave pulse into a phase-
squeezed state (iv), allowing a more precise determination of the phase acquired in the
free-evolution time of the atomic clock.

To prepare a spin-squeezed input state to an atomic clock, we adapt the
proposal by Kuzmich, Bigelow, and Mandel16 for a QND measurement of
Sz with far off-resonant light.22,23 By using the interaction of an optically
thick ensemble with a single electromagnetic mode, the number of atoms in
each of the clock states can be established beyond the projection noise limit
without substantially reducing the system’s coherence. For an optical depth
exceeding unity, an accurate measurement of the atomic index of refraction,
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which can be viewed as a homodyne measurement of the forward-scattered
field, with the directly transmitted field acting as the local oscillator, can be
performed faster than the scattering of photons into free space reveals the
states of the individual atoms and destroys the coherence. The attainable
squeezing, in terms of variances, improves as the square root of the optical
depth, which is why we use an optical resonator whose finesse F = 5600
increases the optical depth by a factor of F/π ≈ 1800.

An ensemble of up to 5 × 104 laser-cooled 87Rb atoms is trapped in a
far-detuned optical dipole trap inside the optical resonator (Fig. 2). One
resonator mode is tuned such that the state-dependent atomic index of
refraction produces a mode frequency shift ω that is proportional to the
population difference N = N2 − N1 = 2Sz between the hyperfine clock
states |1〉 =

∣∣52S1/2, F = 1,mF = 0
〉

and |2〉 =
∣∣52S1/2, F = 2,mF = 0

〉
.

The frequency shift is determined from our accurately measured resonator
parameters as dω/dN = 48(2) Hz/atom. This value is confirmed experi-
mentally by measurement of the dual effect, namely the energy shift of the
atomic levels by the intracavity light, that results in a phase shift between
the clock levels of φ12 = 250(20) µrad per probe photon sent through the
resonator. Given dω/dN , the average spin 〈Sz〉 and variance (δSz)

2 are cal-
culated from typically 50 repeated transmission measurements of a probe
pulse tuned to the slope of the resonator mode. Light pulses of duration
T = 50 µs, much longer than the resonator decay time of τ = κ−1 = 158 ns,
containing 105 to 106 photons traverse the atom-resonator system and are
detected with an overall quantum efficiency of Qe = 0.43(4). A frequency
stabilization system for probe laser and resonator ensures that the probe
transmission noise is close to the photocurrent shot-noise limit. One of the
experimental challenges is to stabilize the resonator length sufficiently well
to resolve the mode shift due to atomic projection noise, typically a few
kHz out of a 1 MHz resonator linewidth, while using light levels that lead
only to a modest decoherence between the clock states.

We verify experimentally the projection noise level for the coherent spin
state (CSS) of an uncorrelated ensemble7,8,23 by measuring probe transmis-
sion for p = 5×105 photons transmitted on average through the resonator.
To reduce the effect of trap loading fluctuations, we perform a CSS prepa-
ration and measurement sequence (consisting of optical pumping into state
|1〉, π/2 pulse, and measurement of Sz) twice with the same loaded atoms
and determine the variance (δSz)

2 between the two measurements. As a
function of (effective) atom number N0, projection noise is characterized
by a variance (δSz)

2 ∝ N0, while for technical noise (δSz)
2 ∝ N2

0 . (In
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Fig. 3. Projection noise limit and spin noise reduction. The measured spin
noise for an uncorrelated state (CSS, open circles) agrees with the theoretical predic-
tion (∆Sz)

2 = S0/2, with negligible technical noise (solid and dashed lines). Our mea-
surement of Sz at photon number p = 5 × 105 has an uncertainty (δSz)

2 (solid dia-
monds) substantially below the SQL. Inset: Dependence of spin measurement variance
(δSz)

2 = (δN)2 /4 on probe photon number p for N0 = 3× 104. With increasing photon
number, the measurement uncertainty (solid diamonds) drops below the projection noise
level (∆Sz)

2
CSS = aS0/2 (dashed line), while the variance measured for independently

prepared CSSs (open circles) approaches (∆Sz)
2
CSS. Also shown is the technical noise

without atoms, expressed as an equivalent spin noise (open squares).

a standing-wave resonator with spatially-modulated atom-cavity coupling,
we define the effective atom number N0 = 4

3Ntot as the ideal projection
noise variance for Ntot atoms evenly distributed along the cavity axis.)
Unlike other experiments,20,22,23 we have a reliable and accurate absolute
calibration of the atom number via the resonator shift and can not only
test the linear dependence (δSz)

2 = aN0 but also compare the slope a

to a calculated value that takes into account the spatially inhomogeneous
coupling between the trapped atoms and the probe light. Fig. 3 shows the
dependence of variance (δN)2 = 4 (δSz)

2 on atom number N0 = 2S0 (open
circles). The fitted slope af = 1.1(1) is slightly higher than the calculated
value ac = 0.93(1) due to technical noise at large atom number. If we
fix a = ac = 0.93 and fit this quadratic technical noise, we find a small
contribution (δSz)

2
tech = 6(4) × 10−6N2

0 � N0 (dashed curve in Fig. 3).
This confirms that we have a system dominated by projection noise, and
quantitatively establishes the SQL.

We prepare a state with conditionally reduced noise (∆Sz)
2 simply by

measuring Sz for a CSS along x with a photon number sufficiently large to
resolve Sz beyond the CSS variance (∆Sz)

2
CSS = S0/2. This measurement
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with variance (δSz)
2 prepares a state with a random but known value of

Sz whose quantum uncertainty is (∆Sz)
2 = (∆Sz)

2
CSS (δSz)

2
/((∆Sz)

2
CSS +

(δSz)
2). (Throughout this report, δSz refers to a measured standard de-

viation, while ∆Sz denotes a quantum uncertainty for the pure or mixed
state that we are preparing. ∆Sz differs from δSz because it includes the
prior knowledge that the state is initially prepared as a coherent state
along x. The distinction has little effect for strong squeezing, but for weak
squeezing ensures that the initial quantum uncertainty is taken into ac-
count correctly.26) The faithfulness of the state preparation is verified with
a second measurement, and we plot the variance of the two measurements
(δN)2 = 4 (δSz)

2 vs. atom number N0 in Fig. 3 (solid diamonds). While at
low atom number the measurement noise exceeds the SQL due to photon
shot noise and some technical noise (dash-dotted line in Fig. 3), at higher
atom number N0 = 3×104 we achieve a 9.4(8) dB suppression of spin noise
below the SQL.

The inset to Fig. 3 shows (δN)2 vs. average transmitted photon number
p at fixed N0 = 3 × 104 for the CSS as well as for the reduced-uncertainty
state. At low p, photon shot noise prevents observation of the spin projection
noise level (dashed line). For large p the observed noise for the CSS (open
circles) reaches a plateau that corresponds to spin projection noise, while
the squeezing measurement localizes the value of Sz to better than the
projection noise (solid diamonds). For photon numbers p ≤ 5 × 105 the
squeezing measurement is close to the technical noise without atoms (open
squares).

Having established that we can prepare states with spin noise ∆Sz be-
low the projection limit, we need to verify whether the system remains
sufficiently coherent to guarantee entanglement. The prepared state is
spin squeezed, and thereby entangled,10 if ζKU = 2 (∆Sz)

2 /(a|〈S̃〉|) < 1,
where S̃ is the ensemble spin in the xy-plane.10 Fig. 4 shows, as a func-
tion of photon number in the preparation pulse, the normalized spin-
noise (∆Sz)

2
/ (∆Sz)

2
CSS (open diamonds), and the measured clock contrast

C = |〈S̃〉|/S0 (open squares). Shown also is the squeezing parameter ζKU

obtained by dividing the observed spin-noise reduction by C, demonstrat-
ing that we have achieved 4.2(8) dB of spin squeezing for p = 3 × 105.
We emphasize that in this analysis we use the full observed noise, includ-
ing photon shot noise and all technical noise, and all contrast reduction,
including contrast loss due to the resonator locking light (evident as finite
contrast Cin = 0.7 for no probe pulse (p = 0) in Fig. 4). We find that Cin can
be improved compared to Fig. 4 by choosing a larger detuning from atomic
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Fig. 4. Spin noise reduction, loss of contrast, and spin squeezing. The reduction
of normalized spin noise (∆Sz)

2 / (∆Sz)
2
CSS (open diamonds and dashed curve) below

unity is accompanied by a loss of coherence observable as a reduced contrast C (open
squares and dotted curve) in a Ramsey clock sequence. From these two measurements, we
can deduce two squeezing parameters (see text), ζKU = 2 (∆Sz)

2 /(a|〈S̃〉|) (solid circles
and dash-dotted curve), which characterizes the entanglement of the squeezed state, and
ζW = 2 (∆Sz)

2 Sin/(a|〈S̃〉|2) (solid triangles and solid curve), which characterizes the
squeezing-induced improvement in clock performance.

resonance for the lock light. (In Fig. 4 that detuning is ∼ 14GHz.) The con-
trast reduction due to the probe light is probably due to a motion-induced
fluctuation of the differential light shift between the clock states, and can
be reduced by cooling the atoms further. The fundamental lower limit for
contrast loss, set by the scattering of photons into free space, should allow
the squeezing parameter ζKU to approach the 9 dB spin noise reduction
observed at our highest probe photon numbers p > 1 × 106. If technical
noise can be reduced further, the fundamental limit associated with scat-
tering is set by the optical depth OD of the sample27 and for our present
parameters (OD = 5 × 103) amounts to ∼ 18 dB of spin squeezing.

The usefulness of the state for precision measurements is quantified
by the more stringent parameter7,8 ζW = 2 (∆Sz)

2
Sin/(a|〈S̃〉|2) < 1. This

expression is easily understood as a reduction of the squared noise-to-signal
ratio (∆Sz)

2
/|〈S̃〉|2 relative to its value in the unsqueezed coherent state

a/(2Sin). For our system, the ensemble without squeezing has Sin = S0Cin,
yielding ζW = ζKUCin/C. This parameter, also plotted in Fig. 4, shows an
improvement in clock precision of 3.2(8) dB.
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3. Outlook

We have verified that the prepared number-squeezed state can be converted
into a phase-squeezed state by a π/2 microwave pulse about 〈S〉, and used
as an input state to a Ramsey type atomic clock. Note that the spin vector
precesses through many revolutions in a typical atomic clock. Therefore in
an optical-transition atomic-ensemble clock,2,3 fractional frequency accura-
cies of 10−16 can be achieved with fairly modest absolute phase accuracies2

of ∆φ ∼ 10−2, which can readily be improved by the squeezing technique
investigated here. It should also be possible to apply this squeezing tech-
nique to atom interferometers6 and other precision experiments with atomic
ensembles. We believe that most of the technical limitations in the current
experiment, such as remaining technical transmission noise due to imperfect
laser-resonator frequency stabilization, and contrast loss due to spatially in-
homogeneous light shifts, can be overcome in the near future, allowing for
squeezing near the fundamental limit set by the sample’s optical depth.
Since even the latter can be improved by simply loading more atoms into
the trap, we believe that 15 to 20 dB of spin squeezing should not represent
an unrealistic goal for the near future.
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The group of E. Polzik has independently and simultaneously achieved
results28 similar to ours29 in a Mach-Zehnder interferometer. In this meet-
ing, M. Oberthaler and coworkers report spin squeezing in a Bose-Einstein
condensate by atomic interactions in a multiple-well potential.30
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In many experiments, isolated atoms and ions have been inserted into high-
finesse optical resonators for fundamental studies of quantum optics and quan-
tum information. Here, we introduce another application of such a system, as
the realization of cavity optomechanics where the collective motion of an atomic
ensemble serves the role of a moveable optical element in an optical resonator.
Compared with other optomechanical systems, such as those incorporating
nanofabricated cantilevers or the large cavity mirrors of gravitational obser-
vatories, our cold-atom realization offers direct access to the quantum regime.
We describe experimental investigations of optomechanical effects, such as the
bistability of collective atomic motion and the first quantification of measure-
ment backaction for a macroscopic object, and discuss future directions for this
nascent field.

Keywords: Quantum micro-mechanics; ultracold atoms; optomechanical
systems

1. Introduction

Cavity opto-mechanics describes a paradigmatic system for quantum
metrology: a massive object with mechanical degrees of freedom is coupled
to and measured by a bosonic field. Interest in this generic system is moti-
vated by several considerations. For one, the system allows one to explore
and address basic questions about quantum limits to measurement. In this
context, quantum limits to quadrature specific and non-specific measure-
ments, both for those performed directly on the mechanical object and also
those performed through the mediation of an amplifier have been derived.1
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Second, as a detectors of weak forces, cavity opto-mechanical systems in the
quantum regime may yield improvements in applications ranging from the
nanoscale (e.g. for atomic or magnetic force microscopies) to the macroscale
(e.g. in ground- or space-based gravity wave observatories). Finally, such
systems, constructed with ever-larger mechanical objects, may allow one
to test the validity of quantum mechanics for massive macroscopic objects.
Striking developments in this field were presented at ICAP 2008 by Harris
and Kippenberg.

Our contribution to this developing field is the realization that a cav-
ity opto-mechanical system can be constructed using a large gas of ultra-
cold atoms as the mechanical object. Having developed an apparatus that
allows quantum gases to be trapped within the optical mode of a high-
finesse Fabry-Perot optical resonator, we are now able to investigate basic
properties of opto-mechanical systems. Several of these investigations are
described below. The atoms-based mechanical oscillator may be considered
small by some, with a mass (� 10−17 g) lying geometrically halfway between
the single-atom limit explored at the quantum regime in ion and atom traps
(10−22 g) [2,3, for example], and the small (� 10−12 g) nanofabricated sys-
tems now approaching quantum limits.4,5 Nevertheless, our system offers
the advantages of immediate access to the quantum mechanical regime, of
the ab initio theoretical basis derived directly from quantum optics and
atomic physics, and of the tunability and amenability to broad new prob-
ing methods that are standard in ultracold atomic physics. Our motivation
for probing cavity opto-mechanics with our setup is not just to poach the
outstanding milestones of this field (e.g. reaching the motional ground state
or observing measurement backaction and quantum fluctuations of radia-
tion pressure with a macroscopic object6). Rather, we hope to contribute to
the development of macroscopic quantum devices by clarifying experimen-
tal requirements and the role of and limits to technical noise, developing
optimal approaches to signal analysis and system control, exploring the
operation and uses of multi-mode quantum devices, and defining different
physical regimes for such systems. Also, our opto-mechanical system may
have direct application as part of an atom-based precision (perhaps inter-
ferometric) sensor.

2. Collective modes of an intracavity atomic ensemble

The theoretical reasoning for considering a trapped atomic gas within a
high-finesse optical resonator as a macroscopic cavity opto-mechanical sys-
tem is laid out in recent work.6 Recapping that discussion, we consider the
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dispersive coupling of an ensemble of N identical two-level atoms to a sin-
gle standing-wave mode of a Fabry-Perot cavity, obtaining the spectrum of
“bright” eigenstates of the atoms-cavity system according to the following
Hamiltonian:

H = �ωcn̂+
∑

i

�g2(zi)
∆ca

+ Ha + Hin/out. (1)

Here n̂ is the cavity photon number operator, ∆ca = ωc−ωa is the difference
between the empty-cavity and atomic resonance frequencies, and g(zi) =
g0 sin(kpz) is the spatially dependent atom-cavity coupling frequency with
zi being the position of atom i and kp being the wavevector at the cavity
resonance. The term Ha describes the energetics of atomic motion while
Hin/out describes the electromagnetic modes outside the cavity. Note that
this expression already treats the atom-cavity coupling to second order in g.
Repeating this analysis starting from the first-order term does not change
our conclusions substantially.

Now, let us assume that all the atoms are trapped in harmonic potentials
with “mechanical” trap frequency ωz and neglect motion along directions
other than the cavity axis. Further, we treat the atomic motion only to first
order in atomic displacements, δzi, from their equilibrium positions, z̄i; i.e.
we assume atoms to be confined in the Lamb-Dicke regime with kpδzi � 1.
We now obtain the canonical cavity opto-mechanical Hamitonian7 as

H = �ω′
cn̂+ �ωzâ

†â− FẐn̂+ H′
a + Hin/out. (2)

We make several steps to arrive at this expression. First, we allow the
cavity resonance frequency to be modified as ω′

c = ωc +
∑

i g
2(z̄i)/∆ca,

accounting for the cavity resonance shift due to the atoms at their equilib-
rium positions. Second, we introduce the collective position variable Ẑ =
N−1

eff

∑
i sin(2kpz̄i)δzi that, along with a weighted sum P̂ =

∑
i sin(2kpz̄i)pi

of the atomic momenta pi, describes the one collective motion within the
atomic ensemble that is coupled to the cavity-optical field. The operators
â and â† are defined conventionally for this mode. In our treatment, with-
out the presence of light within the optical cavity, this mode is harmonic,
oscillating at the mechanical frequency ωz, and endowed with a mass M
equal to that of Neff =

∑
i sin2(2kpz̄i) atoms. Third, we summarize the

opto-mechanical coupling by the per-photon force F = Neff�kg2
0/∆ca that

acts on the collective mechanical mode. Finally, we lump all the remaining
atomic degrees of freedom, and also the neglected higher order atom-cavity
couplings, into the term H′

a.
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With this expression in hand, we may turn immediately to the literature
on cavity opto-mechanical systems to identify the phenomenology expected
for our atoms-cavity system. Several such phenomena are best described
by referring to the opto-mechanical force on the collective atomic mode,
given as

F̂opto = −Mω2
zẐ + Fn̂. (3)

We consider the following effects:

• If we allow the state of the cavity to follow the atomic motion adi-
abatically (ωz � κ), neglect quantum-optical fluctuations of the
cavity field, and assume the collective atomic displacement remains
small, the linear variation of 〈n̂〉 with Ẑ modifies the vibration fre-
quency of the collective atomic motion. Here, κ is the cavity half-
linewidth. This modification, known as the “optical spring,” has
been observed in various opto-mechanical systems and has been
used to trap macroscopic objects optically.8–10 We have made pre-
liminary observations of the optical spring effect in our system as
well.

• For larger atomic displacements, the opto-mechanical force may
become notably anharmonic, and even, under suitable conditions,
bistable.11 Our observations of the resulting opto-mechanical bista-
bility12 are discussed in Sec. 4.

• When the cavity field no longer follows the atomic motion adiabat-
ically, the opto-mechanical potential is no longer conservative. The
dramatic effects of such non-adiabaticity are the cavity-induced
damping or coherent amplification of the mechanical motion.13

Such effects of dynamical backaction have been detected in sev-
eral micro-mechanical systems14–16 and also for single17 or multiple
atoms18 trapped within a cavity.

• Finally, we consider also the effects of quantum-optical fluctuations
of the intracavity photon number and, thereby, of the optical forces
on the atomic ensemble. It can be shown that these force fluctu-
ations represent the backaction of quantum measurements of the
collective atomic position,6 as described in Sec. 5.

3. Collective atomic modes in various regimes

The theoretical treatment described above is suitable in the Lamb-Dicke
regime of atomic confinement and under the condition that the linear opto-
mechanical coupling term (FẐn̂) is dominant (i.e. that the intracavity
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atomic gas is not tuned to positions of exclusively quadratic sensitivity).
These conditions are met in our experiments at Berkeley, where an ultra-
cold gas of about 105 atoms of 87Rb is transported into the mode volume of
a high-finesse Fabry-Perot optical resonator. The resonator length is tuned
so that the resonator supports one TEM00 mode with wavelength λT = 850
nm (trapping light) and another within a given detuning ∆ca (in the range
of 100’s of GHz) of the D2 atomic resonance line (probe light). Laser light
with wavelength λT is sent through the cavity to generate a 1D optical
lattice potential in which the cold atomic gas is trapped (Fig. 1). The
gas is strewn across over > 100 contiguous sites in this 1D optical lattice.
Within each well, atoms are brought by evaporative cooling to a tempera-
ture T ∼ 700 nK. At this temperature, the atoms lie predominantly in the
ground state of motion along the cavity axis, with �ωz/kB � 2µK � T ,
and the Lamb-Dicke condition is satisfied with respect to the wavevector
of probe light (kp � 2π/(780 nm)) used to interrogate the atomic motion.

850 nm
trap

780 nm
probe

single 
photon 
counter

2

2
0

( )ig z
g

= 1 1/2 0 1/2 1
f f

Fig. 1. Scheme for opto-mechanics with ultracold atoms in the Lamb-Dicke confinement
regime. A high finesse cavity supports two longitudinal modes – one with wavelength of
about 780 nm that is near the D2 resonance of 87Rb atoms trapped within the resonator,
and another with wavelength of about 850 nm. Light at the 850 nm resonance produces
a one-dimensional optical lattice, with trap minima indicated in orange, in which atoms
are confined within the lowest vibrational band. These atoms induce frequency shifts
on the 780 nm cavity resonance. The strength of this shift, and of its dependence on
the atomic position, varies between the different sites of the trapping optical lattice, as
shown. Nevertheless, in the Lamb-Dicke confinement regime, the complex atoms-cavity
interactions reduce to a simple opto-mechanical Hamiltonian wherein a single collective
mode of harmonic motion, characterized by position and momentum operators Ẑ and
P̂ , respectively, is measured, actuated, and subjected to backaction by the cavity probe.

The opto-mechanics picture of atomic motion in cavity QED has also
been considered recently by the Esslinger group in Zürich.19 There, a contin-
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uous Bose-Einstein condensate of 87Rb is trapped in a large-volume optical
trap within the cavity volume. Yet, in spite of the stark differences in the
external confinement and the motional response of the condensed gas, a
similar opto-mechanical Hamiltonian emerges. In our prior description of
the Lamb-Dicke regime, optical forces due to cavity probe light are found
to excite and, conversely, to make the cavity sensitive to a specific collective
motion in the gas. In the case of a continuous condensate, the cavity optical
forces excite atoms into a specific superposition of the ±2�kp momentum
modes. Interference between these momentum-excited atoms and the un-
derlying condensate creates a spatially (according to kp) and temporally
(according to the excitation energy) periodic density grating that is sensed
via the cavity resonance frequency. Thus, by identifying operators â and â†

with this momentum-space excitation and the operator Ẑ with the density
modulation, we arrive again at the Hamiltonian of Eq. 2.

We can attempt to bridge these two opto-mechanical treatments by
tracking the response of an extended atomic gas to spatially periodic opti-
cal forces (due to probe light at wavelength 780 nm) as we gradually turn
up the additional optical lattice potential (due to trapping light at wave-
length 850 nm). In the absence of the lattice potential, a zero-temperature
Bose gas forms a uniform Bose-Einstein condensate. The excitations of this
system are characterized by their momentum and possess an energy de-
termined by the Bogoliubov excitation spectrum; in Fig. 2(a), we present
this spectrum as a free-particle dispersion relation, neglecting the effects
of weak interatomic interactions. The spatially periodic optical force of the
cavity probe excites a superposition of momentum excitations as described
above.

Adding the lattice potential changes both the state of the Bose-Einstein
condensate, which now occupies the lowest Bloch state, and also the state
of excitations, which are now characterized by their quasi-momentum and
by the band index. There are now many excitations of the fluid that may
be excited at the quasi-momentum selected by the spatially periodic cavity
probe. In the case that the lattice is very shallow, shown in Fig. 2(a), the
cavity probe will still populate only one excited state nearly exclusively.
Given the relation between the wavelengths of the trapping (850 nm) and
cavity-probe light (780 nm), this excited state lies in the second excited
band. As the lattice is deepened, however, matrix elements connecting to
quasi-momentum states on other bands will grow (shown in Fig. 2(c)).
Now our simple opto-mechanical picture is made substantially more com-
plex, with multiple mechanical modes oscillating with differing mechanical
frequencies all influencing the optical properties of the cavity.
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Fig. 2. Influence of band structure on the opto-mechanical response of an ultracold
atomic gas confined within a high-finesse Fabry-Perot optical resonator. We consider
the relevant macroscopic excitation produced by cavity probe light at wavevector kp =
2π/(780 nm) within a Bose gas confined within a one-dimensional optical lattice formed
by light at wavevector kt = 2π/(850 nm) and with variable depth. The gas is cooled
to zero temperature, non-interacting, and extended evenly across many lattice sites.
Energies are scaled by the recoil energy Er = �

2k2
t /2m and wavevectors by kt. (a) With

a weak lattice applied (2Er), the band structure for atomic excitations (black lines) is
slightly perturbed from the free-particle excitations in the absence of a lattice (gray).
The cavity probe excites atoms primarily to states with quasi-momenta ±2kp within the
second excited band, corresponding closely to momentum eigenstates in the lattice-free
regime. (b) In a deep lattice (15Er), energy bands show little dispersion and are spaced
by energies scaling as the square root of the lattice depth. (c) Lines show the energies of
the three lowest energy states at quasi-momentum 2kp as a function of the lattice depth.
The relative probability for excitation by cavity probe light to each of these states, taken
as the square of the appropriate matrix element, is shown by the width of the shaded
regions around each line. At zero lattice depth, cavity probe light excites the second
excited band exclusively. At large lattice depth, the excitation probability to the first
excited band grows while excitation to higher bands is suppressed. At intermediate lattice
depths, several excited states are populated, indicating the onset of complex multi-mode
behaviour.

Continuing to deepen the optical lattice, this complexity will be al-
leviated when we reach the Lamb-Dicke regime, i.e. as the Lamb-Dicke
parameter kpδz becomes ever smaller, the probabilities of excitation from
the ground state via the cavity probe zero in on the first excited band.
We calculate such probabilities as pi ∝ |< 2kp; i| cos(2kpz)|g >|2 where the
bra is the 2kp quasi-momentum Bloch state in the ith band, and the ket
is the ground state in the lattice considered. Here, we interpret excitations
to higher bands as being controlled by terms of higher order in the Lamb-
Dicke parameter, e.g. excitations to the second excited band result from
couplings that are quadratic in the atomic positions.

Thus, we confirm that a simple opto-mechanics picture emerges for the
collective atomic motion within a cavity both in the shallow- and deep-
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lattice limits. We note, however, that these limits differ in two important
ways. First, we see that the mechanical oscillation frequency for the col-
lective atomic motion is constrained to lie near the bulk Bragg excitation
frequency in the shallow-lattice limit, whereas it may be tuned to arbitrar-
ily high frequencies (scaling as the square root of the lattice depth) in the
deep-lattice limit. The ready tunability of the mechanical frequency in the
latter limit may allow for explorations of quantum opto-mechanical systems
in various regimes, e.g. in the the resolved side-band regime where ground-
state cavity cooling and also quantum-limited motional amplification are
possible.20,21 Second, we see that the mechanical excitation frequency has
a significant quasi-momentum (Doppler) dependence in the shallow-lattice
limit. This dependence makes it advantageous to use low-temperature Bose-
Einstein condensates for experiments of opto-mechanics, as done in the
Zürich experiments, so as to minimize the Doppler width of the Bragg ex-
citation frequency. In contrast, the excitation bandwidth is dramatically
reduced (exponentially with the lattice depth) in the deep-lattice limit.
Thus, one can conduct opto-mechanics experiments with long-lived me-
chanical resonances in the deep-lattice limit without bothering to condense
the atomic gas. Nevertheless, we note that variations in the mechanical
frequency due to the presence of significant radial motion (not considered
in this one-dimensional treatment) do indeed limit the mechanical quality
factor in the Berkeley experiments.

4. Effects of the conservative optomechanical potential:
optomechanical bistability

The observation of cavity nonlinearity and bistability arising from collective
atomic motion is described in recent work.12 Briefly, we find that the op-
tical force due to cavity probe light will displace the equilibrium collective
atomic position 〈Ẑ〉, leading to a probe-intensity-dependent shift of the cav-
ity resonance frequency. By recording the cavity transmission as the cavity
probe light was swept across the cavity resonance, we observed asymmetric
and shifted cavity resonance lines, and also hallmarks of optical bistability.

Refractive optical bistability is well studied in a variety of experimen-
tal systems.22 One unique aspect of our experiment is the observation of
both branches of optical bistability at average cavity photon numbers as
low as 0.02. The root of such strong optical nonlinearities is the presence
within the cavity of a medium that responds significantly to the presence
of infrequent cavity photons (owing to strong collective effects) and recalls
the presence of such photons for long coherence times. Here, the coherence
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is stored within the long-lived collective motion of the gas. It is interesting
to consider utilizing such long-lived motional coherence, rather than the
shorter-lived internal state coherence typically considered, for the various
applications of cavity QED and nonlinear optics in quantum information
science, e.g. photon storage and generation, single-photon detection, quan-
tum logic gates, etc.

Such motion-induced cavity bistability can also be understood in the
context of the opto-mechanical forces described by Eq. (3). Neglecting the
non-adiabatic following of the cavity field to the collective motion (essen-
tially taking κ/ωz → ∞ so that dynamical backaction effects are neglected)
and also the quantum fluctuations of the cavity field, we may regard atomic
motion in an optically driven cavity to be governed by an opto-mechanical
potential of the form

U(Z) =
1
2
Mω2

zZ
2 + nmax�κ arctan

(
∆pc − FZ/�

κ

)
. (4)

Here ∆pc is the detuning of the constant frequency probe from the modified
cavity resonance frequency ω′

c, and nmax is the average number of cavity
photons when the cavity is driven on resonance.

The form of this potential is sketched in Fig. 3 for different operating
conditions of the atoms-cavity system. Cavity bistability12 is now under-
stood as reflecting an effective potential for the collective atomic variable
Z that has two potential minima. Remarkably, these potential minima may
be separated by just nanometer-scale displacements in Z. Even though the
inherent quantum position uncertainty of each individual atom (10’s of nm)
is much larger than this separation, the reduced uncertainty in the collec-
tive variable Z allows for these small displacements to yield robust and
distinct experimental signatures in the cavity transmission.

5. Quantum fluctuations of the optomechanical potential:
measurement backaction

Aside from the conservative forces described above, the intracavity atomic
medium is subject also to dipole force fluctuations arising from the quan-
tum nature of the intracavity optical field. Indeed, should these force fluc-
tuations be especially large, the picture of cavity optical non-linearity and
bistability described in the previous section, in which we implicitly assume
that the collective atomic motion may follow adiabatically into a local min-
imum of an opto-mechanical potential, must be dramatically modified. To
assess the strength of such force fluctuations, let us consider the impact on
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Fig. 3. For different stable regimes of cavity operation, the cavity-relevant collec-
tive mode of the intracavity atomic ensemble is trapped in a particular minimum
of the effective potential U(Z) (bottom). In the regime of bistability, the two
stable cavity states reflect the presence of two potential minima.

the atomic ensemble of a single photon traversing the optical cavity. Dur-
ing its residence time of ∼ 1/2κ, such a photon would cause a dipole force
that imparts an impulse of ∆P = f/(2κ) on the atomic medium, following
which the collective mode is displaced by a distance ∆Z = ∆P/(Mωz); in
turn, this displacement will shift the cavity resonance frequency by F∆Z/�.
Comparing this single-photon-induced, transient frequency shift with the
cavity half-linewidth leads us to define a dimensionless “granularity param-
eter” as

ε =

√
F∆Z

�κ
=
FZho

�κ
, (5)

where Zho =
√

�/2Mωz is the harmonic oscillator length for the atomic
collective mode. The condition ε > 1 marks the granular (or strong)
opto-mechanical coupling regime in which the disturbance of the collective
atomic mode by single photons is discernible both in direct quantum-limited
measurements of the collective atomic motion and also in subsequent single-
photon measurements of the cavity resonance frequency. In our experi-
ments, the granularity parameter is readily tuned by adjusting frequency
difference between the cavity and atomic resonance ∆ca. Under conditions
of our recent work, the granular regime is reached at |∆ca|/(2π) < 27 GHz.

In recent work, we have focused on effects of fluctuations of the dipole
force in the non-granular regime, attained at atom-cavity detunings in the
100 GHz range. As described in our work,6 and also derived in earlier
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2mm

(a) (b)

250 µm

(c)

Fig. 4. An integrated cavity QED/atom chip. (a) A top view of the microfabricated
silicon chip shows etched trenches, later electroplated with copper and used to tailor the
magnetic field above the chip surface. The left portion of the image shows wire patterns
used for producing the spherical-quadrupole field of a magneto-optical trap and also the
Ioffe-Pritchard fields for producing stable magnetic traps. Serpentine wires spanning the
entire chip form a magnetic conveyor system to translate atoms to the optical cavities
that are located in the right half of the image. (b) A detailed view shows the serpentine
wires and also a two-wire waveguide surrounding a central, rectangular hole that pierces
the atom chip. (c) Fabry-Perot cavities are formed by mirrors straddling the atom chip.
Between the mirrors, the chip is thinned to below 100 µm – outlines of the thinned areas
are seen also in (a). The cavity mode light passes unhindered through the chip via the
microfabricated holes shown in (b).

treatments,20,23–25 these fluctuations will cause the motional energy of the
collective atomic mode to vary according to the following relation:

d

dt
〈a†a〉 = κ2ε2

[
S(−)

nn +
(
S(−)

nn − S(+)
nn

)
〈a†a〉

]
(6)

Here, the relevant dipole force fluctuations are derived from the spec-
tral density of intracavity photon number fluctuations at the mechani-
cal frequency ωz, calculated for a coherent-state-driven cavity as S(±)

nn =
2〈n〉κ/ (κ2 + (∆pc ± ωz)2

)
Eq. 6, which can be derived readily from a rate-

equation approach,20 reveals two manners in which the mechanical oscilla-
tor responds to a cavity optical probe: momentum diffusion, which raises
the mechanical oscillator energy at a constant rate, and the dynamic back-
action effects of cavity-based cooling or amplification of the mechanical
motion, described by an exponential damping or gain.

The mechanical momentum diffusion in an opto-mechanical system
plays the essential metrological role of providing the backaction necessary
in a quantum measurement, as discussed, for example, by Caves in the
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context of optical interferometry.26 For ωz � κ, we see that, at constant
circulating power in the cavity, this diffusion is strongest for probe light at
the cavity resonance and weaker away from resonance. This dependence on
the intensity and detuning of the cavity probe light precisely matches the
rate of information carried by a cavity optical probe on the state of the me-
chanical oscillator. To elucidate this point, we recall that, under constant
drive by a monochromatic input field, the intracavity electric field oscillates
at the input field frequency with complex amplitude Ecav = η/(κ− i∆pc).
A displacement by ∆Z of the mechanical oscillator varies the probe-cavity
detuning by F∆Z/�. In response, the electric field in the cavity varies as

Ecav � E0

(
1 +

i

κ− i∆pc

F∆Z
�

)
= E0 + Esig , (7)

where E0 is the cavity field with the cantilever at its equilibrium position
and we expand to first order in ∆Z. The sensitivity of the cavity field
to the cantilever displacement, at constant intracavity intensity (constant
E0), is determined by the magnitude of |Esig/E0|2 ∝ 1/(1 + ∆2

pc/κ
2); this

functional dependence matches that of the momentum diffusion term, sup-
porting its representing measurement backaction.

To measure this backaction heating, we take advantage of several fea-
tures of our experiment. First, by dint of the low temperature of our atomic
ensemble, we ensure that the effects of dynamical backaction (cooling and
amplification) are negligible. Second, the low quality-factor of our mechan-
ical oscillator ensures that the momentum diffusion of the collective atomic
motion leads to an overall heating of the atomic ensemble, allowing us to
measure this diffusion bolometrically. Third, the large single-atom coopera-
tivity in our cavity QED system implies that this backaction heating of the
entire atomic ensemble dominates the single-atom heating due to atomic
spontaneous emission. And, fourth, owing to the finite, measured depth of
our intracavity optical trap, backaction heating can be measured via the
light-induced loss rate of atoms from the trap. The measured light-induced
heating rate was found to be in good agreement with our predictions, pro-
viding the first quantification of measurement backaction on a macroscopic
object at a level consistent with quantum metrology limits.

6. Future developments: cavity QED/atom chips

While continuing explorations of quantum opto-mechanics in our existing
apparatus, we are also developing an experimental platform that integrates
the capabilities of single- and many-atom cavity QED onto microfabri-
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cated atom chips. Similar platforms have been developed recently by other
groups.27,28 Aside from enabling myriad applications in quantum atom op-
tics and atom interferometry, we anticipate the cavity QED/atom chip to
provide new capabilities in cold-atoms-based opto-mechanics. For instance,
the tight confinement provided by microfabricated magnetic traps will al-
low atomic ensembles to be confined into single sites of the intracavity
optical lattice potential, providing a means of tuning the opto-mechanical
coupling between terms linear or quadratic in Ẑ. As emphasized by Har-
ris and colleagues,29 a purely quadratic coupling may allow for quantum
non-demolition measurements of the energy of the macroscopic mechanical
oscillator.
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DEGENERATE CAVITY MODES

J. C. SANKEY1, A. M. JAYICH2, B. M. ZWICKL2, C. YANG2, J. G. E. HARRIS∗,1,2

1Department of Applied Physics, Yale University
2Department of Physics, Yale University, New Haven, CT 06520, USA

∗E-mail: jack.harris@yale.edu
http://www.yale.edu/harrislab/

Optomechanical devices in which a flexible SiN membrane is placed inside an
optical cavity allow for very high finesse and mechanical quality factor in a
single device. They also provide fundamentally new functionality: the cavity
detuning can be a quadratic function of membrane position. This enables a
measurement of “position squared” (x2) and in principle a QND phonon num-
ber readout of the membrane. However, the readout achieved using a single
transverse cavity mode is not sensitive enough to observe quantum jumps be-
tween phonon Fock states.

Here we demonstrate an x2-sensitivity that is orders of magnitude stronger
using two transverse cavity modes that are nearly degenerate. We derive a
first-order perturbation theory to describe the interactions between nearly-
degenerate cavity modes and achieve good agreement with our measurements
using realistic parameters. We also demonstrate theoretically that the x2-
coupling should be easily tunable over a wide range.

Keywords: Optomechanics; micromechanics; QND; cantilevers; radiation pres-
sure; cavity QED; quantum jumps.

1. Introduction

In quantum mechanics a system’s behavior is not independent of how it is
measured. As a result, the readout used in an experiment must be tailored
to the phenomena of interest. Likewise, for a given type of readout not all
quantum effects are observable.

Experiments on mechanical oscillators have to date used readouts that
couple directly to the oscillator’s displacement. The most common exam-
ple is an optical interferometer in which the oscillator serves as one of the
interferometer’s mirrors. In such a system the phase φ of the light reflected
from the interferometer is proportional to the mirror’s displacement x. An
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oscillator that is subject to continuous monitoring of x is predicted to show a
number of striking quantum features, including the standard quantum limit
of displacement detection.1 Additionally, the linear coupling between x and
φ can be used both to laser-cool the oscillator (perhaps eventually to its
ground state)2–4 and to squeeze the light leaving the cavity.5,6 The connec-
tion between the readout of the mechanical oscillator and its manipulation
highlights the fact that these are two aspects of the same optomechanical
coupling.

In a recent paper7 it was shown that a modest rearrangement of the
usual optomechanical setup can realize a fundamentally different type of
readout. When a nearly-transparent dielectric membrane is placed inside
a cavity formed by two fixed, macroscopic mirrors, the phase of the light
reflected from the cavity can be adjusted so that it is proportional either to
x or to x2. The quadratic coupling occurs when the membrane is placed at
a node (or anti-node) of the intracavity standing wave. In such a situation
the membrane is at a minimum (maximum) of the optical intensity, and so
detunes the cavity resonance by a small (large) amount. As the membrane
moves in either direction it encounters an optical intensity that is larger
(smaller) by an amount quadratic in its displacement (to lowest order),
and hence detunes the cavity by an amount which is also quadratic (to
lowest order) in the displacement. If on the other hand the membrane is
originally placed at a point which is neither a node nor an antinode, the
cavity detuning is (to lowest order) linear in the displacement.

Mechanical oscillators coupled to an x2-readout have been discussed
theoretically for some time. It has been shown that such a readout, coupled
to a mechanical oscillator inside a sufficiently high-finesse optical cavity,
can in principle provide a quantum nondemolition (QND) measurement
of the energy (or equivalently the phonon number) of the mechanical os-
cillator.8 With a sufficiently sensitive x2-readout it should be possible to
observe, in real time, the individual quantum jumps of the mechanical oscil-
lator. This is in contrast to an oscillator coupled to an x-readout, in which
the repeated measurements of the oscillator’s position extract information
which prevents the oscillator from remaining in an energy eigenstate. This
is because the quantity x does not commute with the oscillator’s energy,
whereas the quantity x2 does (at least in the rotating-wave approximation,
whose validity is ensured by the cavity’s high finesse).8

Although the x2-readout demonstrated in Ref. 7 represented a major
advance towards realizing the goal of QND measurements of a mechanical
oscillator’s energy, the strength of the x2-coupling was insufficient to real-
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ize such a measurement in practice. This is because for a low-reflectivity
membrane the scale of the x2-coupling is ∼ 1/λ2, where λ is the wave-
length of the light (the cavity detuning oscillates each time the membrane
is displaced by λ/2). If the membrane’s (field) reflectivity r approaches
unity, the finesse of the “half-cavities” on either side of the membrane be-
gins to increase, and the curvature of the cavity detuning (and hence the
strength of the x2-coupling) increases, diverging for r → 1.7 However the
technical challenges involved in combining a high reflectivity mirror and a
high-quality mechanical oscillator into a single element have proven con-
siderable, so it would be highly advantageous to find a strong x2-coupling
which does not require a high-reflectivity membrane.

In this paper, we describe a new means for generating a strong x2-
coupling in this type of device. We show that the optical cavity’s full spec-
trum of transverse modes contains many near-degeneracies, and that near
these points the cavity’s resonance frequencies display an avoided-crossing
behavior as a function of the membrane displacement. This leads to a de-
tuning proportional to x2, but with a scale set by the symmetry-breaking
aspects of the cavity/membrane geometry rather than the wavelength of
light. We develop a perturbation theory that allows us to calculate the
membrane-induced cavity detuning, and find that the x2-coupling at these
avoided crossings can be made orders of magnitude stronger than realized
in earlier work. We compare these calculations to measurements and find
quantitative agreement, indicating that the single-phonon QND measure-
ments proposed in [7] may be feasible even with a low-r membrane.

2. Observed Effect of Membrane on Empty-Cavity Modes

Our experimental setup is shown in Fig. 1 and has also been described
elsewhere.7,10 A flexible silicon nitride membrane (1 mm × 1 mm × 50
nm thick) is situated near the waist of a high-finesse Fabry-Perot cavity
so that its normal vector is roughly parallel to the cavity’s long (x) axis.
The membrane acts as the micromechanical resonator and its deflection
is coupled to the cavity’s optical modes via radiation pressure. The two
macroscopic end mirrors are held fixed by an Invar cavity spacer. A mo-
torized tilt stage holding the membrane is mounted to the spacer, and two
piezoelectric actuators are used to displace the membrane along x̂.

We can begin to characterize the optomechanical coupling in this system
by measuring the transmission through the cavity as a function of mem-
brane position and laser detuning, as shown in Fig. 2. Here the laser is
aligned so that the dominant transmission peak corresponds to the TEM0,0
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Fig. 1. (a) Schematic of our apparatus: A flexible SiN membrane mounted on a mo-
torized tilt stage at the center of a Fabry-Perot cavity is coupled to the cavity’s optical
modes via radiation pressure. Piezoelectric actuators between the mounting plate and
membrane enable displacements along the x-axis. (b) Simplified diagram of the cavity
and membrane. The cavity length is L = 6.7 cm and the end mirror radius of curvature
is 5 cm.

(singlet) mode, as confirmed by a camera monitoring transmission (inset).
As the membrane moves along the longitudinal (x) axis, it perturbs the cav-
ity resonance frequencies to lower values, producing a detuning that varies
roughly sinusoidally with position.

When the membrane is located at an optical node, the perturbation is
minimal, and the detuning is quadratic in position. As a result, light leaving
the cavity contains only information about x2. As discussed elsewhere,7 this
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Fig. 2. Transmission through the cavity as a function of laser detuning and membrane
position. The dominant signal corresponds to the TEM0,0 (singlet) cavity mode. Dashed
lines show the approximate position of the unperturbed singlet modes. We have labeled
positions corresponding to a node and antinode of the upper singlet mode’s electric field.
At these points the detuning is proportional to x2. (inset) An infrared camera image
showing the transmitted beam profile.

may enable QND phonon number readout using the TEM0,0 mode alone.
Since the membrane is a thin (50 nm) dielectric (nSiN ≈ 2), it is a very poor
reflector (|r|2 = 0.13 where |r|2 is the power reflectivity). As a result the
curvature of the detuning is small and the x2-sensitivity is weak. Practical
estimates predict that in order to observe a phonon Fock state before it
decays, the membrane reflectivity would need to be substantially higher,
∼ 0.998.7 This may represent the most difficult of the technical challenges to
observing real-time quantum jumps of the membrane’s mechanical energy.

A promising solution to this problem lies in the interactions between
different transverse optical modes. We can couple to and identify many
more of the cavity’s transverse modes by intentionally misaligning the input
laser, as shown in Fig. 3(a). We have identified all of the visible bands, such
as the {TEM1,0, TEM0,1} doublet, {TEM2,0, TEM1,1, TEM0,2} triplet, and
so on up to the 13-fold degenerate (tridectet) modes.
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Fig. 3. (a) Transmission spectrum with the input laser misaligned, plotted on a log
scale to enhance the faint features. The degeneracies of the different transverse modes
are labeled and solid lines are drawn over the singlet mode for reference. (b) Close-up of
the singlet-triplet crossing point for the membrane aligned with its normal vector parallel
to the cavity axis (x̂). (c) Singlet-triplet crossing with the membrane tilted about the
y-axis by 0.4 mrad. The strength of the curvature at the marked gap corresponds to an
effective membrane reflectivity of 0.994 ± 0.001 power.

The different transverse modes cross each other as a function of position
at several places in Fig. 3. Figure 3 also shows a close-up of the crossing
between the singlet and the triplet with the membrane’s normal vector (b)
aligned, and (c) with x̂ tilted around the y-axis by 0.4 mrad. Tilting the
membrane as in (c) lifts the degeneracy of the triplet in a predictable way:
modes extended the furthest in the ẑ direction shift the most. As is evident
from Fig. 3(c), the crossing points between the singlet and the two even
triplets (TEM2,0 and TEM0,2) are avoided, meaning that in addition to
perturbing the individual modes, the membrane also couples them.

Most importantly, the quadratic detuning at the avoided crossing turn-
ing points is very strong. In Fig. 3(c), the curvature is 50 times stronger
than at the single-mode turning points. This is the same curvature a mem-
brane reflectivity of 0.994±0.001 would generate using a single mode.7 This
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is already very close to the QND target and we have not yet attempted to
optimize the system.a

3. Model

While the membrane perturbs the empty cavity modes by up to a quarter
of a free spectral range, its fractional effect relative to the laser frequency
is minute (∼ 10−6). We can therefore view the membrane perturbatively
and develop a first-order theory to model the system, as discussed in the
next section. We then outline a method by which to solve this problem
analytically when the membrane is positioned near the cavity waist, and
finally compare our results with measurements.

3.1. First-Order Degenerate Perturbation Theory

We start with the time-independent free-space electromagnetic wave
equation

∇2φ+
ω2

c2
φ = 0 (1)

where ω is the angular frequency and c is the speed of light. As is drawn
in Fig. 1(b), we define the origin to reside at the center of our cavity with
the x-axis pointing toward one of the (spherical) end-mirrors. Under these
boundary conditions, a convenient set of (Hermite-Gaussian) orthonormal
solutions is given by9

φj =
Hm(

√
2y/w)Hn(

√
2z/w)

w
√
πL2m+n−1m!n!

e−(y2+z2)/w2

× ei(m+n+1)Ψe−ik(y2+z2)/2Re−ikx−ilπ/2, (2)

Here Hm is the mth Hermite polynomial, k = ω/c is the wavenumber,
w(x) =

√
2(x2 + x2

R)/kxR is the width of the cavity mode at x (where
xR = 2.351 cm is the Raleigh range and w0 = 89.2 µm is the waist for our
geometry), L = 6.7 cm is the cavity length, m and n are the transverse
mode indices, l is the longitudinal mode index, Ψ(x) = tan−1(w2k/2R) is
the Guoy phase shift, and R(x) = (x2 + x2

R)/x is the wave fronts’ radius of

aAs discussed later, we have observed smaller gaps, but for that data the fit curvature is
not very convincing due to vibrations limiting our displacement sensitivity. We can still
use these smaller gaps to infer a lower bound on the curvature.
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curvature. For a standing wave in our cavity, Re(φj) is proportional to the
electric field amplitude, and the lπ/2 term ensures that each longitudinal
mode’s electric field is zero at the end mirrors. The prefactors ensure that
the inner product

∫
dx
∫
dy
∫
dzRe(φi)Re(φj) = δij .

As shown in Fig. 1(b), we represent the membrane as a block of refrac-
tive index nSiN ≈ 2 and thickness t = 50 nm, centered at position x0. This
modifies the speed of light in this short region, so that the wave equation
in the cavity becomes

∇2ψ +
ω2

c2
(1 + V (x− xc))ψ (3)

where V (x − xc) = (n2
SiN − 1) (Θ[x− (xc − t/2)]− Θ[(xc + t/2) − x]) and

Θ the Heaviside step function. For an “aligned” membrane (i.e. flat in the
y-z plane) xc = x0 is constant. To incorporate tilt into the model, let
xc = x0 + αyy + αzz where αy and αz are the small rotations about the z
and y axes, respectively.

The perturbed modes ψ can be expanded in terms of the empty-cavity
modes:

ψ = c1φ1 + c2φ2 + c3φ3 + ... (4)

where the c’s are constants. We wish to study the region of near-degeneracy
shown in Fig. 3(b-c), between the l-th longitudinal singlet mode (m = n =
0) and the three (l − 1)-th triplet modes (m + n = 2), so we make the
assumption that ψ is composed mostly of these four empty-cavity modes

ψ = csφs + cyφy + caφa + czφz +
∑

εjφj (5)

where the indices s, y, a, and z refer to the singlet, the triplet widest in
the ŷ direction (m = 2, n = 0), the antisymmetric triplet (m = 1, n = 1),
and the triplet widest along ẑ (m = 0, n = 2), respectively. The last term
is a summation over all remaining modes, and its contribution is assumed
to remain small (εj � 1). We also assume ψ will have a new eigenvalue
ω2/c2 ≡ κ that is not very different (i.e. within a fraction of a free spectral
range) from any of the unperturbed eigenvalues of the four contributing
φ’s. Substituting this into Eq. 3,

(∇2 + (1 + V )κ)(csφs + cyφy + caφa + czφz +
∑

εjφj) = 0. (6)

If we now take an inner product of this equation with each of the four
empty-cavity modes and divide through by κ, we obtain four new equations

(1 − κi/κ)ci + Viscs + Viycy + Viaca + Vizcz +
∑

Vijεj = 0 (7)
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where the index i is s, y, a, or z and Vij is the inner product of the i-th
and j-th mode with V (x − xc). The inner products Vij involve an integral
over thickness t between two modes that are normalized over length L and
are small (of order (n2

SiN − 1)t/L ∼ 2 × 10−5 or less), so the last term in
Eq. 7 can be ignored. We can further simplify by writing κ ≡ κs(1+ δ) and
κy,a,z ≡ κs(1 + g) where δ is the fractional change due to the membrane
and g is the (constant) fractional separation of the unperturbed singlet and
triplet bands due to the Guoy phase. Both δ and g are of order 10−5. To
first order, the remaining equation can be written as a matrix

δ + Vss Vsy Vsa Vsz

Vsy δ − g + Vyy Vya Vyz

Vsa Vya δ − g + Vaa Vaz

Vsz Vyz Vaz δ − g + Vzz



cs
cy
ca
cz

 = 0. (8)

Solving this eigenvalue problem for δ in terms of g and the V ’s is straight-
forward and, though time-consuming, it is also easy to numerically compute
Vij . The problem is in principle solved, and the result of such a calculation
is shown in Fig. 4. Computation time can also be reduced by assuming the
membrane is an infinitesimally thin sheet (also plotted), but even a small
finite thickness of t = 50 nm produces a noticeable effect.

Fig. 4. Comparison of numerical (dashed) and analytical (solid) results near the singlet-

triplet crossing points. The red curves correspond to the thin-membrane (delta function)
limit, and the black lines include membrane thickness. For this plot, x0 = 500 µm,
αz = 0.4 mrad, and αy = 0.
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3.2. Analytical Solution Near the Cavity Waist

We can also solve the inner products Vij analytically by using an approxi-
mate form for the unperturbed modes near the cavity waist. We do this by
expanding 1/R(x), w(x), and Ψ(x) in Eq. 2 in terms of the small parameter
∆ = x/xR:

1
R(x)

≈ ∆
xR

+O3 (9)

w(x) ≈ w0(1 +
1
2
∆2) +O3 (10)

Ψ(x) ≈ ∆ +O3 (11)

Substituting this into Eq. 2 yields

φj =
Hm(

√
2y/w)Hn(

√
2z/w)

w
√
πL2m+n−1m!n!

e−(y2+z2)/w2

× e
i
[
(n+m+1− y2+z2

w2 −kxR)∆+lπ/2
]
. (12)

We can now use this to estimate the inner products Vij . We will not specify
which modes are under consideration, so the results of this section may be
applied to any set of nearly-degenerate cavity modes.

Before we attempt to solve these integrals, first note that∫∫∫
Re(φi)V Re(φj) = Re

[
1
2

∫∫∫
φiφjV +

1
2

∫∫∫
φiφ

∗
jV

]
(13)

which simplifies the calculation. The first integral is by far the most chal-
lenging and so we outline its solution here.

First, note that the singlet and triplet modes have slightly different
unperturbed k’s and w’s. If i = s and j ∈ {y, a, z}, then kj = ki(1 + g)
and w0,j ≈ w0,i(1 − g/2). By defining A ≡ 1 + g/2 ∼ 1, we can easily keep
track of this difference to first order (and A = 1 if the modes belong to
the same degenerate manifold). If we plug Eq. 12 into the first integral of
Eq. 13, make the substitutions y → wy/

√
2A, z → wz

√
2A and x → xR∆,

we have

1
2

∫∫∫
φiφjV =

P0

∆t
e−i(li+lj)π/2

×
∫
dy

∫
dz

∫ ∆c+∆t/2

∆c−∆t/2

d∆ p(y, z)e−y2−z2
e−i(K+y2+z2)∆ (14)
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with

P0 =
(t/ cosα)(n2

SiN − 1)
πL
√

2mi+ni+mj+njni!mi!nj !mj !
(15)

∆t = t/xR cosα (16)

∆c = xc/xR = ∆0 + βyy + βzz (17)

p(y, z) = Hmi(y/
√
A)Hmj (

√
Ay)Hni(z/

√
A)Hnj (

√
Az) (18)

K = 2AkixR − (mi + ni +mj + nj + 2). (19)

Here ∆t is the dimensionless membrane thickness corrected for tilt α =√
α2

y + α2
z , and we have allowed the position of the membrane center xc

to depend on y and z through small (rescaled) tilts in both directions,
βy,z = αy,zwi/xR

√
2A.

The membrane is 20 times thinner than the free-space wavelength, but
it noticeably affects the cavity modes, as is evident in Fig. 4. We can ap-
proximate the integral over ∆ by noting that for a smooth function f(x),∫ x0+δx/2

x0−δx/2

f(x)dx = δxf(x0) + δx3 1
24
f ′′(x0) +O(δx5) (20)

Applying this to our integral,
1
2

∫∫∫
φiφjV ≈ P0Te

−i(li+lj)π/2
∫∫

dy dz p(y, z)e−y2
e−z2

× e−i[(∆0+βyy+βzz)(y2+z2)]

× e−i[(∆0+βyy+βzz)K] (21)

with T = 1−∆2
tK

2/24. It should be noted that K ∼ 250, 000 is very large,
and so when estimating the thickness correction T from Eq. 20, we ignored
several terms smaller than ∆2

tK
2/24 ∼ 10−3 by a factor of K or more.

The exponent in the second line of Eq. 21 contains only small quantities,
so we can simplify this term by making the expansion eiε ≈ 1 + iε. Then
we complete the square for y and z in the remaining exponential and make
the variable change y → y− iβyK/2 and z → z− iβzK/2. If we then define
the (analytically soluble) integral

ξqβK
ninj

=
∫
dx (x−iβK/2)qe−x2

Hni(
x− iβK/2√

A
)Hni((x−iβK/2)

√
A) (22)

and the shorthand Γqp ≡ ξqβxK
mimj

ξ
pβyK
ninj , Eq. 21 becomes

1
2

∫∫∫
φiφjV ≈ P0Te

−iK∆0−i(li+lj)π/2e−
K2(β2

x+β2
y)

4

× [Γ00 − i ((Γ20 + Γ02)∆0 + (Γ30 + Γ12)βy + (Γ03 + Γ21)βz)] . (23)
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Applying a similar method to the second half of Eq. 13, and with def-
initions K ′ ≡ mj − mi + nj − ni − gkixR (much smaller than K) and
Γ′

qp ≡ ξqβxK′
mimj

ξ
pβyK′
ninj , it can be shown that

1
2

∫∫∫
φiφ

∗
jV ≈ P0e

−iK∆0−i(li−lj)π/2

× [Γ′
00 − iK ′ (Γ′

0∆0 + Γ′
10βy + Γ′

01βz)] . (24)

Equations 23, 24 and 13 represent a very accurate analytical approximation
of the inner products Vij for small displacements (relative to xR) from the
cavity waist. These results are also plotted (with and without the thickness
correction) in Fig. 4 of the previous section as solid lines. In practice, the
agreement for our setup is excellent as long as |xc| < 1 mm. As expected,
the approximation is nearly perfect at the waist and breaks down as x0

approaches xR.

3.3. Discussion and Comparison with Data

We can gain insight into our system from the analytical results. By ignor-
ing the off-diagonal terms in Eq. 8 (i.e. ignoring avoided crossings), the
eigenvalues simplify substantially, and the detuning is given by

∆ωs

ω0
≈ − t(n

2
SiN − 1)
2L

(1 − T cos((2ksxR − 1)∆0)) (25)

∆ωy,a,z

ω0
≈ − t(n

2
SiN − 1)
2L

(1 + T cos((2kyxR − 3)∆0)) + g (26)

for the singlet and triplet modes respectively. These equations represent
two sinusoidal bands oscillating (with opposite sign) below their unper-
turbed detunings, with peak-to-peak amplitudes T (n2

SiN − 1)t/L ≈ 27% of
the free spectral range, and separated from each other by the appropriate
Guoy spacing. Applying this method to the other transverse modes, we can
generate the entire band structure shown in Fig. 3(a), and for nSiN = 2.0
the agreement is essentially perfect.

The spatial period of the singlet band is slightly smaller than the triplet,
and so it should oscillate a little faster as a function of ∆0. Though subtle,
we do observe a phase difference between the bands (this is somewhat more
visible in Fig. 3 when comparing the singlet and the nonet band), and we
can use this phase difference to estimate the membrane’s displacement x0.
In the time it takes to raster the band structure in Fig 3, drifts in the piezos
and laser frequency cause noticeable distortions of the bands on the scale
of this phase difference, but nonetheless by fitting the neighboring singlet
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and triplet sinusoids from Fig. 3(a) we estimate a positive (as defined by
the x-axis) displacement of 300± 100 µm from the waist.

It is also worth noting that the effect of finite membrane thickness is
to wash out the oscillations (i.e. T decreases from unity as t increases).
This makes sense qualitatively because when the membrane is positioned
at a node, the electric field is not zero everywhere inside it and so there
will still be a small negative perturbation at the top of the band. Similarly,
when the membrane is at an antinode, the field is not maximal everywhere
inside it and so the perturbation is not as strong. Optical losses inside the
membrane mean that even when positioned at a node the finite thickness
will put an upper bound on the finesse this system can achieve. We have,
however, already observed a finesse of 150,000 with the membrane inside
the cavity.10

If we now look at the mode-coupling terms Vi�=j , we can gain some
insight into the avoided crossings of Fig. 3(b)–(c). First, all of the off-
diagonal terms involving the antisymmetric mode (TEM1,1) are identically
zero (even with α �= 0) in this approximation. This is a reflection of the fact
that the TEM1,1 mode is an odd function in both the y and z directions,
while the other three modes are even. The integrals across the membrane
therefore all involve a function that is approximately odd and vanish. Hence
there should be no avoided crossing between TEM0,0 and TEM1,1 to first
order, which agrees with all of our observations (see Fig. 3(c), for example).

The other off-diagonal terms are not zero (thankfully), and the result is
again relatively simple if we keep the membrane aligned (i.e. α = 0).

Vsy = Vsz ≈ −∆0
t(n2

SiN − 1)
2L

T cos [((ks + kz)xR − 4)∆0] . (27)

When the membrane is aligned, the interaction is proportional to ∆0 times
a term that oscillates with a period close to that of the bands (though since
the bands always cross each other at roughly the same phase, this term will
modulate the coupling slowly as a function of ∆0). Following this backward
through the calculation in the previous section, we see that it arises from our
expansion of the finite radius of curvature R. So (perhaps not surprisingly)
the interaction between these modes arises from the mismatch between the
curved wavefronts and the flat membrane.b

bNaturally, if the membrane distorted to follow a constant phase front as it moved from
the waist, the different transverse modes would all remain orthogonal. Perhaps another

way to think of the mismatch-induced coupling is to imagine a curved wave partially
reflecting from a flat surface. It will certainly not scatter entirely back into the same
mode.
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This is an encouraging result because it implies a strong degree of tun-
ability in the avoided gap and hence the x2-sensitivity. Figure 5(a) shows
our calculation of the gaps at each of the four avoided crossings as a func-
tion of displacement out to 500 µm from the waist. In this plot we show
results for both the aligned case (dashed lines) and for a tilt of 0.25 mrad
(solid lines). For the aligned case, the gaps collapse onto two similar curves
(as they must by symmetry), and when the membrane is tilted, the top two
gaps (TR and TL of the inset) move to larger initial values.c The top right
(TR) gap is a more interesting function of position, as it is tunable through
zero at finite offset. If instead we fix the position of the membrane, we
should also be able to tune the TR gap over a wide range (including zero)
with tilt, as shown in Fig. 5(b). Note the large quantitative and qualitative
differences between the TR and TL gaps can help calibrate the magnitude
as well as the direction of the membrane displacement if it is not already
known.

Fig. 5. (a) Dependence of the four avoided crossing gaps on membrane position, fixing
tilt at 0 (dashed lines) and 0.25 mrad. (inset) Plot of the mode detuning versus position
near the singlet-triplet crossings. The four gaps in (a, inset) are labeled for reference. (b)
Dependence of the four gaps on membrane tilt, fixing the position at 300 and 800 µm.
The TR gap should be adjustable over a wide range.

As mentioned in Section 2, vibrations in this apparatus preclude reliable
determinations of gap size and x2-sensitivity for very small gaps. Nonethe-
less we have observed some smaller gaps as we tune the membrane tilt, two

cSimilar intuition applies here. The flat membrane no longer encloses a constant phase
front.
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of which are shown in Fig. 6. In this data set, displacement noise due to
ambient vibrations, coulomb forces on the membrane and/or piezo noise is
quite evident. Further, during the left-to-right rastering of these data sets
(acquired over ∼ 10−20 minutes each) the laser temperature varied enough
to cause a systematic detuning and sheer the data vertically. It is a large
effect in this data set, and we are studying ways to compensate for it.

Fig. 6. Transmission data at large membrane tilt, αz ≈ 0.65 mrad. The dashed line cor-
responds to the data shown in the inset. (inset) Single-shot measurement of transmission
versus laser detuning.

In a given frequency sweep (vertical trace), however, the time it takes
to traverse one of these gaps is roughly a millisecond; such a single-shot
measurement of the mode spacing should therefore be much less suscep-
tible to vibrations and drift. If we therefore record the smallest spacing
in Fig. 6, we can put a lower bound on the detuning curvature using the
form detuning takes near an avoided crossing,

√
(ax)2 + (∆f/2)2 where a

is the asymptotic slope and ∆f is the gap (both of which we estimate from
Fig. 6). Doing so yields a lower bound on the effective membrane reflectivity
of |r|2 > 0.992± 0.004 for the TR crossing and |r|2 > 0.9989± 0.0005% for
the BR crossing (the sharper curvature of BR reflects the larger asymptotic
slope a). This estimate is still subject to vibrations above a few kilohertz,
which we have not characterized. On the other hand, when we fit the curva-
ture explicitly as in Section 2, even lower-frequency vibrations (i.e. anything
above about 0.1 Hz) can wash out sharp curvature, so that technique rep-
resents a very conservative estimate.



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

146 J. G. E. Harris

Figure 5 implies we can use the TR and BR gaps to estimate the position
of our membrane relative to the waist. Figure 7 shows the aligned singlet-
triplet crossing data from Fig. 3(b) along with curves generated by this
model (for α = 0) at several different membrane positions. We estimate the
membrane’s displacement from the waist to be about 550 µm here, which
is a reasonable value for our apparatus and is in rough agreement with
our previous estimate based on the horizontal offsets in the various bands
shown in Fig. 3.

Fig. 7. Analytical model plotted on top of transmission data for the aligned membrane.
Here we show the analytical results for the membrane situated at 200, 550, and 1000 µm
from the cavity waist.

We can further check the model for consistency by studying the inter-
play between tilt and the lifting of triplet degeneracy far from a crossing. It
is relatively straightforward to show that this scales as α2 for small α. The
triplet splitting should also be quite insensitive to membrane position so
we can use it to estimate the membrane’s true tilt or even align the mem-
brane.d Figure 8 shows the data from Fig. 3(c) along with the analytical
result for x0 = 325 µm and αz = 0.395 mrad. We obtain these parameters
by first adjusting αz until the triplet splitting is correct and then varying x0

to match the avoided crossings. We have also plotted the result for displace-
ment in the opposite direction, which essentially amounts to comparing our
data with BL and TL in Fig. 5. The fit does not agree with the data here or

dThis is in fact how we determined α ≈ 0.
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at any other negative value of x0. The smaller TR gap therefore confirms
the sign of our membrane displacement (and it is the primary reason we
chose to study the right side).

Fig. 8. Model plotted on top of the transmission data for the tilted membrane. Here
we show the analytical results for the membrane situated at +325 and -325 µm from the
cavity waist.

We have performed similar analysis at several different values of the
tilt stage’s motor position, and these are summarized in Fig. 9. Assum-
ing there is a small constant tilt αy, we can fit this data with the form

α =
√

(aqz)2 + α2
y where a is a mechanical conversion factor between

motor position qz and tilt. From the fit αy = 0.16 ± 0.01 mrad and
a = 0.0756 ± 0.0001 mrad/µm. From the length of the tilt stage lever arm
(12.7 mm) alone we estimate a = 0.0787 mrad/µm, implying a calibration
error of ∼ 4%. We have plotted the expected result for the same αy using a
12.7-mm lever arm for reference.

It is also important to note here that in the model we reproduce the
ordering of the triplet modes: as we rotate the membrane about the y axis,
the modes most extended in the z direction move the furthest.

The model is in reasonable agreement with the data thus far, and it im-
plies that in future experiments we should be able to tune the x2-sensitivity
to essentially any desired value. This could be a very important tool in our
attempt to perform QND measurements of a single phonon.
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Fig. 9. Plot of tilt estimated from triplet splitting versus our tilt stage motor position.
The red curve is a fit allowing the motor’s linearity constant and misalignment αy to
float and the blue curve is the expectation for the same αy and determining the linearity
constant from the tilt stage geometry.

4. Summary/Outlook

In this paper we have demonstrated that a SiN membrane can couple two
nearly-degenerate transverse optical cavity modes, generating an avoided
crossing and a cavity detuning that is strongly quadratic in membrane
displacement x. Without optimizing the system, we have shown that this
x2-dependence (which is tunable over a wide range via membrane tilt) can
be as strong as that generated using a single cavity mode and a membrane
of reflectivity |r|2 ≥ 0.9989±0.0005. This means it might still be possible to
perform QND measurements of phonon number in a membrane of modest
reflectivity (i.e. |r|2 ∼ 0.13). We also derived a perturbative model of the
system that quantitatively agrees with observations and further predicts
the x2-strength should be tunable to arbitrary strength through mm-scale
membrane displacements.

These results should be taken with the caveat that the sharp avoided
crossings described above occur when the membrane is not at a node of the
intracavity field. As discussed previously,7,10 this means that the optical
loss in the membrane will limit the maximum cavity finesse. Whether or not
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the effect of this reduced finesse can be offset by the very strong quadratic
coupling or reduced optical loss (e.g., via improved membrane materials or
further engineering of the cavity modes) remains to be seen.
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Lithium-7 exhibits a broad Feshbach resonance that we exploit to tune the
interactions in a Bose-Einstein condensate (BEC). We find that the rate of
photoassociation can be enhanced by several orders of magnitude by tuning
close to the resonance, and use this effect to observe saturation in the rate of
association of a BEC for the first time. We have also used a lithium BEC to
explore the effects of disorder on the transport and coherence properties of the
condensate. We also show that the scattering length goes through a shallow
zero-crossing far from the resonance, where it may be made positive or negative
with a magnitude of less than 0.1 ao, and have made preliminary transport
measurements in the regime of weak repulsive and attractive interactions.

Keywords: BEC; photoassociation; association; disorder; soliton; Feshbach
resonance.

1. Introduction

Our original BEC experiment with 7Li used the |F = 2,mF = 2〉 state,1 for
which the number of condensate atoms was limited by the negative scatter-
ing length a of the state. The |1, 1〉 state, on the other hand, has a broad
Feshbach resonance located near 737 G (see Fig. 1), which enables large
condensates to be formed when the interactions are repulsive. Moreover,
the strength of the interactions may be adjusted from strongly interact-
ing to essentially non-interacting. Three experiments are described in the
following sections: (1) photoassociation in the strong coupling regime; (2)
the effects of disorder on a BEC with tunable interactions; and (3) the
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measurement of a vs. magnetic field, and in particular, the achievement of
a < 0.1ao, where ao is the Bohr radius.

Fig. 1. Coupled-channels calculation of the scattering length for the |1, 1〉 Feshbach
resonance in 7Li.

2. Photoassociation

A productive path for creating ultracold molecules is to associate ultracold
atoms. Two methods have been employed for this purpose: magnetic field
sweeps through Feshbach resonances, and photoassociation. Photoassocia-
tion is, in many ways, a more promising method because the strength of the
atom-molecule coupling is adjustable, and the number of suitable systems is
vastly greater than with Feshbach sweeps. A question of both fundamental
and practical interest, for both methods, is what are the limitations on the
rate of association?

Quantum mechanical unitarity limits the scattering amplitude for two-
body scattering to the de Broglie wavelength. This mechanism usually
sets the maximum rate of association for non-condensed atoms, as ver-
ified in several experiments, including our past work with 7Li in the
|2, 2〉 state cooled to the transition temperature Tc for BEC.2 In the
case of a condensate, the unitarity limit is extremely high and has been
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considered unreachable. Javanainen and his collaborators have suggested
a process they term “rogue photodissociation” that should result in a
more stringent rate limit than unitarity. In this process, atom pairs are
stimulated back to the energetic continuum and are thereby lost from
the condensate.3 The maximum rate of association achieved in a previ-
ous condensate experiment was close to the rogue limit, but no saturation
was observed.4

Motivated by this background, we designed an experiment in which the
strength of the coupling between free atoms and an excited molecular state
would be extremely large. The rates we achieved are unprecedented and
sufficiently large to directly test the rogue model.5 This was accomplished
by varying the free-bound coupling via a Feshbach resonance. By tuning
near the Feshbach resonance, the scattering wavefunction is enhanced at
short internuclear distances where photoassociation occurs. The v = 83 vi-
brational level of the electronically excited 13Σ+

g state was chosen as com-
promise between a large free-bound coupling strength, and a large detuning
(60 GHz) from the 2P1/2 atomic resonance. Excited molecules created by
the photoassociation laser pulse decay into pairs of energetic atoms that
escape the trap and are detected as atom loss. The on-resonance rate co-
efficient Kp is defined by the time evolution of the density distribution:
ṅ(t, r) = −Kpn

2(t, r)

2.1. Results

Figure 2 shows Kp for a thermal gas (T > Tc). The rate coefficient varies
by more than 4 decades for fields near the Feshbach resonance. The en-
hancement of Kp at the resonance (737 G) is due to the large enhancement
of the scattering wavefunction. The minimum at 710 G, on the other hand,
is a result of a node in the scattering wave function that occurs when a is
tuned to the Condon radius of the transition.5

The data of Fig. 2 demonstrate that Kp can be extraordinarily large
near the Feshbach resonance, making it an ideal system for exploring sat-
uration. Figure 3 shows Kp vs. the intensity I of the PA laser beam. The
data in this plot correspond to a condensate with no visible thermal frac-
tion. By achieving extremely large Feshbach-enhanced loss rates, saturation
is observed in a condensate for the first time. The maximum Kp of 1.4 ×
10−7 cm3/s is nearly a factor of 10 larger than that of any previous pho-
toassociation experiment.2
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Fig. 2. Kp for a thermal gas (∼10 µK). The inset shows Kp for three different ex-
cited state vibrational levels, using the same scale as the main figure. Reprinted from
Ref. 5.

2.2. Analysis

A comparison of the data with theory is facilitated by defining Kp in terms
of a characteristic length L, as Kp = (�/m)L. The rogue photodissociation
limit Kpd is obtained by taking L to be the average interatomic separation,
n
−1/3
o , evaluated at the peak density no.3 For the data of Fig. 3, no = 1.6 ×

1012 cm−3, giving Kpd ∼ 8 × 10−9 cm3/s. Surprisingly, the measured max-
imum Kp is nearly 20 times greater than Kpd. More recent calculations6,7

show that while dissociation does impose a rate limit on condensate loss,
it is not as stringent as Kpd. Our measured maximum Kp is, nonethe-
less, nearly 7 times greater then predicted from the equations given in
Ref. 7.

An alternative explanation is provided by quantum mechanical unitar-
ity. If we take L ∼ 2RTF , where RTF � 10 µm is the radial Thomas-Fermi
radius, then Kp ∼ 1.8 × 10−7 cm3/s, in good agreement with the mea-
sured value of 1.4 × 10−7 cm3/s. The observed saturation could also be
explained by a higher than expected rogue limit, perhaps due to cross cou-
pling between the photoassociation and Feshbach resonances, as discussed
in Ref. 8.
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Fig. 3. Kp vs. I for a BEC at 732 G (a 
 1000 ao). Reprinted from Ref. 5.

3. Disorder

Materials, no matter how pure they may be or how carefully they are pre-
pared, inevitably have some random disorder. This disorder can be caused
by crystal defects, impurities, or anything that changes the landscape of
how electrons move about in the material. Disorder can play an impor-
tant role in the transport properties of real materials. Superconductors, for
example, can have zero resistance in the presence of material defects, but
with increasing disorder the electrons will localize, resulting in an insulat-
ing state. This effect has been explored in many systems experimentally,
including superfluid helium in porous media, and thin-film and granular
superconductors. Many fundamental questions, such as the nature of the
insulating state and the characterization of phase coherence, remain to be
resolved.

Gases of ultracold atoms have proven to be extremely useful stand-ins
for actual materials because of the ability to control many of the parameters,
including the characteristics of the disorder itself, as well as the particle
interactions via a Feshbach resonance. Following the pioneering work at
Florence,9 Orsay,10 and Hannover,11 we use optical speckle to create a
highly-controllable disordered potential in a 7Li |1, 1〉 BEC.12 The speckle
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in our experiment is created by passing a 1030 nm laser beam through a
microlens array. The resulting intensity autocorrelation function is Gaussian
with a characteristic length σd = 15 µm. The strength of the disordered
optical potential Vd is proportional to the intensity and is continuously
controllable up to the chemical potential of the condensate (∼1 kHz).

3.1. Results

We have performed two transport experiments and have also studied
coherence as revealed by interference in time-of-flight (TOF) expansion
imaging.12 These experiments were performed near 720 G, where a �
200 ao. Pinning of the condensate by disorder was studied by slowly drag-
ging it through the disorder. This was accomplished by using a magnetic
gradient to change the trap center. The data show that the condensate is
pinned when Vd � µ,12 where µ is the chemical potential of the condensate.
In a related experiment, the trap center is suddenly displaced causing the
condensate to undergo damped, dipole oscillations. The results, displayed
in Fig. 4, show that even small disorder produces significant damping, and
that the motion is overdamped for Vd � 0.4µ. The damping coefficient β is
found to related to Vd by a power law, β ∝ (Vd/µ)5/2. We do not have an
explanation for the value of the exponent.

Fig. 4. Damping of dipole oscillations for various Vd. Reprinted from Ref. 12.
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Figure 5 shows both in situ and the corresponding TOF images for var-
ious values of Vd. The in situ images reveal how the density distribution
is affected by the disorder, while the TOF images provide complementary
information on condensate coherence. We find that the condensate density
becomes increasingly modulated with increasing Vd. When Vd � µ, the con-
densate appears to fragment into disconnected pieces. Interference fringes
are observed in the corresponding TOF images, but in the case of TOF, the
maximum contrast occurs for intermediate disorder strength, Vd � 0.5µ.

Fig. 5. In situ (left) and TOF images (right) for various Vd. (c, d) Vd = 0; (e, f) Vd ≈
0.3 µ; (a, b, g, h) Vd ≈ 0.5 µ; (i, j) Vd ≈ 1.0 µ. Reprinted from Ref. 12.

3.2. Analysis

The transport measurements indicate that global superfluidity is absent
when Vd � 0.5µ, which is also where the condensate begins to fragment,
as shown by the in situ density measurements. A key to interpreting the
interference observed in the TOF images is that the interference patterns
are completely repeatable. This observation rules out phase fluctuations in
the initial condensate as the cause of the TOF interference. At intermediate
Vd, sufficient local coherence remains in the initial condensate to produce
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these reproducible and high-contrast TOF interference patterns. We con-
clude that the condensate must remain connected under these conditions.
For higher Vd (∼µ), the TOF contrast diminishes as the condensate frag-
ments into multiple sites. Similar observations and conclusions were made
by the authors of Ref. 13, although at lower Vd/µ.

4. Direct Measurement of the Scattering Length

The Feshbach resonance in 7Li is unusually broad, and moreover, it has a
very shallow zero-crossing near 544 G (see Fig. 1). These features make the
Feshbach resonance particularly useful for experiments where fine control
of a is desired. The zero-crossing was previously exploited to create bright
matter-wave solitons,14,15 and may also prove useful for achieving a non-
interacting, or at least a very weakly interacting gas for disorder studies.

4.1. Results

We determine a by measuring the axial size and atom number for a BEC
as a function of magnetic field, and compare with solutions of the Gross-
Pitaevski equation. Figure 6 shows the extracted a for fields between the
zero-crossing at 544 G and the resonance at 737 G, where 6 decades of
dynamic range are resolved. The solid line in Fig. 6 is a fit to the standard
Feshbach resonance form:

a(B) = abg

(
1 +

∆B
B −Bo

)
,

where abg = −24.5 ao, ∆B = 192 G, and Bo = 737 G are the best fits to
the data. The fit is remarkably good despite the large dynamic range.

The inset in Fig. 6 shows the extracted values of a near the zero-crossing
in more detail. The two sets of points correspond to whether the magnetic
dipolar interaction is accounted for in the Gross-Pitaevski equation, or is
neglected. The dipolar interaction is generally quite small in lithium because
its magnetic moment is only one Bohr magneton, yet its effect is significant
when the a is smaller than ∼0.1 ao. Since the slope of a(B) near the zero-
crossing is 0.1 ao/G, only moderate field stability is needed to be in the
regime where the dipolar interaction dominates. Similarly small scattering
lengths have been measured in Cs (Ref. 16) and 39K (Ref. 17), but since
the slope of the zero-crossing in 7Li is 6 times smaller than in 39K and
600 smaller than for Cs, the ultimate resolution is significantly better for
lithium.
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Fig. 6. Scattering length a vs. B. The inset shows the zero-crossing in detail. The
squares are the extracted values of a when the magnetic dipole interaction is accounted
for, while the circles correspond to its neglect.

We have repeated the dipole oscillation experiment described in Section
3.1 with very small interaction strength. For small positive a the oscilla-
tions damp as before. Negative a can also be obtained by tuning B below
the zero-crossing, where solitons are formed. Preliminary measurements in-
dicate that damping is qualitatively different for solitons: the amplitude of
the oscillation appears undamped while the number of atoms continuously
decreases.

5. Conclusions

We have used a Feshbach resonance to tune the interactions in Bose con-
densates of 7Li. The strong enhancement of the free-bound wavefunction
overlap enables enormous photoassociation rates and the observation of sat-
uration in a BEC for the first time. Rates far above the predicted “rogue
photodissociation” limit are achieved. The transport and coherence prop-
erties of a BEC in a disordered potential have been explored with optical
speckle. We have used the Feshbach resonance to make a as small as 0.1 ao,
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and observe the damping of dipole oscillations in the presence of disorder for
both weakly repulsive and attractive interactions. These preliminary exper-
iments indicate that damping of dipole oscillations of solitons is manifested
by the loss of atoms rather than damping of oscillation amplitude.
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A PURELY DIPOLAR QUANTUM GAS
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We report on experiments exploring the physics of dipolar quantum gases using
a 52Cr Bose-Einstein condensate (BEC). By means of a Feshbach resonance, it
is possible to reduce the effects of short range interactions and reach a regime
where the physics is governed by the long-range, anisotropic dipole-dipole in-
teraction between the large (6 µB) magnetic moments of Chromium atoms.
Several dramatic effects of the dipolar interaction are observed: the usual in-
version of ellipticity of the condensate during time-of flight is inhibited, the
stability of the dipolar gas depends strongly on the trap geometry, and the ex-
plosion following the collapse of an unstable dipolar condensate displays d-wave
like features.

Keywords: Bose-Einstein condensation, dipolar quantum gases, Feshbach
resonances, condensate collapse, vortex rings.

1. Introduction

Although quantum gases are very dilute systems, most of their properties
are governed by atomic interactions. This allows to use them, for example,
as quantum simulators to study the many-body physics of systems usually
encountered in condensed matter physics.1 However, in all usual quantum
gases, the interactions can be described extremely well by a short range,
isotropic contact potential, whose magnitude is proportional to the s-wave
scattering length a characterizing low energy collisions.

The dipole-dipole interaction taking place between particles having
a permanent electric or magnetic dipole moment has radically differ-
ent properties: it is long-range and anisotropic, as one readily sees from
the expression

Udd(r) =
µ0µ

2

4π
1 − 3 cos2 θ

r3
(1)

giving the interaction energy Udd between two polarized dipoles µ sepa-
rated by r (θ is the angle between r and the direction along which the
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dipoles are pointing). These specific properties have attracted a lot of in-
terest recently, and a large number of theoretical predictions have been
made concerning dipolar quantum gases (see e.g. Ref. 2 for a review): for
instance, the stability of a dipolar BEC depends crucially on the trap geom-
etry (see section 3 below); in a quasi two-dimensional trap, the excitation
spectrum can display a roton minimum instead of the usual Bogoliubov
shape; finally, fascinating new quantum phases (including supersolids) are
predicted to occur for dipolar bosons in an optical lattice.

In practice one always has a competition between contact and dipolar
interactions; it is therefore useful to define the following (dimensionless)
ratio of the dipolar and contact coupling constants:

εdd =
µ0µ

2m

12π�2a
. (2)

The numerical factors are chosen in such a way that a homogeneous dipo-
lar condensate is unstable against collapse for εdd > 1. For usual atomic
magnetic moments µ (e.g. for the alkalis), εdd is very small (typically a few
10−3) and dipolar effects are extremely small. Here, we report on experi-
ments with 52Cr, which has εdd � 0.16 due to its large magnetic moment
µ = 6µB, and which also allows, via Feshbach tuning of the scattering
length a, to even enhance εdd.

This paper is organized as follows. We first describe briefly in Section 2
our experimental setup, with an emphasis on how we use a Feshbach reso-
nance in order to enhance dipolar effects and create a ‘quantum ferrofluid’.
Section 3 is devoted to the study of the geometry dependence of the stability
of a dipolar BEC. Finally, we describe in Section 4 the dynamics following
the collapse of an unstable dipolar condensate.

2. Enhancing dipolar effects using a Feshbach resonance

A BEC of 52Cr containing about 50,000 atoms was obtained in 2005 by
evaporative cooling of optically trapped chromium atoms.3 Shortly after
the achievement of condensation, a first effect of the dipole-dipole inter-
action could be observed in time-of flight experiments:4 The dipole-dipole
interaction tends to elongate the BEC along the magnetization direction.
However, due to the small value of εdd � 0.16, the dipolar interaction was,
in this experiment, only a small perturbation of the contact interaction,
which essentially governed the expansion dynamics.

The existence of several Feshbach resonances5 in 52Cr opens the possi-
bility to tune the scattering length a using an external magnetic field B,
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Fig. 1. Free expansion of a dipolar condensate for two different orientations of the
dipoles with respect to the trap axes. The black (resp. gray) squares and lines correspond
to a situation where the dipoles point along the weak (resp. strong) axis of the trap.
(a): Perturbative regime εdd = 0.16; (b): εdd = 0.75. In that case, the dipole-dipole
interaction is strong enough to inhibit the usual inversion of ellipticity in time of flight.

according to

a = abg

(
1 − ∆

B −B0

)
.

Here, abg � 100 a0 is the s-wave scattering length, B0 the resonance posi-
tion, and ∆ the resonance width. The broadest Feshbach resonance in 52Cr
is located at B0 = 589 G and has a width ∆ of only 1.5 G. This implies
that the field control at the level of 3 × 10−5 r.m.s. that we implemented
allows us to tune a close to 0 with a resolution of about one Bohr radius.

This ‘knob’ permits one to change a and allowed us to perform time of
flight experiments for two different orientations of the dipoles with respect
to the trap axes,6 as in Ref. 4, but now for increasing values of εdd. Exper-
imental results are shown in Fig. 1. One clearly sees the dramatic effect of
an increase of εdd on the expansion dynamics. In particular, for εdd � 0.75,
the inversion of ellipticity of the condensate during time of flight (the usual
‘smoking-gun’ evidence for BEC) is inhibited by the strong dipole-dipole
interaction.

The solid lines in Fig. 1 are theoretical predictions (without any ad-
justable parameters) based on the Gross-Pitaevskii equation (GPE) gen-
eralized to take into account the non-local dipole-dipole interaction in the
description of the macroscopic wavefunction ψ(r, t) of the BEC:

i�
∂ψ

∂t
=
(
− �

2

2m
� + Vext + g|ψ|2 +

∫
|ψ(r′, t)|2Udd(r − r′) dr′

)
ψ. (3)
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Here g = 4π�
2a/m is the contact interaction coupling constant.

In this set of experiments, the trap geometry was not very far from
spherical, which limited the study of dipolar condensates to values εdd � 1.
To go beyond this value and reach the purely dipolar regime εdd � 1,
we shall now see that one needs to tailor the confining potential, so that
the attractive part of the dipole-dipole interaction does not destabilize the
condensate.

3. Geometrical stabilization of a purely dipolar condensate

3.1. Experimental study

It is well known that a BEC with attractive contact interactions is unsta-
ble against long-wavelength fluctuations (this phonon instability leads to
a collapse of the BEC having a < 0). As the dipole-dipole interaction has
an attractive part for dipoles in a ‘head-to-tail’ configuration (see equation
(1) for θ � 0), it is intuitively clear that in a prolate trap with the dipoles
pointing along the weak direction of the trap [see Fig. 2(a)], the net effect of
the dipolar interaction is attractive. Thus, in this configuration, one expects
that when a is reduced, the condensate becomes unstable, at a critical value
acrit which should be positive (the small repulsive contact interaction being
unable, at this point, to counteract the dipolar attraction). Conversely, in
an oblate trap with the dipoles pointing along the strong confinement direc-
tion, the critical scattering length should be negative, and a purely dipolar
quantum gas can be stabilized.

In Ref. 7, this geometry-dependent stability of a dipolar condensate was
studied experimentally. A long period (� 8 µm) optical lattice, obtained
by interfering two laser beams at 1064 nm under a small angle of 8◦, was
superimposed onto the optical dipole trap, allowing us to realize traps with
cylindrical symmetry around the z-axis (polarization direction) and having
an aspect ratio λ ≡ ωz/ωρ that could be varied over two orders of magnitude
(from ∼ 0.1 to ∼ 10) while keeping the average trapping frequency ω̄ =
(ωzω

2
ρ)1/3 constant. The experiment consists of creating a BEC in a trap

with a given aspect ratio λ, then ramping a to a final value af , and finally
measuring the atom number N in the condensate. One observes that when
af is decreased below a critical value acrit, N suddenly drops to zero. We
stress that for all the traps we used, the condensate density was roughly
the same.

Figure 2(b) shows the measured acrit as a function of λ and clearly
displays the expected behavior: for small λ (prolate traps), acrit is positive,
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Fig. 2. (a): Intuitive picture of the geometry-dependent stability of the dipolar Bose gas.
For a prolate trap (aspect ratio λ = ωz/ωρ smaller than one) with the dipoles pointing
along the weak axis of the trap, the dipole-dipole interaction is essentially attractive;
such a condensate is thus unstable. For an oblate trap, the dipole-dipole interaction is
essentially repulsive and the BEC is stable. (b): Stability diagram of a dipolar BEC in
the plane (λ, a). The points with error bars are the experimental results for the critical
scattering length acrit below which no condensate is observed; the solid line is the stability
threshold obtained with a simple gaussian ansatz (see text).

and starts to decrease when the trap becomes more oblate. For λ � 10, one
has acrit � 0, meaning that a purely dipolar quantum gas (εdd → ∞) can
be stabilized by an appropriate trap geometry.

3.2. A simple theoretical model

A simple way to go beyond the qualitative picture above and obtain
an estimate for the instability threshold acrit(λ) is to use a variational
method. Inserting a Gaussian ansatz (with the axial and radial sizes σz and
σρ as variational parameters) into the Gross-Pitaevskii energy functional
whose minimization gives the GPE (3), one obtains the following energy
to minimize:

E(σρ, σz) =
N�ω̄

4

(
2
σ2

r

+
1
σ2

z

)
+
N�ω̄

4λ2/3

(
2σ2

r + λ2σ2
z

)
+
N2

�ω̄a√
2π�

1
σ2

ρσz

[
1 − εddf

(
σρ

σz

)]
, (4)

where � =
√

�/(mω̄). The first two terms are the kinetic and potential
energies, while the third arises from contact and dipolar interactions. The
function f is monotonically decreasing from 1 to −2 as a result of the
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anisotropy of the dipolar interaction. For a given λ, one can find a (possibly
local) minimum of E at finite values of (σρ, σz) if and only if a is larger
than a critical value: this defines the stability threshold acrit(λ) within this
model.

The solid line in Fig. 2(b) is the result obtained with this simple proce-
dure, for the experimental parameters ω̄ = 2π×800 Hz andN � 2×104. One
obtains a relatively good agreement with experimental data. A numerical
solution of the GPE (3) gives even better agreement with measurements.8

Equation (4) allows one to understand easily, in the N → ∞ limit, the
behavior of acrit(λ) for λ → 0 and λ → ∞. Indeed, in this limit, it is the
sign of the interaction term which determines the stability; therefore one
has {

λ→ 0 : BEC unstable if a < add

λ→ ∞ : BEC unstable if a < −2add,
(5)

where add is the length defined in such a way that εdd = add/a (for 52Cr,
one readily calculates, with the help of Eq. (2), that add � 15a0). It is
apparent on Fig. 2(b) that for N = 2× 104, the results are already close to
the N → ∞ limit (5).

4. d-wave collapse of a dipolar condensate

It is natural to ask what happens if one drives the condensate into the
unstable regime, e.g. by decreasing the scattering length below acrit. In
the case of pure contact interactions, a collapse of the condensate, followed
by an explosion of a ‘remnant’ BEC (Bose-Nova), has been observed in
several systems.9–12 More recently, the formation of soliton trains has also
been reported.13,14

We have studied the collapse dynamics of a dipolar condensate15 (in a
roughly spherical trap) by ramping down rapidly the scattering length to
a final value of ∼ 5a0 < acrit, then waiting an adjustable holding time, and
performing a time of flight of 8 ms before imaging the cloud. Figure 3(a)
presents the evolution of the condensate when the holding time is varied.
One observes that the cloud, initially elongated along the magnetization
direction z (horizontal axis on the figure) acquires rapidly a complicated
structure with a four-fold symmetry, corresponding to a density distribution
having a torus-like component close to the plane z = 0 and two ‘blobs’ close
to the z-axis. Interestingly, this angular symmetry of the cloud is very close
to that of a d-wave ∝ (1−3 cos2 θ), i.e. precisely the symmetry of the dipole-
dipole interaction (1). During the same time period, the atom number in
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Fig. 3. (a): Experimental images of the ‘exploding’ remnant condensate after the col-
lapse, as a function of the holding time. (b): Result of a numerical simulation of the
experiment, without any adjustable parameter. The field of view is 130 µm × 130 µm.

the condensate strongly decreases due to the three-body losses occurring
because of the high densities transiently reached during the collapse.

The group of M. Ueda in Tokyo performed a three dimensional numerical
simulation of the GPE (3), in which all input parameters were given their
experimentally measured value.15 Three-body losses were accounted for by
adding the imaginary term

i�
∂ψ

∂t

∣∣∣∣
3 body

= − i�L3

2
|ψ|4ψ

to Eq. (3), where L3 � 2×10−40 m6/s is the measured three-body loss coef-
ficient. Figure 3(b) represents the results of the simulation. The agreement
is excellent, all the more if one keeps in mind that no adjustable parameter
is introduced. Let’s mention that the inclusion of a small delay (also mea-
sured independently) in the time variation a(t) of the scattering length, due
to eddy currents in the vacuum chamber, had to be included to achieve a
quantitative agreement. The simulation also reproduces quantitatively the
time dependence of the condensate atom number.

A fascinating prediction of the numerical simulation is the spontaneous
formation, during the collapse, of two quantized vortex rings with oppo-
site circulation (and charge ±1), as a result of the strongly anisotropic
collapse: the collapse in the radial directions is fast and quickly followed
by an outward flow, while axially the flow is still inward, thus giving rise
to the circulation. Detecting experimentally the presence of vortex rings
is very challenging, but might be done by using interferometric techniques
(e.g. matter wave “heterodyning”) to reveal the winding of the phase of the
BEC wavefunction around the topological defects.
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5. Outlook

The results presented in this paper are the first dramatic manifestations
of dipolar effects in quantum gases, and pave the way for future studies
involving even more strongly interacting dipolar systems, especially the
ones that may be obtained using the permanent electric dipole moments of
heteronuclear molecules in their ground state. Due to the large value of such
dipole moments (on the order of one Debye), the long-range character of
the dipolar interaction could then be used to achieve novel quantum phases
in optical lattices,2 as well as to implement promising quantum information
processing schemes.16

However, already in the case of the comparatively weaker magnetic
dipoles, extremely interesting theoretical proposals deserve experimental
study; to mention only one example, the generation of two-dimensional
solitons17,18 (whose stability arises from the long-range character of the
dipole-dipole interaction) is a very appealing experiment.
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This article summarizes recent work on the exciton-polariton BEC at Stan-
ford, which was presented at ICAP 2008. The covered topics include cooper-
ative cooling of exciton-polariton spin mixtures, quantum degeneracy at ther-
mal equilibrium condition, Bogoliubov excitation spectrum, first and second
order coherence, and dynamical condensation at excited Bloch bands in a one-
dimensional lattice.
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1. Exciton-Polaritons and BEC

An experimental technique of controlling spontaneous emission of an atom
by use of a cavity has been applied to Wannier-Mott excitons in a semicon-
ductor quantum well.1 Due to a strong collective dipole coupling between
microcavity photon fields and QW excitons, a semiconductor planer micro-
cavity features a normal mode splitting of the order of 1∼10 THz,2 which
corresponds to the reversible spontaneous emission of an oscillation pe-
riod of 100 fs ∼ 1 ps.3 Figure 1(a) shows the energy-momentum dispersion
characteristics of such normal modes, often referred to exciton-polaritons.
An observed absorption spectrum and time-dependent emission intensity
feature the normal mode splitting and reversible spontaneous emission, as
shown in Fig. 1(b) and (c).3

A ground state of lower exciton-polariton (LP) at zero in-plane momen-
tum (k = 0) has been identified as a promising candidate for observing
BEC is solids.4 A LP at k = 0 has an effective mass of four orders of
magnitude lighter than a bare exciton mass, so the critical temperature
for polariton BEC is four orders of magnitude higher than that required
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for bare exciton BEC at the same particle density. The extremely light
effective mass of a LP at k = 0 also solves a notorious enemy to exci-
ton BEC, localization due to crystal defects, disorders and inhomogeneous
potential fluctuations. The critical particle density for 2D polariton BEC
is also four orders of magnitude smaller than that required for 2D exci-
ton BEC at the same temperature, which resolves another serious problem
of Auger recombination and dissociation of excitons at high densities. By
inserting 12 to 24 multiple quantum wells into a microcavity, an exciton
density per QW per polariton is further diluted.

2. Bosonic Final State Stimulation and
Polariton Condensation

In the first cold collision experiment of LPs,5 the counterpropagating two
LPs, piled up at bottleneck momentum ±k, collide and scatter into LP
and UP at k = 0 with conservation of energy and momentum. When the
LP population nLP at k = 0 is injected with coherent laser excitation,
an enhanced scattering rate proportioned to (1 + nLP ) is observed as in-
creased population of the UP at k = 0. In the subsequent experiment of
polariton amplifier,6 the weak probe light is injected into the bottleneck
LPs at k �= 0. A linear gain of 10-20 dB due to LP-LP stimulated scatter-
ing was observed during a time interval of the bottleneck polariton lifetime
of ∼ 100 ps.

If a pump rate is further increased to above the condensation threshold,
nLP increases nonlinearly as shown in Fig. 2.7 A threshold is identified as
a quantum degeneracy point where nLP = 1. This sample incorporates a
tapered cavity resonance energy across the wafer. If we excite a particu-
lar spot where the cavity resonance energy is above the bandgap, we can
observe a normal photon leasing behavior based on inverted electron-hole
pairs as shown in Fig. 2. This result clearly demonstrates polariton con-
densation is based on the stimulated scattering of LPs so that electronic
population inversion is not required. Another distinct difference between a
polariton condensation and a photon laser is the pump dependence of lasing
spot sizes. A rapid increase in the photon laser spot size above its threshold
stems from the fact that the critical density is independent of the system
size, while a higher density is required to maintain a quasi-BEC in larger
2D system.8 The measured increase in the polariton condensation spot size
is quantitatively described by this theory.9
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Fig. 1. The energy-momentum dispersion relation (a), absorption spectrum (b), and
time-dependent emission intensity of exciton-polaritons in a GaAs planar microcavity
(c).3

3. Spin Dynamics and Cooperative Cooling of
Exciton-Polariton Mixture

The above polariton condensation experiment satisfies a quantum degen-
eracy condition (nLP � 1) above threshold. In order to satisfy a thermal
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Fig. 2. Emission intensity vs. injected electron-hole density for polariton condensation
and photon laser.7

equilibrium condition simultaneously, the polariton cooling time must be
much shorter than a polariton lifetime. Two tricks are useful to achieve this
criterion: one is a blue detuning (cavity resonance energy is higher than ex-
citon resonance energy at k = 0)10 and the other is a cooperative cooling
by spin mixtures.11

Figure 3 shows the energy-momentum (E − k) and energy-position
(E − x) dispersion characteristics for varying pump rates when the pump
polarization is linear and circular polarization.11 At a pump rate below
thereshold, a standard parabolic (E − k) dispersion and constant (E − x)
dispersion are observed for two cases. At a pump rate above threshold, a
linear pumping scheme realizes the smooth polariton condensation at k = 0,
while a circular pumping scheme features a so-called bottleneck polariton
condensation at k �= 0. This result suggests that co-existence of two spin
components, created by linear polarization pumping, accelerates a cooling
process, compared to the case of single spin injection by circular polariza-
tion pumping. Under circular polarization pumping, the polarization of the
emission at below threshold is almost completely random but the same cir-
cular polarization is maintained in the emission at above the threshold.7

This indicates a spin relaxation time is shorter than a spontaneous cool-
ing time (∼ 100 ps) below threshold, but becomes much longer than a
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stimulated cooling time (� 10 ps) above threshold. Under linear polariza-
tion pumping, the linear polarization is maintained in the emission above
threshold7 but the polarization direction is rotated by ∼ 90◦.11 This unex-
pected result suggests a striking quantum interference effect, that is, the two
scattering amplitudes between iso-spins due to their repulsive interaction
and between hetero-spins due to their attractive interaction constructively
interfere by rotating the polarization direction by 90◦.

Fig. 3. Energy-momentum and energy-position dispersion relations for linear and cir-
cular polarization pumping.10

4. Quantum Degeneracy at Thermal Equilibrium Condition

The first experimental result of satisfying the quantum degeneracy condi-
tion (nLP � 1 or ε0 − µ � kBT ) and the thermal equilibrium condition
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(TLP ∼ Tphonon) is summarized in Fig. 4.10 A linearly polarized pump laser
injects two spin components and takes advantage of a cooperative cooling
mechanism. Fig. 4(a) shows a representative instantaneous polariton popu-
lation vs. excitation energy relation, for which a Bose-Einstein distribution
is fitted with a temperature TLP ∼ 4.4 K and a quantum degeneracy pa-
rameter (ε0 − µ)/kBT ∼ 0.1. As shown in Fig. 4(b) and (c), TLP reaches a
phonon reservoir temperature Tphonon ∼ 4 K at 30 psec after the injection
of hot LPs, while the quantum degeneracy condition is sustained up until
50 psec after the initial excitation.

Fig. 4. Instantaneous polariton population vs. excitation energy (a), time-dependent
polariton temperature (b) and time-dependent quantum degeneracy parameter (c).
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5. Bogoliubov Excitation Spectrum

Observation of a Bogoliubov excitation spectrum, which is a unique signa-
ture of BEC with weakly interacting particles, is summarized in Fig. 5.12

In the Bogoliubov spectrum, an exciton energy normalized by a mean-field
energy E/U is a universal function of a momentum normalized by a healing
length kξ. This is experimentally confirmed by four traps with varying de-
tuning parameters ∆ as shown in Fig. 5. From the slope of linear dispersion
at low momentum regime, the effective sound velocity is measured to be
C ∼ 108 cm/s which is eight orders of magnitude larger than that of atomic
BEC.

Fig. 5. Excitation energy E/U vs. momentum kξ dispersion below and above conden-
sation threshold.

6. First and Second Order Coherence

A first-order spatial coherence function g(1)(r) can be measured with a
Young’s double slit interferometer. The result is shown in Fig. 6(a), in
which the first-order coherence abruptly builds up at BEC threshold and
monotonically decreases with slit separation.9 The solid line is the theoret-
ical prediction based on the Fourier transform of experimental momentum
distribution and explains well the experimental result.
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A second-order temporal coherence function g(2)(0) can be measured
with a Hanbury-Brown and Twiss interferometer. The result is shown in
Fig. 6(b), in which the photon bunching effect

(
g(2)(0) > 1

)
due to bosonic

final state stimulation is observed above threshold. An excess intensity
noise, manifested by g(2)(0) > 1 well above threshold, is explained by co-
existance of thermal and quantum depletion.13

Fig. 6. (a) A first-order coherence function g(1)(r) for varying pump levels. (b) A
second-order coherence function g(2)(0) vs. pump level P/Pth.
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7. Dynamical Condensation at Excited Bloch Bands in
One-Dimensional Lattice

When many exciton-polariton condensates couple with each other in a one-
dimensional lattice structure, Bloch bands are formed due to periodic struc-
ture as shown in Fig. 7(a). In such a system, exciton-polariton condensation
is observed at an excited Bloch band consisting of anti-phased p-waves, as
well as at a ground state band consisting of in-phase coupled s-waves, as
shown in Fig. 7(b).14 A similar phenomenon was also observed in atomic
BEC systems.15

Fig. 7. (a) A Bloch band structure of exciton-polaritons in a one -dimensional lattice.
(b) Exciton-polariton condensation at ground (s-wave) and excited (p-wave) Bloch band
states.
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In 1958, P.W. Anderson predicted the exponential localization1 of electronic
wave functions in disordered crystals and the resulting absence of diffusion.
It was realized later that Anderson localization (AL) is ubiquitous in wave
physics2 as it originates from the interference between multiple scattering
paths, and this has prompted an intense activity. Experimentally, localization
has been reported in light waves3 microwaves,4 sound waves,5 and electron
gases6 but to our knowledge there was no direct observation of exponential spa-
tial localization of matter-waves (electrons or others). We present in this pro-
ceeding the experiment that lead to the observation of Anderson Localization
(AL)7 of a Bose-Einstein Condensate (BEC) released into a one-dimensional
waveguide in the presence of a controlled disorder created by laser speckle.
Direct imaging allows for unambiguous observation of an exponential decay of
the wavefunction when the conditions for AL are fulfilled. The disorder is cre-
ated with a one-dimensional speckle potential whose noise spectrum has a high
spatial frequency cut-off, hindering the observation of exponential localization
if the expanding BEC contains atomic de Broglie wavelengths that are smaller
than an effective mobility edge corresponding to that cut-off. In this case, we
observe the density profiles that decay algebraically.9

Keywords: Bose-Einstein condensate; Anderson localization.

1. Introduction

Ultracold atomic systems are now widely considered to revisit standard
problems of condensed matter physics (CM) with unique control possi-
bilities. Dilute atomic Bose-Einstein condensates (BEC)10 and degenerate
Fermi gases (DFG)11 are currently produced, taking advantage of the re-
cent progress in cooling and trapping of neutral atoms.12 For example, pe-
riodic potentials (optical lattices) with no defects can be designed in a wide
variety of geometries.13 In these lattices, transport has been investigated
at length, showing lattice-induced reduction of mobility14 and interaction-
induced self-trapping.15
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Fig. 1. Observation of Anderson localization in 1D with an expanding Bose-Einstein

condensate in the presence of a 1D speckle disorder.

Introducing disorder in a quantum system can dramatically change
its properties and result in a variety of non-intuitive phenomena, many
of which are not yet fully understood. Quantum systems in disor-
der can show intriguing phenomena such as Anderson localization,1,16

percolation,17 disorder-driven quantum phase transitions and the corre-
sponding Bose-glass18 or spin-glass20 phases. The transport of quantum
particles in non ideal material media (eg the conduction of electrons in
an imperfect crystal) is strongly affected by scattering from impurities of
the medium. Even for weak disorder, semi-classical theories, such as those
based on the Boltzmann equation for matter-waves scattering from the
impurities, often fail to describe transport properties, and fully quantum
approaches are necessary. The basic idea is that contrary to Bloch’s theory
which predicts a frictionless transport of non-interacting particles21 or to
the Drude theory of transport in the presence of impurities which predicts
ohmic conduction, localization effects in disordered potentials may result
in a strong suppression of the electronic transport in solids in the presence
of defects or impurities.1

In the case of degenerate atomic quantum gases, disordered po-
tentials can be produced optically as demonstrated in several recent
experiments.22,23 In addition to the possibility to design perfectly controlled
and phonon-free disordered potentials, these systems offer the possibility to
implement systems in any dimensions, to control the inter-atomic interac-
tions, either by density control or by Feshbach resonances and to measure
in situ atomic density profiles via direct imaging.7,8

Our experiment allows us to study the 1D Anderson Localization of an
expanding BEC in the presence of a weak disorder potential created by laser
speckle (Fig. 1). A 87Rb BEC is created in a hybrid optomagnetic trap24
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where the transverse confinement (ω⊥/2π = 70 Hz) is given by an opti-
cal wave guide (Nd:YAG laser at 1064 nm) whereas a weak inhomogeneous
magnetic field ensures the longitudinal trapping (ωz/2π = 5.4 Hz) as shown
in Fig. 2. Typically we produced small BECs with a few 104 atoms, cor-
responding to transverse and longitudinal radii around 3 µm and 35 µm.
When the magnetic field is switch off, the BEC starts to expands along
the optical guide under the effect of the initial interaction energy, which is
rapidly converted into kinetic energy (the initial chemical potential µin is
around a few 100 Hz, corresponding to expansion velocities below 2 mm/s).
In the early time of the expansion, the interactions decrease rapidly, and
thus the residual interactions play no role during the subsequent expansion
at longer time. They are furthermore completely negligible in the wings of
the atomic wavefunction. To observe AL, we use a weak optical disorder,
i.e. much weaker that the typical kinetic energy of the expanding atoms.
This avoids classical reflections from large peaks, so that localization results
from the destructive interference between multiple quantum reflections of
small amplitude.1,2,9

Fig. 2. Schematic representation of the experimental set-up. The BEC is made in a
hybrid magneto-optical trap. The optical waveguide (transverse confinement) is made
by a far off resonance red-detuned Nd:YAG. The magnetic field (created by a ferro-
magnet) is used for the longitudinal confinement. The speckle is shone perpendicularly
to the propagation axis.



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Anderson localization of matter waves 181

0
Δ z

Δz

0

1

2a) b)

Argon laser

λ=514nm

f

NA

Δz

x

z

Lens

Diffusive
plate

wR,z

0

c(2k)

k
1/σRkmax

D(k)

AL regime
1

c)

c(z)

~

Fig. 3. (a) Experimental realization of laser speckle by shining an argon laser (λ =
514 nm) on a diffusive plate. The speckle is focused on the BEC propagation axis with
a lens of focal length f = 14 mm. The numerical aperture corresponds to N.A. =
0.30±0.03 (b) Autocorrelation function c(δz) = 〈V (z)V (z+δz)〉 of the disorder potential
in case of a uniform illumination. The speckle grain size, given by the width of the
autocorrelation function, is ∆z = πσR = λ/2N.A. = 0.82 µm. (c) Normalized spatial
frequency distribution c̃(2k) (Fourier transform of c(∆z)) of the speckle potential with
the high frequency cut off at 1/σR = 3.85 µm−1. The k-momentum distribution D(k)
of the expanding BEC is also plotted (in arbitrary units) to illustrate the condition for
exponential localization kmax < 1/σR (kmaxσR < 1).

2. Random potential created by laser speckle

The random potential is created by focusing an argon laser (wavelength
λ = 514 nm) passing through a diffusing plate25 onto the atoms, so
that it results in an optical speckle pattern (see Fig. 3(a)). Since the
speckle grain size (defined by the radius of the autocorrelation function
c(δz) = 〈V (z)V (z + δz)〉) is directly related to the numerical aperture NA,
we create an anisotropic speckle pattern by anisotropically illuminating the
diffusive plate. With our numerical aperture (NA= 0.3), the speckle pat-
tern has a very thin grain size of ∆z = λ/(2 NA) = 0.82 µm along the
BEC propagation direction (see Fig. 3b). It is convenient to introduce the
correlation length σR = ∆z/π = 0.26 ± 0.03 µm, such that the spatial fre-
quency spectrum c̃(2k) of V (z) (i.e. the rescaled Fourier transform of c(δz))
has a cut-off at 1/σR. In the transverse directions, the typical speckle grain
sizes (97 and 10 µm) are larger than the BEC dimension and the atoms feel
a homogeneous potential. The disorder potential can then be considered
as 1D.

The disorder amplitude, referred to as VR in the following, is character-
ized by the standard deviation of the speckle potential σV . Since the random
intensity is exponentially distributed, it is simply given by the mean value
VR = σV = 〈V 〉, which is the quantity measured experimentally.
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Finally, the spatial extension of the speckle field is independently con-
trolled by the diffraction angles of the diffusers. To match the BEC expan-
sion, we choose anisotropic diffusing angles so that the illuminating area has
an elongated gaussian shape characterized by the longitudinal and trans-
verse radii wR,z and wR,y with wR,z � wR,y. We use two diffusing plates
with different diffusing angles along the z axis, corresponding respectively
to wR,z = 1.8 and wR,z = 5.3 mm (with wR,y = 0.6 mm for both realiza-
tions). The first one, which allows for higher disorder amplitude (VR|max �
100 Hz) is the one used for the results presented in Ref. 7.

3. How to observe Anderson Localization with an
expanding BEC

Our experiment starts with a small BEC released from a loose hybrid opto-
magnetic trap (ω⊥/2π = 70 Hz and ωz/2π = 5.4 Hz) and expanding in the
wave guide (see Fig. 4). Once interactions are negligible, the BEC is well
described by the sum of non-interacting k-momentum waves, for which the
momentum distribution (D(k)) has a maximum momentum kmax (directly
related to µin) that we measure directly (see Fig. 4(c)) by monitoring the
evolution of the BEC in a flat 1D-potential a.

Naively, kmax must be seen as one of the key parameters that will
set the localisation length. A low kmax will allow us to observe localized
profiles in our experimental field of observation and a large kmax will set
a localisation length so large that the profiles are too broad to be ob-
served. Experimentally, we controlled kmax by varying the number of atoms
and we achieved its smallest value by decreasing this number down to
N = 1.7 × 104, which corresponds to a chemical potential µin/h = 219
Hz. There the BEC expands at a velocity vmax = Ṙz(t) = 1.7 mm/s that
gives kmax = mRbvmax/� = 2.47 ± .25 µm−1.

We have theoretically investigated the scenario of the experiment in
presence of weak disorder (VR � µin), in Ref. 9. At short times, the atom-
atom interactions drive the expansion of the BEC and the disorder does not
play a significant role. Then, when the density has significantly decreased,
the expansion is governed by the scattering of an almost non-interacting
cloud and can be described by the same momentum distribution D(k) as

aThe optical trap induces a loose longitudinal trapping frequency (ωz/2π 
 0.5 Hz),
that we cancel by adding a weakly anti-trapping magnetic potential, created by a pair

of coils along one transverse direction. We choose the current carried by the two coils in
order to compensate carefully the residual trapping frequency (ωz/2π < 0.05 Hz). We
thus achieve a quasi free ballistic expansion over a few millimeters.
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Fig. 4. Expansion of the BEC in the absence of a disorder potential. (a) Experimental
scheme : the BEC is formed in a hybrid trap that is the combination of an horizontal
waveguide ensuring a strong transverse confinement and a loose magnetic longitudinal
trap. The expansion is set along the optical waveguide by switching off the magnetic field.
(b) Determination of the expanding BEC radius by fitting the profile with an inverted
parabola (1 − z2/R2

z) (straight line). The profile shown corresponds to an expansion
time of 400 ms for a BEC of N=1.7 104 atoms. (c) BEC radius versus time for different
residual potentials controlled by an external magnetic field. The trapping frequencies
ωz/2π, obtained by comparing the radius evolution Rz(t) with numerical simulations
(straight lines), correspond respectively to 0.40±0.05 Hz (green triangles), 0.0±0.05 Hz
(red squares) and -0.23±0.05 Hz (blue dots) for the anti-trapping case. The dependence
of the residual trapping frequency on the current in the coils creating the expelling
magnetic field is shown in the inset. In the free ballistic case (red squares) where the
residual trapping potential has been suppressed, the radius evolves with a constant slope
from which we determine the maximum k-momentum kmax.

in the absence of disorder. For a weak disorder potential, the Born approx-
imation holds and implies that each k-momentum wave will be scattered
only if there is a corresponding momentum (the Bragg condition) in the
diffuser spatial spectrum c̃(2k), i.e. the Fourier transform of the disorder
correlation function c(δz). For a speckle potential, the diffraction imposes
a high frequency cut-off on the spatial spectrum: it vanishes for k > 1/σR.
This imposes an effective mobility edge to the observation of an exponential
profile: when kmaxσR < 1, each k-wave of the expanding BEC is scattered
in first order by the disorder potential and localizes exponentially with a
k-dependent localization length L(k). In the stationary regime, the BEC
localizes exponentially, with a localization length given by L(kmax). On
the contrary, when kmaxσR > 1, the k-waves with 1/σR < k < kmax are
not scattered in first order. The localization length is significantly increased
and localization is observed through an algebraic profile, with a power law
decay n1D ∝ 1/|z|β (with β = 2).
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4. Direct observation of localized atomic profiles

Fig. 5. Stationary profile in (a) linear and (b) semi-logarithmic scale of the BEC one
second after release in disorder potential. The initial BEC is made of 1.7 104 atoms
(µin = 219 Hz) which corresponds to a measured value of kmax = 2.47 ± 0.25 µm−1

(kmaxσR = 0.65 ± 0.09). The disorder potential amplitude is weak compared to the
typical kinetic energy of the expanding BEC (VR/µin = 0.12). In the inset of (b), we
display the rms width of the profiles versus time in the presence or absence of the
disorder. This shows that a stationary regime is reached after 0.5 s. Straight lines in
(a) are exponential fits (exp(−2|z|/Lloc)) to the wings and correspond to the straight
lines in (b). The narrow central peak (pink) represents the trapped condensate before
release (t = 0 s). Note that the profiles are obtained by averaging over five runs of the
experiment with the same disorder realization.

With kmax = 2.47 µm−1 and σR = 0.26 µm as experimen-
tal conditions, we observe the localization in the exponential regime
kmaxσR = 0.65 ± 0.09 < 1. As soon as we switch off the longitudinal trap-
ping, in the presence of weak disorder, the BEC starts expanding, but the
expansion rapidly stops, in stark contrast with the free expansion case (see
inset of Fig. 5(b) showing the evolution of the rms width of the observed
profiles). A plot of the density profile, in linear and semi logarithmic co-
ordinates (Fig. 5a,b), then shows clear exponential wings, a signature of
Anderson Localization. In addition, we verified that we rapidly reach (in
less than one second) a stationary situation when the exponential profile
no longer evolves, as seen on Fig. 6(a). An exponential fit to the wings of
the density profiles yields the localization length Lloc, which also no longer
evolves when the stationary situation is reached. We can then compare the
measured localization length with the theoretical value.9

Figure 7 shows the variation of Lloc with the amplitude of the disor-
der, VR, for the same number of atoms, i.e. the same kmax. In addition
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Fig. 6. (a) Three successive density profiles, from which the localization length is ex-
tracted by fitting an exponential to the atomic density in the wings. (b) Localization
length Lloc, vs expansion time t. The error bars indicate 95% confidence intervals on the
fitted values

to the results published in,7 we present here the measurement obtained
with a larger speckle field extension (wR,z = 5.3 mm compared to wR,z =
1.8 mm). The dash-dotted line is a plot of the localization length calcu-
lated for the values of kmax and σR determined experimentally. The shaded
area reflects the variations of the dash-dotted line when one takes into ac-
count the uncertainties in kmax and σR. The uncertainty in the calibration
of VR does not appear in Fig. 7. We estimate this to be not larger than
30 %, which does not affect the agreement between theory and experiment.
At low disorder amplitude, the profile extension can become comparable
to the size of the speckle with small extension (wR,z = 1.8 mm) and the
measurement can be affected. The larger speckle field, which is much larger
than the atomic wavefunction, indeed shows a much better agreement than
the one presented in Ref. 7.

We have investigated the regime where the initial interaction energy is
large enough that a fraction of the atoms have a k-vector larger than 1/σR

by repeating the experiment with a BEC containing a larger number of
atoms. In this regime, the localization of the BEC becomes algebraic for the
scales accessible experimentally. Indeed, the part of the BEC wavefunction
corresponding to the waves with momenta in the range 1/σR < k will
expand further before it eventually localizes at much longer scales : this
plays the role of an effective mobility edge where a significant change in the
wavefunction behavior is expected. Figure 8a shows the observed density
profile in such a situation (kmaxσR = 1.16±0.14). The log-log plot suggests
a power law decrease in the wings, with an exponent of 1.97 ± 0.05, in
agreement with the theoretical prediction of wings decreasing as 1/|z|2.
In this regime, where no localization length can be extracted, we verified
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that the algebraic decay does not depend on the amplitude of the disorder
(Fig. 8(b)).

5. Conclusion

Coherent transport of waves within a large variety of media has been at-
tracting a considerable amount of interest. The subject is of primary impor-
tance within the context of condensed matter physics, for example to un-
derstand normal metallic conduction, superconductivity, superfluid flows in
low temperature quantum liquids, but also in optics, acoustics and atomic
physics with special interest in coherent diffusion in inhomogeneous sys-
tems. The main difficulty in understanding quantum transport results from
the subtle interplay of interferences, scattering onto the potential landscape,
and possibly interatomic interactions. Direct imaging of atomic quantum
gases in controlled optical disordered potentials reveals here again that it is
a promising technique to investigate this variety of open questions. Firstly,
as in other problems of condensed matter simulated with ultra-cold atoms,

Fig. 7. Localization length Lloc versus the disorder amplitude VR for kmaxσR = 0.65±
0.09. The data are obtained with two different diffusing plates, inducing two different

extensions for the disordered potential: wR,z = 1.8 mm (diamond light blue) and wR,z =
5.3 mm (square dark blue). The dash-dot red curve shows the theoretical predictions for
Lloc and the two straight lines represent the uncertainty associated with the evaluations
of kmax and σR. For low amplitude values of VR (typically below 25 Hz), the smaller
speckle realization gives much more reliable values as its extension remains much larger
than the measured localization lengths. For intensity reasons, larger disorder amplitude
were not accessible in the experiment.
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Fig. 8. (a) Stationary profiles in the algebraic localization regime for different disorder
amplitudes VR. The initial BEC is made of 1.7 × 105 atoms (µin = 520 Hz) which
corresponds to a measured value of kmax = 4.47 ± 0.30 µm−1 (kmaxσR = 1.16 ± 0.14).
The straight lines are the fits of the wings to a power law decay (n1D ∝ 1/|z|β). The
different values obtained for β are shown in (b) (blue squares). In addition the red circles
correspond to values found with higher number of atoms (2.8 × 105) with kmaxσR =
1.30 ± 0.2.

direct imaging of atomic matter-waves offers unprecedented possibilities
to measure important properties, such as the localization length in this
problem. Secondly, our experiment can be extended to quantum gases with
controlled interactions where localization of quasi-particles, Bose glass or
Lifshits glass are expected, as well as to Fermi gases and to Bose-Fermi
mixtures where rich phase diagrams have been predicted. The reasonable
quantitative agreement between our measurements and the theory of 1D
Anderson localization in a speckle potential demonstrates the high degree
of control in our set-up. It opens the path to the realization of “real” quan-
tum simulators for investigating Anderson localization in a wider variety
of models. Extending the technique to two and three dimensions, and bet-
ter controlling interactions, it might be possible to better understand the
behavior of real materials. We could experience situations where current
theory can not provide precise predictions. In the long run, a better under-
standing of these phenomena will allow the improvement of semi-conductor
devices, such as amorphous silicon-based electronic devices, for example.
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One of the most intriguing phenomena in physics is the localization of waves
in disordered media. This phenomenon was originally predicted by P. W. An-
derson, fifty years ago, in the context of transport of electrons in crystals, but
it has never been directly observed for matter waves. Ultracold atoms open
a new scenario for the study of disorder-induced localization, due to the high
degree of control of most of the system parameters, including interactions. For
the first time we have employed a noninteracting Bose-Einstein condensate to
study Anderson localization. The experiment is performed in a 1D lattice with
quasi-periodic disorder, a system which features a crossover between extended
and exponentially localized states as in the case of purely random disorder in
higher dimensions. We clearly demonstrate localization by investigating trans-
port properties, spatial and momentum distributions. Since the interaction in
the condensate can be controlled, this system represents a novel tool to solve
fundamental questions on the interplay of disorder and interactions and to
explore exotic quantum phases.

Keywords: Anderson localization; Bose-Einstein condensate.

1. Introduction

Localization of particles and waves in disordered media is a ubiquitous
problem in modern physics, originally studied by P. W. Anderson in his
famous paper “Absence of diffusion in certain random lattices”,1 that ap-
peared exactly fifty years ago. In that paper Anderson considered the case
of electrons in a crystal lattice, described by a single particle tight binding
model with random on-site energies, showing that the transport (diffusion
of an initially localized wavepacket) is suppressed when the amplitude ∆ of
disorder exceeds a critical value of the order of the tunneling amplitude J
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between adjacent sites. For this discovery, in 1977 Anderson was awarded
the Nobel Prize in Physics.

Since then, the issue of localization in the presence of disorder has been
investigated in many other systems, and nowadays the term Anderson local-
ization, also known as strong localization, refers to the general phenomenon
of the localization of waves in a random medium, and applies e.g. to the
transport of electromagnetic waves, acoustic waves, quantum waves, spin
waves, etc. This phenomenon has been experimentally observed in a variety
of systems.2 For example, evidence of the Anderson localization for light
waves in disordered media has been provided by an observed modification of
the classical diffusive regime, featuring a conductor-insulator transition.3,4

Recently, the first effects of weak nonlinearities have also been shown in
experiments with light waves in photonic lattices.5,6 Despite this, the tran-
sition between extended and localized states originally studied by Anderson
for non-interacting electrons has not been directly observed in crystals, ow-
ing to the high electron-electron and electron-phonon interactions.7 Indeed,
a clear understanding of the interplay between disorder and nonlinearity is
still lacking and is considered a crucial issue to be addressed in contempo-
rary condensed matter physics.8

The combination of ultracold atoms and optical potentials offers a novel
platform for the study of disorder-related phenomena where most of the
relevant physical parameters, including those governing interactions, can
be controlled.9,10 The introduction of laser speckles11 and quasi-periodic
optical lattices12 has made possible the investigation of the physics of dis-
order. After preliminary investigations in regimes where localization was
precluded either by the size of the disorder or by delocalizing effects of
nonlinearity,11,13–16 the first observation of Anderson localization of a mat-
ter wave has been recently reported.17,18

In Ref. 17 we have studied the disorder induced localization of a quan-
tum wavefunction in a lattice system, following the original idea of Ander-
son,1 by using a Bose-Einstein condensate in which the atom-atom interac-
tions can be tuned independently of the other parameters.19 The lattice is
realized by means of a one-dimensional periodic optical potential, and dis-
order is introduced by using a weaker incommensurate secondary lattice.
The resulting quasi-periodic lattice constitutes an experimental realization
of the so called Harper20 or Aubry-André model.21 This system displays
a transition from extended to localized states analogous to the Anderson
transition, but already in one dimension,22,23 whereas in the case of pure
random disorder, more than two dimensions would be needed.24 We have
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clearly observed this transition by studying transport and both spatial and
momentum distributions, also verifying the scaling behaviour of the critical
disorder strength.

2. The quasi-periodic lattice

The quasi-periodic bichromatic potential, obtained by superimposing two
one-dimensional optical lattices, has the form

Vb(x) = s1ER1 sin2(k1x) + s2ER2 sin2(k2x+ φ) (1)

where ki = 2π/λi (i = 1, 2) are the lattice wavenumbers, si are the heights
of the two lattices in units of their recoil energies ERi = h2/(2mλ2

i ), and φ
is an arbitrary phase. The potential of wavelength λ1 creates the primary
lattice, of period d = λ1/2, that is weakly perturbed by the secondary
lattice of wavelength λ2.

In the case of a non-interacting condensate, the axial and transverse
degrees of freedom are separable. Along the direction of the bichromatic
lattice, the system is described by the single-particle Hamiltonian H1D =
−(�2/2m)∇2

x +Vb(x). In the tight-binding limit this system can be mapped
to the Aubry-André model21 by expanding the particle wavefunction ψ(x)
over a set of maximally localized Wannier states |wj〉 at the lattice site j.
The resulting Hamiltonian is23

H = −J
∑

j

(|wj〉〈wj+1 | + |wj+1〉〈wj |) + ∆
∑

j

cos(2πβj + φ)|wj〉〈wj | (2)

where J is the tunneling amplitude between adjacent sites, that depends on
the height of the main lattice according to J � 1.43s0.98

1 exp(−2.07
√
s1),25

β = λ1/λ2 is the ratio of the two lattice wave numbers, and ∆ the strength
of disorder that can be written as ∆ � s2ER2/(2ER1) = s2β

2/2.26 In the
experiment, the two relevant energies J and ∆ (see Fig. 1a) can be con-
trolled independently by changing the heights of the primary and secondary
lattice potentials, respectively.

The bichromatic potential can display features of a perfectly ordered
system, when the two wavelengths are commensurate, but also of qua-
sidisorder when β is irrational.21,22 In the latter case, a common choice
in the study of the Aubry-André model is the inverse of the golden ratio,
β = (

√
5 − 1)/2, for which the model displays a “metal-insulator” phase

transition from extended to localized states at ∆/J = 2.23 The localization
properties of incommesurate potentials have been extensively investigated
in the literature and it was soon recognized that the underlying mechanism
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Fig. 1. (a) Plot of the bichromatic potential for s1 = 10, ∆/J = 10, together with the
first and second Bloch bands of the primary lattice (gray stripes around 3 and 8 Er

respectively). The lowest gray stripe represents the amplitude 2∆ of the disorder. (b)
Typical density plot of a low-lying eigenstate of the bichromatic potential, as a function
of ∆/J (vertical axis), obtained by direct diagonalization of the full hamiltonian H1D .
For small values of ∆/J the state is delocalized over many lattice sites (left inset). For
∆/J ≈ 7 the state becomes exponentially localized on lengths smaller than the lattice
constant (right inset).

is essentially the same as for Anderson localization for pure disordered
systems.22,23,27,28

In the experiment the value of β has been fixed to β = 1.1972. . . and
the transition is broadened and shifted towards larger values of ∆/J (see
Fig. 1(b)). Owing to the quasi-periodic nature of the potential, the localized
states appear approximately every five sites of the main lattice (2.6 µm).
Figure 1(b) represents a typical density plot of a lowest lying eigenstate
of the bichromatic potential, obtained by direct diagonalization of the full
hamiltonian H1D.

3. The non-interacting condensate

The non-interacting Bose-Einstein condensate is prepared by sympatheti-
cally cooling a cloud of interacting 39K atoms in an optical trap, and then
tuning the s-wave scattering length almost to zero by means of a Feshbach
resonance.19,29

The condensate is initially prepared in a homogeneous magnetic field of
about 396 G, where a broad Feshbach resonance raises the value of the s-
wave scattering length from the background value of −29a0 to about 180a0

(a0 = 0.529 × 10−10 m).19,30 This allows the efficient formation of a stable
condensate. The condensate is trapped in a crossed dipole trap with an
average harmonic frequency of 100 Hz, and contains about 105 atoms. The



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

194 M. Inguscio

scattering length is then reduced by shifting the magnetic field to about
350 G, a the zero-crossing position. This magnetic field is adiabatically
changed with a combined linear and exponential ramp lasting 110 ms, to
avoid shape excitations of the cloud. We estimate a residual scattering
length of the order of 0.1a0, limited by magnetic field instability (100 mG)
and by the contribution to the scattering of higher-order partial waves,
corresponding to an atom-atom interaction energy of U < 10−5J .9

The spatial size of the condensate can be controlled by changing the
harmonic confinement provided by the trap. For most of the measurements
the size along the direction of the lattice is σ ≈ 5 mm. The quasi-periodic
potential is imposed by using two lasers in a standing-wave configuration.16

The Gaussian shape of the laser beams forming the primary lattice also pro-
vides radial confinement of the condensate in the absence of the harmonic
trap.

4. Absence of diffusion

In a first experiment we have investigated transport, by abruptly switch-
ing off the main harmonic confinement and letting the atoms expand along
the one-dimensional bichromatic lattice. Fig. 2(a) shows the spatial dis-
tribution of the atoms at increasing evolution times using detection by
absorption imaging. In the regular lattice (∆ = 0) the eigenstates of the
potential are extended Bloch states, and the system expands ballistically.
For large disorder (∆/J > 7) we observe no diffusion, because in this regime
the condensate can be described as the superposition of several localized
eigenstates whose individual extensions are less than the initial size of the
condensate. In the crossover between these two regimes we observe a ballis-
tic expansion with reduced speed. This crossover is summarized in Fig. 2(b),
which shows the width of the atomic distribution versus the rescaled disor-
der strength ∆/J for a fixed evolution time of 750 ms, for three different
values of J . In all three cases, the system enters the localized regime at
the same disorder strength, providing compelling evidence for the scaling
behaviour of the model in Eq. (1).

In this regime, the eigenstates of the Hamiltonian in Eq. (1) are ex-
ponentially localized, and the tails of diffusing wave packets are expected
to behave like stretched exponentials.31 We have therefore analysed the
tails of the spatial distributions with an exponential function of the form
fα(x) = A exp(−|(x − x0)/l|α), the exponent α being a fitting parameter.
Two examples of this analysis, one for weak disorder and one for strong
disorder, are shown in Figs. 3(a), 3(b). The exponent α exhibits a smooth
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Fig. 2. (a) In situ absorption images of the Bose-Einstein condensate diffusing along the
quasi-periodic lattice for different values of ∆ and J/h = 153 Hz (h is Planck’s constant).
For ∆/J ≥ 7 the size of the condensate remains at its original value, reflecting the onset
of localization. (b) Root-mean-squared size of the condensate for three different values
of J , at a fixed evolution time of 750 ms, versus the rescaled disorder strength ∆/J . The

dashed line indicates the initial size of the condensate. The onset of localization appears
in the same range of values of ∆/J in all three cases.

crossover from a value of two to a value of one as ∆/J increases (Fig. 3(c)),
signalling the onset of an exponential localization. The value α = 2 that we
obtain for small ∆/J corresponds to the expected ballistic evolution of the
initial Gaussian momentum distribution of the non-interacting condensate.
We note that in the radial direction, where the system is only harmonically
trapped, the spatial distribution is always well fitted by a Gaussian function
(α = 2).

Fig. 3. (a), (b) Experimental profiles and fitting function fα(x) (thick line) for ∆/J = 1
(a) and ∆/J = 15 (b) (note the vertical log scale). The dotted line in (b) represents a
Gaussian fit, α = 2. (c) Dependence of the fitting parameter α on ∆/J , indicating a
transition from a Gaussian to an exponential distribution.
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5. The momentum distribution

Information on the eigenstates of the system has also been extracted from
the analysis of the momentum distribution of the stationary atomic states
in the presence of a shallow harmonic confinement. The width of the axial
momentum distribution P (k) is inversely proportional to the spatial extent
of the condensate in the lattice. We have measured it by releasing the atoms
from the lattice and imaging them after a ballistic expansion.

In Fig. 4, we show examples of the experimental momentum distribu-
tions that are in agreement with the model predictions for the low-lying
eigenstates. Without disorder, we observe the typical grating interference
pattern with three peaks at k = 0,±2k1, reflecting the periodicity of the
primary lattice. The tiny width of the peak at k = 0 indicates that the
wavefunction is spread over many lattice sites.32 For weak disorder, the
eigenstates of the Hamiltonian in Eq. (1) are still extended, and additional
momentum peaks appear at momentum space distances ±2(k1 − k2) from
the main peaks, corresponding to the beating of the two lattices. As we fur-
ther increase ∆/J , P (k) broadens and its width eventually becomes com-
parable with that of the Brillouin zone, k1, indicating that the extension of
the localized states becomes comparable with the lattice spacing. From the
theoretical analysis of the Aubry-André model, we have a clear indication
that in this regime the eigenstates are exponentially localized on individ-
ual lattice sites. We note that the side peaks in the two bottom profiles of
Figs. 4(a), 3(b) indicate that the localization is non-trivial, that is, the tails
of the eigenstates extend over several lattice sites even for large disorder.
The small modulation on top of the profiles is due to the interference be-
tween the several localized states over which the condensate is distributed.
In Fig. 4(c), we present the root-mean-squared width of the central peak of
P (k) as a function of ∆/J , for three different values of J . The three data sets
lie on the same line, confirming the scaling behaviour of the system. A vis-
ibility of the interference pattern, V = (P (2k1)−P (k1))/(P (2k1)+P (k1)),
can be defined to highlight the appearance of a finite population in the
momentum states ±k1 and, therefore, the onset of exponential localization
with an extension comparable with the lattice spacing. In Fig. 4(d), we
show the visibility extracted from the same data as Fig. 4. Experiment and
theory are again in good agreement, and feature a sudden decrease in the
visibility for ∆/J ≈ 6.
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Fig. 4. (a), (b) Experimental and theoretical momentum distributions P (k) for increas-
ing ∆/J (0, 1.1, 7.2 and 25, from top to bottom). The interference pattern of a regular
lattice observed at ∆ = 0 is at first modified by the appearance of peaks at the beat-
ing between the two lattices, and then increasingly broadened. Momentum is measured

along the horizontal axes in units of k1. (c) Root-mean-squared size of the central peak of
P (k) versus ∆/J , for three different values of J . The experimental data follow a unique
scaling behaviour, as expected from theory (continuous line). The width of the peak is
measured in units of k1. (d) Visibility V of the interference pattern versus ∆/J . In both
experiment and theory (continuous line), V decreases abruptly for ∆/J ≈ 6, indicating
localization on distances comparable to the lattice period.

6. Interference between multiple localized states and effects
of weak interactions

Further information on the localized states can be extracted from the inter-
ference of a small number of them. This can be obtained by simply reducing
the spatial extent of the condensate through an increase of the harmonic
confinement. Typical profiles of P (k) are displayed in Figs. 5(a)–5(c). De-
pending on the degree of confinement, we observe one, two or three states,
featuring a smooth distribution or a clear multiple-slit interference pattern.
The spacing of the fringes yields a spatial separation between the localized
states of about five sites, as expected.

We have also observed first effects of the interactions on the interference
pattern of multiple localized states. In the non interacting regime the states
are independent, owing to the large separation with respect to their axial
extent, and the phase of the interference pattern varies randomly in the
range [0, π], from shot to shot. When a weak interaction is turned on, the
eigenstates of the system become a superposition of an increasing number
of noninteracting eigenstates, and the effective tunneling between them in-
creases. This produces a decrease of the phase variance, and eventually the
states lock in phase.

The independent localized states have a quasi-two-dimensional geome-
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Fig. 5. (a)-(c) Momentum distribution of the condensate prepared in a disordered lattice
with ∆/J ≈ 10 for different values of the harmonic confinement; (a) Profile of a single
localized state (initial spatial size of the condensate, σ = 1.2 µm); (b) Interference of two
localized states (σ = 1.2 µm); (c) Three states (σ = 2.1 µm). (d) Dislocated interference
pattern.

try, because their axial extents are much smaller than their radial extents.
This feature makes our system an excellent testing ground for studying
the physics of quasi-two-dimensional systems,33 which were recently inves-
tigated using widely spaced optical lattices.34 Actually, we have also ob-
served interference patterns which present a dislocation (Fig. 5d), possibly
produced by thermal activation of a vortex in one of the two localized states
as in Ref. 34, but in our case for non-interacting atoms.

7. Conclusions and perspectives

We have observed Anderson localization of coherent non-interacting matter
waves in a disorderd bichromatic lattice. This system offers a high degree
of theoretical and experimental control, making it a novel platform for the
study of the interplay between interaction and disorder, paving the way for
possible new exotic quantum phases.9,10,26,35 Preliminary studies already
reveal how a weak, controllable interaction affects the observed localization
transition.
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FERMI GASES WITH TUNABLE INTERACTIONS
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Fermi gases with magnetically tunable interactions provide a clean and con-
trollable laboratory system for modelling interparticle interactions between
fermions. Near a Feshbach resonance, the s-wave scattering length diverges and
Fermi gases are strongly interacting, enabling tests of nonperturbative many-
body theories in a variety of disciplines, from high temperature superconduc-
tors to neutron matter and quark-gluon plasmas. We measure the entropy and
energy of this model system, enabling model-independent comparison with
thermodynamic predictions. Our experiments on the expansion dynamics of
rotating strongly interacting Fermi gases reveal extremely low viscosity hydro-
dynamics. Combining the thermodynamic and hydrodynamic measurements
enables an estimate of the ratio of the shear viscosity to the entropy density. A
strongly interacting Fermi gas in the normal fluid regime is found to be a nearly
perfect fluid, where the ratio of the viscosity to the entropy density is close to a
universal minimum that has been conjectured by string theory methods. In the
weakly interacting regime near a zero crossing in the s-wave scattering length,
we observe coherently prepared Fermi gases that slowly evolve into long-lived
spin-segregated states that are far from equilibrium and weakly damped.

Keywords: Fermi gas, hydrodynamics, entropy, viscosity, spin-state segregation.

1. Introduction

Interacting fermionic particles play a central role in the structure of mat-
ter. For this reason, cold Fermi gases with magnetically tunable interactions
serve as a paradigm for testing the predictive capability of theories in a va-
riety of disciplines, from high temperature superconductivity1 to minimum
viscosity hydrodynamics in quark-gluon plasmas.2 To understand these sys-
tems in the regime of very strong interactions between fermionic particles,
such as the strong coupling between electrons in high-Tc superconductors
and the strong interactions between neutrons in neutron matter, nonper-
turbative many-body theories are required.
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In recent years, based on progress in optical cooling and trapping of
fermionic atoms, a clean and controllable strongly interacting Fermi sys-
tem, comprising a degenerate, strongly interacting Fermi gas,3 is now of
interest to the whole physics community. Strongly interacting Fermi gases
are produced near a Feshbach resonance,3–5 where the zero energy s-wave
scattering length aS is large compared to the interparticle spacing, while
the interparticle spacing is large compared to the range of the two-body
interaction. In this regime, the system is known a unitary Fermi gas, where
the unitarity limit determines the size of the two-particle scattering cross
section and the properties are universal and independent of the details of
the two-body scattering interaction.6,7 In contrast to other strongly inter-
acting Fermi systems, in atomic gases, the interactions, energy, and spin
population can be precisely adjusted, enabling a variety of experiments for
exploring this model system.

Many studies of strongly interacting Fermi gases have been implemented
over the past several years. Some of the first experiments observed the ex-
pansion hydrodynamics of the strongly interacting cloud.3,8 Evidence for
superfluid hydrodynamics was first observed in collective modes.9,10 Collec-
tive modes were later used to study the T = 0 equation of state throughout
the crossover regime.11–13 Recently, measurements of sound velocity have
also been used to explore the T = 0 equation of state.14 Below a Fesh-
bach resonance fermionic atoms join to form stable molecules and molec-
ular Bose-Einstein condensates.15–19 Fermionic pair condensation has been
observed by projection experiments using fast magnetic field sweeps.18,19

Above resonance, strongly bound pairs have been probed by radio frequency
and optical spectroscopy.20–23 Phase separation has been observed in spin
polarized samples.24,25 Rotating Fermi gases have revealed vortex lattices in
the superfluid regime26,27 as well as irrotational flow in both the superfluid
and normal fluid regimes.28 Measurement of the thermodynamic proper-
ties of a strongly interacting Fermi gas was first accomplished by adding a
known energy to the gas, and then determining an empirical temperature
that was calibrated using a pseudogap theory.29 Recent model-independent
measurements of the energy and entropy30 provide very important informa-
tion, because they enable direct, precision tests that distinguish predictions
from recent many-body theories, without invoking any specific theoretical
model.31,32
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2. Measuring the Energy and Entropy of a Strongly
Interacting Fermi Gas

In a strongly interacting Fermi gas, both the energy per particle E and en-
tropy per particle S can be measured in a model-independent way, without
invoking any specific theoretical predictions. We describe our recent mea-
surements and compare the results to recent nonperturbative many-body
calculations.

2.1. Model-independent energy measurement

Model-independent energy measurement is a consequence of the virial theo-
rem, which holds for a unitary Fermi gas near a broad Feshbach resonance,
where the zero-energy s-wave scattering length is very large compared to
the interparticle spacing, while the range of the potential is very small. The
virial theorem has been demonstrated both theoretically,33–37 and experi-
mentally,33 and is a consequence of universal thermodynamics.7 While the
local density approximation (LDA) was assumed in our proof of the virial
theorem,33 several other proofs show that the result holds even when the
LDA breaks down.34–37 For a strongly interacting Fermi gas in a harmonic
trap, E = 2〈U〉, where 〈U〉 is the average single particle trapping poten-
tial. For a scalar pressure in the local density approximation, the potential
energy is the same in each direction, and one obtains33

E = 3mω2
z〈z2〉. (1)

The mean square size of the cloud is most easily measured in the long
(axial) z-direction of the trap. The harmonic oscillation frequency ωz is
precisely measured by parametric resonance. Corrections arising from trap
anharmonicity are readily incorporated.30

Equation (1) is a remarkable result: The energy of the strongly inter-
acting gas obeys the same virial theorem as an ideal gas, despite the fact
that the strongly interacting gas generally contains condensed superfluid
fermion pairs, noncondensed pairs, and unpaired atoms, all in the nonper-
turbative regime. A simple measurement of the axial mean square cloud
size enables a model-independent determination of the energy.

2.2. Entropy measurement

The entropy is measured by means of an adiabatic sweep of the bias mag-
netic field from the strongly interacting regime near the Feshbach resonance
to a weakly interacting regime. In 6Li, the bias field is swept from 840 G,
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just above the Feshbach resonance at 834 G, to a weakly interacting regime
at 1200 G.

The entropy SW of the weakly interacting gas is essentially the entropy
SI of an ideal Fermi gas in a harmonic trap, which can be calculated in terms
of the mean square axial cloud size 〈z2〉1200 measured after the sweep, as
shown in Fig. 1. Since the sweep is adiabatic, we have

S = SW . (2)

6
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3

2

1

0

S
I / 

k B

2.01.51.00.50.0
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>W0) / z
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Fig. 1. The conversion of the mean square size at 1200 G to the entropy. The dashed

line is the calculated entropy for a noninteracting Fermi gas in the gaussian trap with a
trap depth U0/EF = 10. 〈z2〉0 = 0.71 z2

F is the measured ground state size for a weakly
interacting Fermi gas, where z2

F is the mean square size for an energy equal to the Fermi
energy of an ideal gas at the trap center. The calculated error bars of the entropy are
determined from the measured error bars of the cloud size at 1200 G.

The adiabaticity of the magnetic field sweep is verified by employing
a round-trip-sweep: The mean square size of the cloud at 840 G after a
round-trip-sweep lasting 2 s is found to be within 3% of mean square size
of a cloud that remains at 840 G for a hold time of 2 s. The nearly unchanged
atom number and mean square size proves the sweep does not cause any
significant atom loss or heating, which ensures entropy conservation for
the sweep. The background heating rate is the same with and without the
sweep and increases the mean square size by about 2% over 2 s. We correct
the mean square size data by subtracting the increase arising from the
background heating rate.
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2.3. Energy versus Entropy

To measure the energy versus entropy for the strongly interacting gas at
840 G, we prepare the gas with a selected total energy and measure the
mean square cloud size at 840 G. Then we prepare the gas again at 840
G with the same energy and adiabatically sweep to 1200 G before the
cloud size is measured. We generate the energy-entropy curve for a strongly
interacting Fermi gas, as shown in Fig. 2. Here, the energy measured from
the mean square axial cloud size at 840 G is plotted versus the entropy
measured at 1200 G after an adiabatic sweep of the magnetic field.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

E
 / 

E
F

543210

S / kB

Fig. 2. Measured total energy per particle in units of EF of a strongly interacting
Fermi gas at 840 G versus its entropy per particle in units of kB . For comparison, the
dot-dashed green curve shows E(S) for an ideal Fermi gas. EF is the Fermi energy of an
ideal Fermi gas at the trap center.



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

206 J. E. Thomas

2.4. Testing predictions from many-body theories

Perhaps the most important application of the energy-entropy measure-
ments is to test strong coupling many-body theories and simulations. Since
the energy and entropy are obtained in absolute units without invoking
any specific theoretical model, the data can be used to distinguish recent
predictions for a trapped strongly interacting Fermi gas.

Figure 3 shows how four different predictions compare to the mea-
sured energy and entropy data. These include a pseudogap theory,38,39 a
T-matrix calculation using a modified Nozières and Schmitt-Rink (NSR)
approximation,31,32 a quantum Monte Carlo simulation,40,41 and a com-
bined Luttinger-Ward and De Dominicis-Martin (LW-DDM) variational
formalism.42 The most significant deviations appear to occur near the
ground state, where the precise determination of the energy seems most
difficult. The pseudogap theory predicts a ground state energy that is well
above the measured value while the LW-DDM prediction of is slightly low
compared to the measurement. All of the different theories appear to con-
verge at the higher energies.

3. Viscosity Measurement in a Rotating Strongly
Interacting Fermi Gas

We have measured the expansion dynamics of a rotating Fermi gas.28 The
gas is cooled by evaporation to near the ground state and a controlled
amount of energy is added. The trap is rotated abruptly to excite a scissors
mode. Then the gas is released and imaged after a selected expansion time.
Figure 4 shows typical data, where the initial angular velocity Ω0 is given
in terms of the axial trap frequency ωz. As the gas expands, the angular
velocity increases, which is a consequence of irrotational hydrodynamics:
the moment of inertia decreases as the aspect ratio approaches unity.

Remarkably, the cloud for the normal fluid at E/EF = 2.1 behaves
almost identically to the superfluid cloud for E/EF = 0.56. Indeed, the
moment of inertia is quenched well below the rigid body value in both
cases, and is in very good agreement with expectations for irrotational
flow, Fig. 5.

While irrotational flow is expected for the superfluid, since the velocity
field is the gradient of the phase of a macroscopic wavefunction, irrotational
flow in the normal fluid requires very low shear viscosity. To estimate the
shear viscosity, we have included in the hydrodynamic equations the diver-
gence of the pressure tensor arising from shear viscosity. Figure 6 shows
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Fig. 3. Comparison of the experimental energy versus entropy data with the calcula-
tions from strong coupling many-body theories. The dashed grean line is a pseudogap
theory.38,39 The blue dotted line is an NSR calculation.31,32 The red solid line is a
quantum Monte Carlo simulation.40,41 The solid black line is a LW-DDM variational
calculation.42

how the estimated shear viscosity depends on the energy of the cloud, The
shear viscosity is given in units of the quantum viscosity, i.e. in units of �n,
where n is the density.

By combining the entropy and viscosity measurements, we are able to
estimate the ratio of the shear viscosity to entropy density. The results are
compared to the string theory conjecture43 for the minimum ratio in Fig. 7.
We find that a strongly interacting Fermi gas in the normal fluid regime
(above 0.8EF ) is a nearly perfect fluid.

4. Spin Segregation in Weakly Interacting Fermi Gases

Near the zero crossing of the Feshbach resonance, the s-wave scattering
length is smoothly tunable from small and negative to small and positive. In
this weakly interacting regime, we have studied the behavior of coherently
prepared samples, and observe anomalous spin segregation.44
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Fig. 4. Aspect ratio and angle of the principal axes versus time. Purple squares (no
angular velocity); Blue solid circles (Ω0/ωz = 0.40, E/EF = 0.56); Red open circles
(Ω0/ωz = 0.40, E/EF = 2.1); Green triangles (Ω0/ωz = 1.12, E/EF = 0.56). The
solid, dashed, and dotted lines are the theoretical calculations using the measured initial
conditions. EF is the Fermi energy of an ideal gas at the trap center.
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Fig. 5. Quenching of the moment of inertia versus the square of the measured cloud
deformation factor δ. Blue solid circles: Initial energy before rotation below the superfluid
transition energy Ec = 0.83 EF . Red open circles: Initial energy before rotation above

the superfluid transition energy. Green solid line: Prediction for irrotational flow.
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Fig. 6. Estimated shear viscosity in units of �n versus energy in units of EF .
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Fig. 7. Estimated ratio of the shear viscosity to the entropy density. Dotted line shows
the string theory conjecture for the minimum ratio.43

In the experiments, a cold sample of 6Li fermions is prepared in one
spin state. Then, a radiofrequency pulse is used to create a coherent 50-50
superposition of the two lowest hyperfine states |1〉 and |2〉. Initially, the
two states have identical axial density profiles in the trap. After 200 ms,
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we observe the behavior shown in Fig. 8: For slightly negative scattering
length of a few bohr, spin state |1〉 moves outward creating a two-peaked
density distribution and state |2〉 moves inward, creating a narrow density
distribution. Reversing the sign of the scattering length reverses the roles
of the two spin states.

The highly nonequilibrium spatial distributions created by the segrega-
tion relax slowly, over several seconds, back to identical spatial profiles. No
segregation is observed unless the sample is coherently prepared.

In contrast to the spin segregation observed in Bose gases,45 which is
explained by an overdamped spin wave, the spin segregation observed in a
very weakly interacting Fermi gas is not explained by existing theory: We
find the theory predicts that the difference in the spin densities oscillates
with the axial period. For our trap, this period is 7 ms, while the observed
spatial profiles evolve slowly over several hundred ms. Further, the theory
predicts an amplitude which is a factor of 200 too small. We believe that
the long correlation time for opposite spins in the weakly interacting regime
may require a completely different treatment than previous work.

state 1 state 2

a12<0

a12>0

Fig. 8. Absorption images (state 1 and state 2) taken at 200 ms after the RF pulse for
526.2 G (scattering length a12 < 0) and for 528.8 G (a12 > 0). Each image is 1.2 mm in
the horizontal direction.

5. Conclusions

Studies of Fermi gas mixtures near a Feshbach resonance enable tests of re-
cent many-body theories in the strongly interacting unitary regime, where
the properties of the system are independent of the details of the two-body
scattering interactions and hence universal. Model-independent measure-
ments of the entropy and energy are directly compared to predictions with-
out invoking any specific model for the data analysis. Agreement is found to
be reasonably good. However, the precise behavior of the superfluid-normal
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fluid transition has not yet been determined. Measurements of the hydro-
dynamic expansion of a rotating strongly interacting Fermi gas reveal very
low viscosity and a ratio of shear viscosity to entropy density close to the
minimum conjectured by string theory methods. At the opposite extreme,
measurement of coherently prepared Fermi gases near the zero crossing in
the s-wave scattering length reveal very strong, long-lived spin segregation
that is not predicted by previous theories based on overdamped spin waves,
which successfully explained spin segregation in Bose gases.

Acknowledgments

This research is supported by the Physics Divisions of the Army Research
Office and the National Science Foundation and the Chemical Sciences,
Geosciences and Biosciences Division of the Office of Basic Energy Sciences,
Office of Science, U.S. Department of Energy.

References

1. Q. Chen, J. Stajic, S. Tan and K. Levin, Phys. Rep. 412, 1 (2005).
2. U. Heinz, Nucl. Phys. A 721, 30 (2003).
3. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade and J. E. Thomas,

Science 298, 2179 (2002).
4. M. Houbiers, H. T. C. Stoof, W. I. McAlexander and R. G. Hulet, Phys. Rev.

A 57, R1497 (1998).
5. L. Luo, et al., New J. Phys. 8, 213 (2006).
6. H. Heiselberg, Phys. Rev. A 63, 043606 (2001).
7. T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
8. T. Bourdel, et al., Phys. Rev. Lett. 91, 020402 (2003).
9. J. Kinast, S. L. Hemmer, M. Gehm, A. Turlapov and J. E. Thomas, Phys.

Rev. Lett. 92, 150402 (2004).
10. M. Bartenstein, et al., Phys. Rev. Lett. 92, 203201 (2004).
11. J. Kinast, A. Turlapov and J. E. Thomas, Phys. Rev. Lett. 94, 170404 (2005).
12. A. Altmeyer, et al., Phys. Rev. Lett. 98, 040401 (2007).
13. M. J. Wright, et al., Phys. Rev. Lett. 99, 150403 (2007).
14. J. Joseph, et al., Phys. Rev. Lett. 98, 170401 (2007).
15. M. Greiner, C. A. Regal and D. S. Jin, Nature 426, 537 (2003).
16. S. Jochim, et al., Science 302, 2101 (2003).
17. M. W. Zweirlein, et al., Phys. Rev. Lett. 91, 250401 (2003).
18. C. A. Regal, M. Greiner and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004).
19. M. W. Zwierlein, et al., Phys. Rev. Lett. 92, 120403 (2004).
20. C. Chin, et al., Science 305, 1128 (2004).
21. G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack and R. G. Hulet,

Phys. Rev. Lett. 95, 020404 (2005).
22. C. H. Schunck, Y. il Shin, A. Schirotzek and W. Ketterle, Nature 454, 739

(2008).



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

212 J. E. Thomas

23. J. T. Stewart, J. P. Gaebler and D. S. Jin, Nature 454, 744 (2008).
24. M. W. Zwierlein, A. Schirotzek, C. H. Schunck and W. Ketterle, Science 311,

492 (2005).
25. G. B. Partridge, W. Li, R. I. Kamar, Y. Liao and R. G. Hulet, Science 311,

503 (2006).
26. M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck and W. Ket-

terle, Nature 435, 1047 (2005).
27. C. H. Schunck, M. W. Zwierlein, A. Schirotzek and W. Ketterle, Phys. Rev.

Lett. 98, 050404 (2007).
28. B. Clancy, L. Luo and J. E. Thomas, Phys. Rev. Lett. 99, 140401 (2007).
29. J. Kinast, et al., Science 307, 1296 (2005).
30. L. Luo, B. Clancy, J. Joseph, J. Kinast and J. E. Thomas, Phys. Rev. Lett.

98, 080402 (2007).
31. H. Hu, P. D. Drummond and X.-J. Liu, Nature Physics 3, 469 (2007).
32. H. Hu, X.-J. Liu and P. D. Drummond, Phys. Rev. A 77, 061605(R) (2008).
33. J. E. Thomas, J. Kinast and A. Turlapov, Phys. Rev. Lett. 95, 120402 (2005).
34. F. Werner and Y. Castin, Phys. Rev. A 74, 053604 (2006).
35. F. Werner, Phys. Rev. A 78, 025601 (2008).
36. D. T. Son, Phys. Rev. Lett. 98, 020604 (2007).
37. J. E. Thomas, Phys. Rev. A 78, 013630 (2008).
38. Q. Chen, Pseudogap theory of a trapped Fermi gas, private communication.
39. Q. Chen, J. Stajic and K. Levin, Phys. Rev. Lett. 95, 260405 (2005).
40. A. Bulgac, J. E. Drut and P. Magierski, Phys. Rev. Lett. 96, 090404 (2006).
41. A. Bulgac, J. E. Drut and P. Magierski, Phys. Rev. Lett. 99, 120401 (2007).
42. R. Haussmann and W. Zwerger, Phys. Rev. A 78, 063602 (2008).
43. P. K. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 111601

(2005).
44. X. Du, L. Luo, B. Clancy and J. E. Thomas, Observation of anomalous spin

segregation in a trapped fermi gas, to appear in Phys. Rev. Lett. (September
2008).

45. H. J. Lewandowski, D. M. Harber, D. L. Whitaker and E. A. Cornell, Phys.
Rev. Lett. 88, 070403 (2002).



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

213

PHOTOEMISSION SPECTROSCOPY FOR
ULTRACOLD ATOMS

D. S. JIN,∗ J. T. STEWART and J. P. GAEBLER

JILA, Quantum Physics Division, National Institute of Standards and Technology
and Department of Physics, University of Colorado, Boulder, CO 80309, USA

∗E-mail: jin@jilau1.colorado.edu, http://jilawww.colorado.edu/∼jin/

We perform momentum-resolved rf spectroscopy on a Fermi gas of 40K atoms
in the region of the BCS-BEC crossover. This measurement is analogous to
photoemission spectroscopy, which has proven to be a powerful probe of exci-
tation gaps in superconductors. We measure the single-particle spectral func-
tion, which is a fundamental property of a strongly interacting system and is
directly predicted by many-body theories. For a strongly interacting Fermi gas
near the transition temperature for the superfluid state, we find evidence for a
large pairing gap.

Keywords: ARPES; BCS-BEC crossover; fermions; superfluidity.

We realize a powerful new technique to probe ultracold atoms and use this
technique to probe the BCS-BEC crossover.1 The phase diagram of the
BCS-BEC crossover was first mapped out at JILA using observations of pair
condensation.2 Since then, there have been many experiments exploring this
crossover. Many of these experiments have examined macroscopic quantities
such as thermodynamics, collective excitations, and superfluidity. In this
paper, we focus instead on probing microscopic behavior in the crossover.
This allows direct access to the excitation gap, which is an essential feature
of fermionic superfluidity.

In the BCS limit, the excitation gap ∆ is the order parameter which
characterizes the onset of the new order at the superfluid (or superconduc-
tor) phase transition. The gap is zero above the transition temperature Tc

and non-zero below Tc. This excitation gap arises because of the pairing of
fermions, which results in a minimum energy, 2∆, that must be added to
create excitations with fermionic character. In other words, 2∆ is the mini-
mum energy required to break a pair. In the BCS-BEC crossover, things get
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even more interesting because an excitation gap is expected to exist above
the superfluid phase transition temperature.3–8 Here, 2∆ is still the min-
imum energy to break a pair, but ∆ is now referred to as the pseudogap
and does not necessarily signal the onset of the superfluid phase transi-
tion. This concept of preformed pairs (pairing that occurs at temperatures
above Tc) is perhaps easiest to see when thinking about the limit of a BEC
of diatomic molecules. Here, clearly the pairing (molecule formation) can
happen at temperatures well above the BEC transition temperature.

Clearly, one would like to probe the excitation gap in the BCS-BEC
crossover and see the predicted pseudogap as well as the pairing that occurs
in the superfluid phase. Previous experiments have used photoassociation9

or rf spectroscopy10–14 to probe microscopic behavior in the BCS-BEC
crossover. Our new photoemission spectroscopy technique presented here
is based on rf spectroscopy.

In 2003, our group used rf spectroscopy to measure the binding energy
of potassium Feshbach molecules.10 The minimum energy to break a pair,
2∆, is simply the binding energy in the BEC limit. In 2004, the Innsbruck
group reported rf spectroscopy of the BCS-BEC crossover and the obser-
vation of a double-peak structure in the spectrum.12 This was interpreted
as observation of the gap.12,15 In 2007, the MIT group used this same in-
terpretation of rf spectra for a strongly imbalanced Fermi gas mixture and
came to the incorrect conclusion that this system had pairs without super-
fluidity in the T = 0 limit.14 This conclusion was difficult to believe because
it meant that there exist bosons (the pairs) that do not Bose condense at
T = 0. The problem lies with the rf spectroscopy and a number of theorists
have pointed out problems with the simple interpretation of double-peaked
rf spectra in terms of a pairing gap.16

Two issues can affect the interpretation of the rf spectroscopy results.
The first issue is the fact that the density of the gas varies spatially because
the atoms are confined in a harmonic potential. The gas density is highest
in the center of the cloud and falls to zero at the edges of the cloud. This
inhomogeneous density is important if one is probing many-body behavior,
which of course depends on density. In particular, the size of the excitation
gap in the BCS-BEC crossover depends on density (except in the BEC
limit where the pairing becomes a two-body effect, namely molecules). A
number of theory papers have pointed out that the two features in the
double-peaked rf spectra come from different parts of the cloud.15,17–21 One
peak, which occurs near the single-atom Zeeman frequency, is due to atoms
at low density at the edges of the cloud. The second peak, which is shifted
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in frequency with respect to the single-atom Zeeman frequency, comes from
the center of the cloud where the density is high and many-body effects are
important. Ignoring the unshifted feature due to atoms at the edges of the
cloud, one is left with a single, frequency-shifted peak. This feature shows
that there is a many-body (density-dependent) shift; this could be due to a
pairing gap or could instead be simply a mean-field, or cold-collision, shift.

A second issue is final-state effects, which is relevant for the situation
where the rf spectroscopy involves transfer of the strongly interacting atoms
into a spin state that is also strongly interacting. This was the case for the
6Li experiments.12–14 Even if one assumes that the shifted peak is due
to pairing, extracting a value for the gap from the measured frequency
shift is a difficult theoretical problem when there are final-state effects.22–27

These final-state effects can be avoided if the strongly interacting atoms are
transferred into a spin-state where the atoms are only weakly interacting
with the remaining cloud.

Our recent work1 and also recent results from the MIT group28 report
rf spectroscopy of a strongly interacting Fermi gas without strong final-
state effects. The MIT paper28 directly contrasts data for 6Li atoms with
and without strong final-state effects. The rf spectra in the two cases are
dramatically different, both qualitatively and quantitatively. These recent
results show that density inhomogeneity and final-state effects are likely
causes of the double-peak structure in previous rf spectra, which therefore
can not be simply interpreted as evidence for pairing. In 40K rf spectroscopy,
final-state effects are easily avoided and in fact the final spin-state in the
rf transfer is so weakly interacting that atoms transferred into this state
can pass through the gas with a low probability of experiencing even one
collision. Beyond just permitting rf spectroscopy without complicated final-
state effects, this circumstance allows us to extract additional information
and obtain a clear signature of a pairing gap.

We can now obtain momentum-resolved rf spectra, since the momenta
of the atoms transferred into the new spin-state are not scrambled by col-
lisions. This turns out to provide a very close analogue to photoemission
spectroscopy (PES) of solids29 (see Fig. 1). For electronic systems, PES
has proven to be a powerful probe of the excitation spectra.30 In a typical
photoemission experiment, a beam of photons ejects electrons from the sam-
ple via the photoelectric effect. These photons are counted as a function of
their energy and momentum. Using conservation of energy, the energy of the
single-particle states in the solid can be determined. Thus, PES reveals the
density of states and the dispersion, ES vs. k, for the single-particle states
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Fig. 1. Photoemission spectroscopy for ultracold atom gases. a In electron
PES, one measures the energy of electrons emitted from solids, liquids, or gases by the
photoelectric effect. Using energy conservation, the original energy of the electrons in
the substance can be determined. Similarly, in photoemission spectroscopy for atoms, rf
photon with energy, hν, transfers atoms into a weakly interacting spin state. b The rf
photon drives a vertical transition where the momentum �k is essentially unchanged. By
measuring the energy and momentum of the out-coupled atoms (upper curve) we can
determine the quasiparticle excitations and their dispersion relation (lower curve). Here
φ is the Zeeman energy difference between the two different spin states of the atom.

in a strongly interacting electron system. This technique has been used to
probe the excitation gap in high-Tc superconductors and other strongly
correlated materials. Note that in PES, as well as in our experiment, the
photon momentum is negligible compared to the typical momentum of the
strongly interacting particles.

The basic steps of our technique for atoms are (1) apply a short rf
pulse, (2) turn off the trap, (3) selectively image the transferred atoms
after a period of expansion from the trap, (4) obtain the three-dimensional
number of atoms as a function of momentum N(k) using an inverse Abel
transform, and (5) repeat for different rf frequencies.1 If we simply count
the number of atoms vs. rf frequency, we obtain an rf spectra without final-
state effects. If we use conservation of energy, we can extract the occupation
of single-particle states as a function of energy Es and momentum k in the
strongly interacting atom gas.

Figure 2 shows the intensity map (proportional to number of atoms as
a function of Es and k) measured for the strongly interacting Fermi gas. In
the intensity map, the observed energy width of the data is larger than the
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Fig. 2. Single-particle excitation spectrum obtained using photoemission
spectroscopy for ultracold atoms. Data is for a strongly interacting Fermi gas where
1/k0

F a = 0 and T ≈ Tc. Plotted is an intensity map of the number of atoms out coupled
to a weakly-interacting spin state as a function of the single-particle energy Es and wave
vector k. The black line is the expected dispersion curve for an ideal Fermi gas. The
white points (*) mark the center of each fixed energy distribution curve. The Fermi wave
vector k0

F is 8.6±0.3µm−1. The white line is a fit of the centers to a BCS-like dispersion.

measurement resolution and can be caused by a finite lifetime of the single-
particle excitations. The black line shows the dispersion for free particles,
E = �

2k2/2m. The white points show the measured dispersion curve, which
was obtained by fitting a Gaussian to the intensity vs Es for each value of k.
This dispersion curve shows a back-bending behavior that is characteristic
of a pairing gap.

One of the aspects of PES that makes it a useful probe of microscopic
behavior is that it measures the spectral function, which is a quantity that
is directly predicted by many-body theories.30 The spectral function for the
BCS-BEC crossover has been discussed in many theory papers. The peaks of
the spectral function are predicted to follow a “BCS-like” dispersion curve
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where the BCS gap is replaced by the pseudogap.3–8 This dispersion has
two branches, with one corresponding to the occupied part of the excitation
spectrum while the other corresponds to the Bogoliubov excitations. With
our technique, as in PES of solids, we only measure the states that are
occupied and so would not expect to see the excited branch when probing
a low temperature gas.

The white points in Fig. 2 fit well to the BCS-type dispersion with the
chemical potential and the gap ∆ as fit parameters. It should be noted
that these best fit values can be influenced by the density inhomogeneity
of the trapped gas and by the fact that we use Gaussian fits to extract the
peak (white points) for each value of k. Our photoemission spectroscopy
for ultracold atoms reveals the dispersion curve Es(k) and we are able to
see the back-bending behavior characteristic of an excitation gap due to
pairing of fermions. (Note also that one can easily discriminate against
atoms at very low density at the edges of the cloud, which would give
a signal that follows the simple quadratic dispersion shown by the black
line.)

In conclusion, we have used photoemission spectroscopy, accomplished
by momentum resolving the out-coupled atoms in rf spectroscopy, to probe
the occupied single-particle density of states and energy dispersion through
the BCS-BEC crossover. In the future, it may be possible to use spatially
resolved photoemission spectroscopy to probe the local pairing gap. An-
other extension of this work will be to study the BCS-BEC crossover as
a function of temperature and/or unbalanced spin population. Photoemis-
sion spectroscopy for ultracold atoms is a powerful and conceptually simple
probe of strongly correlated atom gases that could be applied to many other
atom gas systems. In the studies presented here, the atoms are interacting
via isotropic s-wave interactions and therefore considering different direc-
tions of the out-coupled atoms’ momenta was not necessary. However, like
angle-resolved photoemission spectroscopy (ARPES) for solids, this tech-
nique could also be applied to non-isotropic systems such as atoms in an
optical lattice, low dimensional systems, or higher partial wave pairing of
atoms.31
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Experiments on ultra-cold atomic gases at nano-Kelvin temperatures are revo-
lutionizing many areas of physics. Their exceptional adaptability and simplicity
allows tests of many-body theory in areas long thought to be inaccessible, due
to strong interactions. Ultra-cold Fermi gases are now providing new insight
into the foundations of quantum theory. They are expected to exhibit a uni-
versal thermodynamic behaviour in the strongly interacting limit, independent
of any microscopic details of the underlying interactions. Here, we present a
systematic theoretical study of strong interacting fermions, using different field-
theoretic methods and comparisons with quantum Monte Carlo simulations.
Pioneering measurements have dramatically confirmed our theoretical predic-
tions, giving the first known evidence for universal fermion thermodynamics.

Keywords: Strongly interacting Fermi gases; unitarity limit; many-body
T -matrix.

1. Introduction

The theory of strongly interacting fermions is of wide interest.1,2 Interacting
fermions are involved in some of the most important unanswered questions
in condensed matter physics, nuclear physics, astrophysics and cosmology.
Though weakly-interacting fermions are well understood,3,4 new approaches
are required to treat strong interactions. In these cases, one encounters a
“strongly correlated” picture which occurs in many fundamental systems
ranging from strongly interacting electrons to quarks.

The main theoretical difficulty lies in the absence of any small coupling
parameter in the strongly interacting regime. Although there are numer-
ous efforts to develop strong-coupling perturbation theories of interacting
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fermions, notably the many-body T-matrix fluctuation theories,5–15 their
accuracy is not well-understood. Quantum Monte Carlo (QMC) simula-
tions are also less helpful than one would like, due to the sign problem for
fermions16 or, in the case of lattice calculations,17,18 the need for extrapo-
lation to the zero filling factor limit.

Recent developments in ultracold atomic Fermi gases near a Feshbach
resonance with widely tunable interaction strength, densities, and temper-
atures have provided a unique opportunity to quantitatively test different
strong-coupling theories.19–23 In these systems, when tuned to have an in-
finite s-wave scattering length — the unitarity limit — a simple universal
thermodynamic behaviour emerges.24–26

We give an overview of the current theoretical and experimental sit-
uation, including detailed quantitative comparisons of theory and several
different experiments that establish the first evidence for universality. We
also explore the open question of how to quantitatively distinguish between
existing theories of strongly interacting Fermi gases.

2. Universality in strongly interacting Fermi gases

Dilute quantum Fermi gases were first considered by Lee, Huang and Yang
(LHY) in 1950’s.3,4 They developed a perturbation theory in the weakly
coupling regime, using a small gas parameter for interactions, kFas, where
kF is the Fermi wavelength and as is the s-wave scattering length. The
validity of their theory was, however, restricted to |kF as| � 1. What will
happen when the gas parameter increases to infinity? This fascinating and
challenging theoretical problem has been studied intensively in recent years.

A brilliant idea, firstly proposed by Ho and co-workers,24 is the uni-
versality hypothesis. This states that due to the infinitely large scattering
length, the interatomic distance becomes the only relevant length scale in
the problem. At this point, the gas is expected to show a universal ther-
modynamic behaviour, independent of any microscopic details of the un-
derlying interactions. In particular, at zero temperature the homogeneous
ground state energy U and the chemical potential µ scale with the Fermi
energy εF as,

U/NεFG = 1 + β, (1)

µ/εF = 1 + β, (2)

where β is a universal many-body parameter,27 and εFG = (3/5)εF is the
mean energy of a non-interacting Fermi gas. At finite temperatures, dimen-
sional analysis leads to an exact scaling identity between the pressure and
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the energy density at finite volume V ,24,25

P =
2
3
E

V
. (3)

This simple equation relates the pressure P and energy E for a strongly
interacting Fermi gas at unitarity in the same way as for its ideal, nonin-
teracting counterpart. In the experimental situation with a harmonic trap,
treating the gas as a collection of many uniform cells then leads to the
simple result,25

E = 2N 〈EP 〉 . (4)

Hence, a strongly interacting Fermi gas at unitary obeys the same virial
theorem as for an ideal quantum gas. As we shall see, this elegant theorem
can be used to measure the total energy of a unitarity Fermi gas in har-
monic traps, since the readily calibrated mean-square size of the cloud is
proportional to the trapping potential energy 〈EP 〉.

3. Strong coupling theories

We first briefly review several commonly used strong coupling theories of
a unitarity Fermi gas. These are mainly approximate many-body T-matrix
theories, involving an infinite set of diagrams — the ladder sum in the
particle-particle channel, since no exact results are known. It is generally
accepted that this ladder sum is necessary for taking into account strong
pair fluctuations in the strongly interacting regime, since it is the leading
class of all sets of diagrams. Different many-body T-matrix theories are
obtained from the approximations used for the diagrammatic structure of
the T-matrix, which takes the form of t(Q) = U/[1 + gχ (Q)] in the normal
state. Here and throughout, Q = (q, iνn), K = (k, iωm), while g−1 =
m/(4π�

2as) −
∑

k 1/(2εk) is the bare contact interaction renormalized in
terms of the s-wave scattering length and atomic mass m. We use εk =
�

2k2/(2m) and
∑

K = kBT
∑

m

∑
k, where q and k are wave vectors,

while νn and ωm are bosonic and fermionic Matsubara frequencies. Different
T-matrix fluctuation theories differ in their choice of the particle-particle
propagator χ (Q).

The simplest choice of χ (Q) was pioneered by Nozières-Schmidt-Rink
above the critical temperature by using a thermodynamic potential.5 This
NSR approach was recently extended to the broken-symmetry superfluid
phase by several authors,8,9,12,13,29 using the mean-field 2×2 matrix BCS
Green’s function in the construction of χ (Q). In particular, we have con-
sidered the contributions of Gaussian fluctuations around the mean-field



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Universality in strongly interacting Fermi gases 223

saddle point to the thermodynamic potential.12 In the Nambu representa-
tion, it takes the form,

δΩ =
1
2

∑
Q

ln det
[
χ11 (Q) χ12 (Q)
χ12 (Q) χ11 (−Q)

]
, (5)

where

χ11 =
m

4π�2as
+
∑
K

G11(Q−K)G11(K) −
∑
k

1
2εk

, (6)

χ12 =
∑
K

G12(Q−K)G12(K), (7)

are respectively the diagonal and off-diagonal parts of the pair propaga-
tor. Here, G11 and G12 are BCS Green’s functions with a variational order
parameter ∆. Together with the mean-field contribution

Ω0 =
∑
k

[
εk − µ+

∆2

2εk
+ 2kBTf(−Ek)

]
− m∆2

4π�2as
, (8)

where the excitation energy Ek = [(εk − µ)2 + ∆2]1/2 and the Fermi distri-
bution function f(x) = 1/(1 + ex/kBT ), we obtain the full thermodynamic
potential Ω = Ω0 + δΩ. All the thermodynamic functions can then be cal-
culated straightforwardly following the standard thermodynamic relations,
once the chemical potential µ and the order parameter ∆ are determined. It
is important to note that in our formalism, the number conservation in the
form of n = −∂Ω/∂µ is strictly satisfied, reproducing exactly the scaling
identity of P = (2/3)(E/V ). For consistency,29 in our formalism we deter-
mine the order parameter at the level of mean field, using the gap equation
∂Ω0/∂∆ = 0. Part of our approach was also previously derived using a
functional integral method.8,13 In the case of the normal Fermi liquid with
vanishing order parameter, the usual NSR formalism is recovered.5

This type of perturbation theory with bare BCS Green functions in the
pair propagators, abbreviated as χ = G0G0, constitutes the simplest de-
scription of strongly interacting fermions, including the essential contribu-
tion from the low-lying collective Bogoliubov-Anderson (BA) modes. More
sophisticated approximations with dressed Green functions in the pair prop-
agators χ (Q), i.e., the fully self-consistent GG and an intermediate GG0

schemes, have also been put forward. The self-consistent approximation was
discussed in detail by Haussmann and co-workers,7,15 both above the below
the superfluid transition temperature Tc. Below Tc, an ad hoc renormaliza-
tion of the interaction strength is required to obtain a gapless BA phonon
spectrum, resulting in a slight violation of the exact scaling identity.
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The intermediate GG0 scheme was investigated in a series of papers by
Levin and co-workers.11,30 We note that, although the theory has been ex-
plored numerically to some extent,30 a complete numerical implementation
is yet to be reached. A simplified version of the GG0 fluctuation theory was
introduced based on a decomposition of the T-matrix t(Q) in terms of a
condensate part and a pseudogap part.11 Thus, we refer to this simplified
approach as the “pseudogap model”.

We emphasize that there is no known a priori theoretical justification
for which T-matrix theory is the most appropriate. Nevertheless, we will
show that the NSR and self-consistent T-matrix calculations agree well with
the lattice QMC simulations. In contrast, the prediction of the pesudogap
model deviates substantially. The universal parameters predicted from the
different theories are respectively, β = −0.599 (NSR), β = −0.632 (self-
consistent T-matrix), and β = −0.409 (pseudogap model), compared to β =
−0.60 ± 0.01 as given by the latest zero temperature QMC simulations.31

The energy and entropy of a unitarity Fermi gas are the most use-
ful benchmarks for comparisons, as they experimentally observable. For
quantitative purposes, we calculate the thermodynamic potential from the
chemical potential, using

Ω (µ, T = const) = −
∫ µ

µ0

n (µ′) dµ′ + Ω (µ0, T ) (9)

at a given temperature. Here, the lower bound of the integral µ0 is suf-
ficiently small so that Ω (µ0, T ) can be obtained accurately from a high
temperature virial expansion. The energy and entropy can then be calcu-
lated from the rigorous scaling relations, E = −3Ω/2 = (3/2)PV , and
S = (−5Ω/2− µN)/T , valid at unitarity.

The energy and entropy obtained in this manner are given in Fig. 1, and
compared to the predictions of QMC calculations. There is a reasonable
agreement between T-matrix theories and the lattice QMC simulations.
The pseudogap model appears to provide the least accurate predictions. At
low temperatures the T-matrix entropies follow a T 3 scaling law, arising
from the Bogoliubov-Anderson phonon modes.15

To include the effects of the trap, we employ the local density approxi-
mation by assuming that the system can be treated as locally uniform, with
a position dependent local chemical potential µ (x) = µ−V (x), where V (x)
is the trapping potential. The local entropy and energy, calculated directly
from the local thermodynamic potential using thermodynamic relations,
are then summed to give the total entropy and energy.
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Fig. 1. Temperature dependence of the energy (upper panel) and of the entropy (lower
panel) of a uniform Fermi gas at unitarity, obtained from different T-matrix approxima-
tions and QMC simulations as indicated.

4. Evidence for universal thermodynamics

The energy and entropy of a strongly interacting Fermi gas at unitarity can
now be accurately measured, due to the pioneering efforts of experimen-
talists at Duke University (6Li) and JILA (40K) . We discuss first the 6Li
experiment in Duke.23 Experimentally, the entropy of the gas is measured
by an adiabatic passage to a weakly interacting region at field strength
B = 1200 G, where kFa = −0.75 and the entropy and temperature is
known from the cloud size after the sweep. The energy E is determined
model independently from the mean square radius of the strongly inter-
acting fermion cloud

〈
z2
〉
840

measured at 840 G, according to the virial
theorem,

E

NEF
=

〈
z2
〉
840

z2
F

(1 − κ) , (10)
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where EF = (3Nω2
⊥ωz)1/3 = kBTF is the Fermi energy for an ideal harmon-

ically trapped gas at the trap center, and z2
F is defined by 3mω2

zz
2
F ≡ EF .

The correction factor 1 − κ accounts for the anharmonicity in the shallow
trapping potential U0 � 10EF .

Calibration of the entropy from the measured mean square axial cloud
size at 1200 G using the theoretically predicted dependence of the entropy
on the size leads to the comparison for the entropy-energy relation, as shown
in Fig. 2 in the blue squares. The agreement is very impressive indeed.

The procedure in the JILA experiment for 40K atomic gases is essentially
the same.22 The strongly interacting gas prepared in a harmonic trap at the
Feshbach resonance field is swept adiabatically to a zero scattering length
field, and the potential energies at both fields are measured. As shown by
the data in Fig (2) in the red circles, we find again the excellent agreement
between the experimental data and NSR theoretical predictions.

In summary, Fig (2) illustrates the universal thermodynamic behavior
of strongly interacting Fermi gases. This figure plots all the measured data
in a single figure, in comparison with our NSR prediction for the entropy
dependence of the energy of a harmonically trapped, strongly interacting
Fermi gas. The agreement between theory and experiment is excellent for
almost all the measured data. Exactly the same theory (NSR theory) is
used in all cases, with results from three different laboratories with differ-
ent densities and atomic species. This includes a single result from Rice
University, which uses a different techniques to measure the temperature.

The universality of the thermodynamics of a strongly interacting Fermi
gas is therefore clearly demonstrated, independent of which atomic species
we compare with. Just above the critical entropy Sc � 2.2NkB, for the
superfluid-normal fluid phase transition, there is a slight discrepancy with
these precise measurements. At this point the approximate NSR theory is
least accurate.

A key feature of Duke and JILA experiments is that the lowest at-
tainable entropy is around S = 0.7NkB, which corresponds to a temper-
ature 0.10 − 0.15TF at unitarity. This nonzero entropy or temperature af-
fects significantly the precise determination of the many-body universal
parameter. To remove the temperature dependence, we assume at the low
entropy regime, a power law dependence of the energy on the entropy:
E − E0 ∝ Sα, in order to fit the experimental data. The fitting procedure
leads to E0/N = 0.48EF and E0/N = 0.47EF , for the Duke and JILA
setups, respectively. Using the equation E0/(NEF ) = 3/4

√
1 + β for a har-

monic trap gives rise to β � −0.60, which agrees fairly well with the most
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Fig. 2. Illustration of the universal thermodynamics of a strongly interacting Fermi gas.

accurate quantum Monte Carlo simulations, E = −0.40 ± 0.01,31 hence
β = −0.60± 0.01,31and our theoretical predictions, β = −0.599.12

5. Comparative study of strong-coupling theories

The accurate experimental measurement at Duke, at the level of a few
percent, provides a very useful benchmark for unbiased test of different
strong-coupling theories.32 To better visualize the comparison, we subtract
from the energy the ideal gas result EIG. The resulting interaction energy
vs entropy has been shown in Fig. 3.

The difference between NSR approach and the self-consistent T-matrix
scheme, mostly of the order 0.05NEF , is relatively small. Despite this, the
extraordinary precision of the measurements is able to discriminate between
the different theories of the interaction energy (Fig. 3). The NSR approach
is seen to give the best fit to the experimental data below Tc (corresponding
to Sc ≈ 2.3NkB) and above T = 0.5TF (corresponding to S > 3.5NkB).
This indicates that the simplest T-matrix approximation captures the es-
sential physics of strong pair fluctuations at both low (superfluid) and high
(normal) temperatures. In the temperature region just above Tc, however,
the NSR approach presumably does not fully capture the full effect of fluc-
tuations, compared to the self-consistent T-matrix theory above Tc. Note
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Fig. 3. Interaction energy vs entropy in a shallow Gaussian trap as predicted by the
strong-coupling theories in comparison with experimental data.

that, around Tc the experimental data shows evidence of what could be a
first-order superfluid transition. Due to “critical slowing-down”, systematic
experimental errors cannot be ruled out in this regime, if the magnetic field
sweep is not quite adiabatic.

There is a noticeable systematic difference between the QMC and ex-
perimental data at high entropy, which may be due to the improper use of
an ideal gas approximation in the QMC estimates at high temperatures.33

It is also clear that the pseudogap approximation11 is in poor agreement
with thermodynamic data, though it is better than BCS mean-field theory
– which completely ignores the pairing fluctuations.

6. Conclusion

In conclusion, we have briefly reviewed the current theoretical and exper-
imental status on the thermodynamic properties of a strongly interacting
Fermi gas at unitarity, and show that, at this stage the anticipated univer-
sal thermodynamics has been clearly demonstrated experimentally, at an
accuracy of a few percent. We have also attempted to quantitatively distin-
guish between existing strong-coupling theories, which may leads to useful
insights on the development of more accurate theory of strongly interacting
Fermi gases.
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We describe recent experimental studies of a spin-polarized Fermi gas with
strong interactions. Tomographically resolving the spatial structure of an inho-
mogeneous trapped sample, we have mapped out the superfluid phases in the
parameter space of temperature, spin polarization, and interaction strength.
Phase separation between the superfluid and the normal component occurs
at low temperatures, showing spatial discontinuities in the spin polarization.
The critical polarization of the normal gas increases with stronger coupling.
Beyond a critical interaction strength all minority atoms pair with majority
atoms, and the system can be effectively described as a boson-fermion mix-
ture. Pairing correlations have been studied by rf spectroscopy, determining
the fermion pair size and the pairing gap energy in a resonantly interacting
superfluid.

Keywords: Superfluidity; Phase separation; Bose-Fermi mixture; RF

spectroscopy.

1. Introduction

Below a critical temperature, an equal mixture of two fermionic gases with
attractive interactions undergoes a phase transition to the Bardeen-Cooper-
Schrieffer (BCS) superfluid state via Cooper pairing. Since pairing occurs
preferably at the Fermi surface, pairing becomes energetically less favor-
able if the two Fermi surfaces don’t overlap. Eventually superfluidity will
break down when the difference in Fermi energies exceeds the energy gain
from pairing. This is the so-called Chandrasekhar-Clogston (CC) limit of
superfluidity.1,2 Pairing and superfluidity in an imbalanced Fermi mixture
has been an intriguing issue for many decades, especially because of the
possibility of new exotic ground states such as the Fulde-Ferrell-Larkin-
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Ovchinnikov (FFLO) state3,4 in which either the phase or the density of
the superfluid has a spatial periodic modulation.

Mismatched Fermi surfaces can be created in electron gases by applying
magnetic field. However, the situation in conventional superconductors is
more complicated due to spin-orbit coupling, i.e., the field is shielded by the
Meissner effect. On the other hand, in atomic Fermi gases one can prepare a
mixture with an arbitrary population ratio, since collisional relaxation pro-
cesses are very slow. This unique feature, together with tunable interactions
using Feshbach resonances, allows the ultracold atomic Fermi gas system
to be a highly controllable and clean model system for studying interacting
Fermi mixtures. With balanced mixtures near a Feshbach resonance the
crossover from a Bose-Einstein condensate (BEC) to a BCS superfluid has
been investigated.5 Recently with population-imbalanced mixtures, the be-
havior consistent with the CC limit has been observed,6,7 i.e., a superfluid
becomes more robust against imbalance with stronger coupling. The appar-
ent absence of the CC limit in mesoscopic, highly elongated samples8,9 is
not understood and seems to depend on the aspect ratio of the cloud shape.

In this paper, we present the phase diagram of a two-component Fermi
gas of 6Li atoms with strong interactions. We have identified and/or
determined several important critical points including a tricritical point
where the superfluid-to-normal phase transition changes from first-order to
second-order, critical spin polarizations of a normal phase, and a critical
interaction strength for a stable fermion pair in a Fermi sea of one of its
constituents.10–12 We also present recently measured rf spectra, where we
have determined the fermion pair size and the superfluid gap energy in a
resonantly interacting Fermi gas.13,14

2. Two-Component Fermi Mixture in a Harmonic Potential

In our experiments, we prepared a two-component spin mixture of 6Li
atoms, using two states of the three lowest hyperfine states, around a Fes-
hbach resonance. The population imbalance between the two components
was controlled by a radio frequency (rf) sweep with an adjustable sweep
rate. The atom cloud was confined in a three-dimensional harmonic trap
with cylindrical symmetry, thus having an inhomogeneous density distribu-
tion. Due to the population imbalance, the chemical potential ratio of the
majority (labeled as spin ↑) and the minority (spin ↓) components varies
spatially over the trapped sample. Under the local density approximation
(LDA), each sample represents a line in the phase diagram. Using spatially
resolved measurements, we have mapped out the phase diagram of the sys-
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Fig. 1. Spatial structure of a trapped Fermi mixture with population imbalance. (a)
The in situ column density distributions are obtained using a phase contrast imaging
technique.10 The probe frequencies of the imaging beam are different for two images so
that the first image measures the density difference n↑ − n↓ and the second image mea-
sures the weighted density difference 0.76n↑ − 1.43n↓. (b) The smooth column density
profiles are obtained from the elliptical averaging of the images under the local density
approximation (red: majority, blue: minority, black: difference). (c) The reconstructed
three-dimensional density profiles. (d) The spin polarization profile shows a sharp in-
crease, indicating the phase separation between a core superfluid and a outer normal

region. The vertical dashed line marks the location of the phase boundary.

tem. The temperature was controlled by adjusting the trap depth, which
determined the final temperature of evaporative cooling.

For typical conditions, the spatial size of our sample was ∼ 150 µm
×150 µm ×800 µm with a total atom number of ∼ 107 and a radial (axial)
trap frequency of fr = 130 Hz (fz = 23 Hz). Our experiments benefit from
the big size of the sample. Using a phase-contrast imaging technique, we
obtained the in situ column density distributions of the two components
ñ↑,↓(r), and the three-dimensional density profiles n↑,↓(r) were tomograph-
ically reconstructed from the averaged column density profiles (Fig. 1). The
imaging resolution of our setup was ∼ 2 µm.

At low temperature, the outer part of the sample is occupied by only
the majority component, forming a non-interacting Fermi gas. This part
fulfills the definition of an ideal thermometer, namely a substance with ex-
actly understood properties in contact with a target sample. We determined
temperature from the in situ majority wing profiles. This in situ method
provides a clean solution for the long-standing problem of measuring the
temperature of a strongly interacting sample.
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The parameter space of the system can be characterized by three di-
mensionless quantities: reduced temperature T/TF↑, interaction strength
1/kF↑a and spin polarization σ = (n↑ − n↓)/(n↑ + n↓), where TF↑ and kF↑
are the Fermi temperature and wave number of the majority component,
respectively, and a is the scattering length of the two components. The
BCS-BEC crossover physics has been studied in the σ = 0, equal-mixture
plane.

3. Phase Diagram at Unitarity

In the case of fixed particle numbers, it has been suggested that unpaired
fermions are spatially separated from a BCS superfluid of equal densities
due to the pairing gap energy in the superfluid region.15–17 At low temper-
ature, we have observed such a phase separation between a superfluid and
a normal component in a trapped sample. A spatial discontinuity in the
spin polarization clearly distinguishes two regions (Fig. 1). By correlating a
non-zero condensate fraction6 with the existence of the core region, we ver-
ified that the inner core is superfluid.10 At the phase boundary two critical
polarizations σs and σc are determined for a superfluid and normal phase,
respectively. σs �= σc means that there is a thermodynamically unstable
window, σs < σ < σc, leading to a first-order superfluid-to-normal phase
transition. As the temperature increases, the discontinuity reduces with de-
creasing σc and increasing σs, and eventually disappears above a certain
temperature. This is a tricritical point where the nature of the phase transi-
tion changes from first-order to second-order.18 Above the tricritical point,
the system shows smooth behavior across the superfluid-to-normal phase
transition in density profiles and condensate fraction, which is characteristic
of a second-order phase transition.

The phase diagram with resonant interactoins (1/kF↑a = 0) is pre-
sented in Fig. 2(a),11 characterized by three distinct points: the critical
temperature Tc0 for a balanced mixture, the critical polarization σc0 of
a normal phase at zero temperature and the tricritical point (σtc, Ttc).
From linear interpolation of the measured critical points, we have estimated
Tc0/TF↑ ≈ 0.15, σc0 ≈ 0.36 and (σtc, Ttc/TF↑) ≈ (0.20, 0.07). The quantita-
tive analysis of the in situ density profiles at the lowest temperature reveals
the equation of state of a polarized Fermi gas,19 showing that the critical
chemical potential difference is 2hc = 2×0.95µ, where µ = (µ↑+µ↓)/2. The
pairing gap energy ∆ of a superfluid has been measured to be ∆ � µ,14 and
the observation of hc < ∆ excludes the existence of a polarized superfluid
at zero temperature. A polarized superfluid at finite temperature results
from thermal population of spin-polarized quasiparticles.18
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Fig. 2. Phase diagram of a two-component Fermi gas with strong interactions. (a)
With resonant interactions (1/kF↑a = 0). At low temperature, the system shows a
first-order superfluid-to-normal phase transition via phase separation, which disappears
at a tricritical point where the nature of the phase transition changes from first-order
to second-order. (b) The critical polarization σc of a partially-polarized normal phase
increases with stronger interactions. Above a critical interaction strength (1/kF↑a ≈ 0.7,
σc = 1), all minority atoms can pair up to form a superfluid.

4. Strongly Interacting Bose-Fermi Mixture

On the BEC side, two different fermions in free space have a stable bound
state, forming a bosonic dimer which undergoes Bose-Einstein condensation
at low temperature. Therefore, in the BEC limit a two-component Fermi
gas with population imbalance will evolve into a binary mixture of bosonic
dimers and unpaired excess fermions. Strong interactions and high degener-
acy pressure can affect the structure of the composite boson and eventually
destabilize it. This is the reason why we have a partially-polarized normal
phase near resonance even at zero temperature. With stronger coupling,
the critical polarization σc of a partially-polarized normal phase increases,
and becomes unity at a critical interaction strength of 1/kF↑a ≈ 0.7.12

This means that beyond the critical coupling all minority atoms pair up
with majority atoms and form a Bose condensate. This is the regime
where a polarized Fermi gas can be effectively described as a Bose-Fermi
mixture.

In the limit of a BF mixture,20 we have observed repulsive interactions
between the fermion dimers and unpaired fermions. They are parameterized
by an effective dimer-fermion scattering length of abf = 1.23(3)a. This value
is in reasonable agreement with the exact value abf = 1.18a which has
been predicted over 50 years ago for the three fermion problem,21 but has
never been experimentally confirmed. Our finding excludes the mean-field
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prediction abf = (8/3)a. The boson-boson interactions were found to be
stronger than the mean-field prediction in agreement with the Lee-Huang-
Yang prediction.22 Including the LHY correction, the effective dimer-dimer
scattering length was determined to be abb = 0.55(1)a, which is close to
the exact value for weakly bound dimers abb = 0.6a.

5. Tomographic RF Spectroscopy with a New Superfluid

RF spectroscopy of a two-component Fermi gas measures a single-particle
excitation spectrum by flipping the spin state of an atom to a third spin
state. Since a fermion pair can be dissociated via spin flip, RF spectroscopy
provides valuable information about the pair such as binding energy and
size. In early experiments,23,24 a spectral shift has been observed in a Fermi
gas at low temperature and interpreted as a manifestation of pairing. How-
ever, it turned out that the spectral line shape is severely affected by the
strong interactions of the third, final spin state and broadened due to the
inhomogeneous density distribution of a trapped sample, preventing clear
comparison of the experimental results to theory. Recently, we have devel-
oped several experimental techniques to overcome these problems. In order
to minimize final state effects we have exploited a new spin mixture of
states |1〉 and |3〉 of 6Li atoms13 (corresponding to |F = 1/2,mF = 1/2〉
and |F = 3/2,mF = −3/2〉 at low field), and using a tomographic tech-
nique, we have obtained local RF spectra from an inhomogeneous sample.25

Figure 3 shows the RF spectra of the various phases in a trapped sam-
ple with population imbalance. For a balanced superfluid, the majority and
the minority spectra completely overlap, showing the characteristic behav-
ior of pair dissociation, i.e. a sharp threshold and a slow high-energy tail.
From the spectral width, we have determined the pair size to be 2.6(2)/kF

at unitarity, about 20% smaller than the interparticle spacing.13 These
are the smallest pairs so far observed in fermionic superfluids, highlight-
ing the importance of small fermion pairs for superfluidity at high critical
temperature.26

Excess fermions in a low-temperature superfluid constitute quasiparti-
cles populating the minimum of the dispersion curve. The RF spectrum of
a superfluid with such quasiparticles shows two peaks, which, in the BCS
limit, would be split by a superfluid gap ∆. Therefore, RF spectroscopy of
quasiparticles is a direct way to observe the superfluid gap in close analogy
with tunneling experiments in superconductors. In a polarized superfluid
near the phase boundary, we have obtained a local majority spectrum of
a double-peak structure, from which the superfluid gap has been deter-
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Fig. 3. Tomographic RF spectroscopy of strongly interacting Fermi mixtures. A
trapped, inhomogeneous sample has various phases in spatially different regions. The
spectra of each region (red: majority, blue: minority) reveals the nature of pairing cor-
relation of the corresponding phase. (a) Balanced superfluid. (b) Polarized superfluid.
The additional peak in the majority spectrum is the contribution of the excess fermions,
which can be identified as fermionic quasiparticles in a superfluid. From the separation
of the two peaks, the pairing gap energy of a resonantly interacting superfluid has been
determined.14 (c) Highly polarized normal gas. The minority peak no longer overlaps
with the majority spectrum, indicating the transition to polaronic correlations.

mined to be ∆ = 0.44(3)EF↑ at unitarity.14 In addition, a Hartree term of
−0.43(3)EF↑ is necessary to explain the observed spectral behavior.

The peak positions of the majority and the minority spectra become
different in the partially-polarized normal phase, but still overlap in the
high-energy tail. At large spin polarization, the limit of a single minority
immersed in a majority Fermi sea is approached, where several theoretical
studies suggest a polaron picture, associating the minority with weakly
interacting quasiparticles in a normal Fermi liquid.27–29 We found that
these different kinds of pairing correlations are smoothly connected across
the superfluid-to-normal phase transition at finite temperature.

6. Summary and Discussion

In a series of experiments with population-imbalanced Fermi mixtures near
Feshbach resonances, we have established the phase diagram of a two-
component Fermi gas with strong interactions. This includes the iden-
tification of a tricritical point at which the critical lines for first-order
and second-order phase transitions meet, and the verification of a zero-
temperature quantum phase transition from a balanced superfluid to a
partially-polarized normal gas at unitarity. The observed critical points
such as the critical polarization of a normal phase and the critical inter-
action strength of a composite boson in a Fermi sea provide quantitative
tests of theoretical calculations on the stability of fermionic superfluidity.
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Fig. 4. Various phases of a two-component Fermi gas. The structure of the phase dia-
gram is illustrated in the parameter space of temperature, interaction strength and spin
polarization.

Figure 4 sketches the structure of the phase diagram of the system in
a 3D parameter space (vs. temperature, spin polarization and interaction
strength). For a complete understanding, this macroscopic characterization
of the different phases should be complemented by an investigation of their
microscopic properties. Currently, we understand the observed polarized su-
perfluid as a result of thermal population of spin-polarized quasiparticles at
finite temperature. However, the behavior at higher temperature or/and in
a stronger coupling regime is not yet completely understood. Resolving the
momentum distribution of the excess fermions might reveal a gapless region
(h > ∆) in the parameter space. The nature of a partially polarized normal
phase near the resonance is also an interesting subject. Measurement of the
binding energy and the effective mass of a minority atom might be helpful to
test the polaron picture and to observe the polaron-to-molecule transition
near a critical interaction strength. However, it is an open question whether
the Fermi liquid description is still valid for high minority concentrations,
where the Pauli blocking effect of the minority Fermi sea might play an im-
portant role. Furthermore, it has been speculated that exotic pairing states
might exist in the partially-polarized phase.30 So far, predicted exotic su-
perfluid states such as the breached-pair state in a stronger coupling regime
and the FFLO state in a weaker coupling regime have not been observed.
The novel methods developed in our experiments such as tomography and
thermometry will be important tools in the search for these states.
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A universal characterization of interactions in few- and many-body quantum
systems is often possible without detailed description of the interaction poten-
tial, and has become a defacto assumption for cold atom research. Universality
in this context is defined as the validity to fully characterize the system in
terms of two-body scattering length. We discuss universality in the following
three contexts: closed-channel dominated Feshbach resonance, Efimov physics
near Feshbach resonances, and corrections to the mean field energy of Bose-
Einstein condensates with large scattering lengths. Novel experimental tools
and strategies are discussed to study universality in ultracold atomic gases:
dynamic control of interactions, run-away evaporative cooling in optical traps,
and preparation of few-body systems in optical lattices.

Keywords: Universality, Bose-Einstein condensation, Feshbach, Efimov, mean-
field interaction.

1. Introduction

Quantum gases of ultracold atoms distinguish themselves from other quan-
tum systems in two unique and useful ways. First of all, the diluteness of
the gases permits a very simple and accurate description of the effect of
interactions. Degenerate gases of atoms can be described well by textbook
models of fundamental and general interest. Extending beyond these, com-
plexity can be built in slowly to study novel quantum phases, and even
intractable mathematical models. This aspect has inspired new research in
the vein of quantum simulation, promising far-reaching impact on the un-
derstanding of other quantum systems in nature, including condensed and
nuclear matter.

A second gainful aspect of ultracold atomic gases lies in the ability
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to tune interactions via Feshbach resonant scattering. Exploitation of this
feature, first observed in 1998,1 has only fully matured in recent years,
and promises numerous future applications. Full control of interaction in
a quantum gas not only allows for an easy exploration of the quantum
system in different interaction regimes, but also leads to new methods to
observe dynamic evolution and to scrutinize quantum states in previously
unimaginable ways. For example, projecting a complex many-body state
onto a non-interacting single particle basis can be realized by diabatically
switching off atomic interactions.

The majority of quantum gas systems studied to date admit a univer-
sal description of the effect of interaction. In this paper, we describe our
approach to explore situations in which universality requires nontrivial ex-
tensions. Our experimental platform, based on optically trapped cesium
atoms, exploits both of the aforementioned features, allowing us to address
long-standing questions concerning the universality of an interacting gas.
In particular, we will focus on three topics: universality and its minimal
extensions in the study of dimer molecules, three-body Efimov states near
a Feshbach resonance, and beyond mean-field interactions in Bose-Einstein
condensates. Finally, we will outline our approach to study few-body inter-
actions and our experimental progress.

2. Universality in N-body physics

The connection of quantum degenerate atomic gases to other physical sys-
tems is made possible by the expected universality of physics at low tem-
peratures. Here, universality arises when the quantum system is fully de-
scribed by a single parameter, the two-body scattering length a.2 Univer-
sality is well established in two-body, low energy scattering theory, where
the s-wave scattering phase shift is η = − tan−1 ka, with k the scatter-
ing wave number. In the many-body regime, universal behavior of dilute
Bose-Einstein condensates (BECs) of different bosonic atomic species is
expected for small and positive scattering lengths. Universality is further
expected and verified in two-component degenerate Fermi gases with large
scattering lengths, as in the BEC-BCS (Bardeen-Cooper-Schrieffer super-
fluid) crossover regime.3–5

Non-universal parameters, however, can play an important role in cer-
tain low energy few- and many-body systems, and represent the entrance
of a richer underlying scattering physics. For example, binding energies of
Efimov states in three-body systems6 and three-body interactions in BECs
with large scattering lengths7 are expected to be non-universal. Both cases



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

242 C. Chin

strongly depend on the three-body scattering phase shifts, which likely can-
not be universally derived from a.2

3. Feshbach resonances

3.1. Origin of Feshbach resonance

In cold atom experiments, Feshbach resonances occur when two free atoms
interact in the scattering channel and resonantly couple to a bound molec-
ular state in a closed channel.8 In many cases, the bound state can have a
different magnetic moment from that of the scattering atoms, and resonant
coupling between the channels can be induced by tuning the bound state
energy with an external magnetic field.

Near a Feshbach resonance, the scattering phase shift η follows the Breit-
Wigner formula9:

η = ηbg − tan−1 Γ/2
E − Ec − δE

, (1)

where ηbg is the background, or off-resonant phase shift, E = �
2k2/m is the

scattering energy, k is the scattering wave number, m is twice the reduced
mass, Γ ∝ k is the coupling strength between the scattering and bound
states, Ec is the energy of the bare bound state, and δE is the self-energy
shift.

At low scattering energies E → 0, the (background) scattering length
is given by a(bg) = − tan η(bg)/k.9 We further assume a linear Zeeman
shift to the bound state Ec = δµ(B − Bc), where δµ is the relative mag-
netic moment between open and closed channels, and the bound state is
shifted to the continuum when B = Bc. These allow us to derive scat-
tering length in the standard resonance form a = abg[1 − ∆/(B − B0)].
Here ∆ = limk→0 Γ/(2kabgδµ) is the resonance width, B0 = Bc − δE/δµ

is the resonance position. Note that a diverges when B = B0, or equiva-
lently, η = (N + 1

2 )π, where N is the number of molecular states below the
continuum.

It is important to note that Feshbach resonance occurs not exactly when
the bare state is tuned to the continuum B = Bc. From the van der Waals
potential model, the resonance position offset is10

B0 −Bc = −δE
δµ

= − r2 − r

r2 − 2r + 2
∆ , (2)
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where r = abg/ā and ā is the mean scattering length of the van der Waals
potential.11

Equation 2 shows that the difference in magnetic field between the bare
state crossing and the resonance position B0 − Bc is on the order of the
resonance width ∆ when |abg| > ā.

3.2. Non-universality of Feshbach molecules

The two-channel nature of the interaction potential described in the previ-
ous section implies that, in the absence of Feshbach coupling, the scattering
length of atoms in the entrance channel does not reveal the properties of
the closed channel bound state. Thus, the properties of the molecular state
are clearly non-universal. This point can also been seen in Fig. 1. When
the molecular state is well below the continuum, the molecular energy ap-
proaches the bare state value Ec = δµ(B−Bc), which cannot be universally
derived from mere knowledge of a.

When the magnetic field is tuned sufficiently near the Feshbach reso-
nance, Feshbach coupling strongly modifies the nature of the bound state,
whose character is now dominated by the open channel. In this regime, the
molecular state does develop a universal behavior with a binding energy of
Eb = �

2/ma2. The Universal regime can be seen in the Fig. 1(b) inset.
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Fig. 1. Scattering length a in (a) and molecular state energy E in (b) near a mag-
netically tuned Feshbach resonance. Eb > 0 is the binding energy. The inset shows the
universal regime where Eb = �

2/ma2.

The transition between the non-universal and universal regimes differs
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for different resonances. One instructive way to see the transition behavior
is to expand the molecular binding energy near the resonance, which, from
a simplified two-channel model potential,12 gives

Eb ≈ �
2

m(a− ā−R∗)2
. (3)

Here Ebg = �
2/ma2

bg. ā
11and R∗ = abgEbg/(δµ∆)13 are two leading or-

der non-universal length scales associated with the finite interaction range
and the coupling strength to the closed channel bound state, respectively.
Universality is valid only when a � ā and R∗. In particular, R∗, can be
uncharacteristically large, R∗ � ā, for narrow resonances. Resonances of
this type are deemed closed-channel dominated and can have strong non-
universal behavior.

4. Efimov physics and Efimov states

Efimov states are a set of three-body, long-range bound states which emerge
when the pairwise interactions in a three-particle system are resonantly
enhanced. These states are supported by the Efimov potential which scales
like −1/R2 for R < |a|, where the hyperspherical radius R characterizes
the geometric size of the system.6

The connection between the three-body Efimov potential and scatter-
ing length a can be understood using a hand-waving picture. Assume two
bosonic atoms are separated by R, the wave function of the third atom
is scattered by each atom, with |a| characterizing the length scale of the
scattered waves. The total wave function ψ, after Bose-symmetrization,
can be significantly enhanced when the two scattered waves overlap. Us-
ing Schrödinger’s equation, we can model the wave function enhancement
φ(R) = δψ(R) as a result of an effective Efimov potential Vefm(R), which
satisfies Schrodinger’s equation:

−�
2

m
φ′′(R) + Vefm(R)φ(R) = Eφ(R) for R < a. (4)

To evaluate the curvature term, we note that φ is localized with a length
scale of system size R. The curvature is thus negative and we can rewrite
φ′′(R) = −αφ(R)/R2, where α > 0 is a proportionality constant. In the
low energy collision limit E → 0, we get

Vefm(R) = − α�
2

mR2
for R < a . (5)
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A rigorous calculation performed by V. N. Efimov shows that with R

identified as the three-body hyperspherical radius, we have α = s20 + 1
4 and

s0 = 1.00624... is a constant.6 For R > |a|, the effective potential is no
longer attractive.14

Right on two-body resonance a → ±∞, the −1/R2 Efimov potential
extends to infinity and can support an infinite number of three-body bound
states (Efimov states); simple scaling laws for the spatial extent AN and
binding energy EN of the N -th lowest Efimov state have been derived as

AN = βN ×A∗ (6)

EN = β−2N × E∗ , (7)

where β = eπ/s0 ≈ 22.7 is a universal constant.6 These size and energy
scaling laws are among the most prominent universal features of Efimov’s
predictions. Constants A∗ and E∗ depend on the three-body potential at
short range and are thus expected to be non-universal.2

4.1. Universality of Efimov physics near different Feshbach

resonances

Recent observation of an Efimov resonance in the three-body recombination
process15 of ultracold cesium atoms represents a major breakthrough in
few-body physics.16

Here we suggest a new scheme to check the “defacto” universality of
Efimov physics implied by the expected slow variation of the short-range
three-body potential with magnetic field tuning. By monitoring recombi-
nation loss near different, isolated open-channel dominated Feshbach res-
onances, we expect that Efimov resonances of the same order can occur
at the same scattering lengths. Here we point out that the application of
magnetic field barely changes the interatomic potential in the entrance scat-
tering channel. We thus expect that, in the three-body sector, systems have
nearly identical off-resonant phase shift near different Feshbach resonances.

To estimate the insensitivity of the open channel potential to magnetic
field, we note that the two-body background scattering length varies less
than 1 a0 over 100 G at a = 2400 a0. (This estimation is based on numerical
calculation of cesium atom scattering length in the highest triplet scattering
channel, in which Feshbach resonances do not exist.) This small variation
can be translated into a small fractional change of the scattering phase
shift by |δη/η| < 3 × 10−10 per Gauss.17 This result suggests that the
non-universal effects of the three-body potential can potentially remain
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nearly unchanged when the magnetic field is tuned to different Feshbach
resonances.

5. Universality in a dilute BEC with large scattering
length: Lee-Huang-Yang Corrections and beyond

In a dilute Bose-Einstein condensate, the energy per particle is given as
2πna�2/m, which describes the fluid on length scales longer than the co-
herence length l = (16na)−1/2. Due to the weak coupling, corrections to the
mean field term can be calculated as expansions of a dimensionless param-
eter a/l, which is in turn proportional to the diluteness parameter

√
na3.

The energy per particle in a dilute homogeneous BEC is given by7

E

N
=

2π�
2na

m
[1+

128
15

√
π

√
na3 +

8(4π − 3
√

3)
3

na3 lnna3 +Cna3 + ... ] , (8)

where the lowest order contributions
√
na3, called the Lee-Huang-Yang

(LHY) correction,18 and na3 lnna3 term19 result from universal two- and
three-body correlations, and C is a three-body parameter which depends
on three-body interactions and Efimov physics.7 Although Eq. 8 was origi-
nally derived based on a hard-sphere potential, the validity of the LHY term
for soft-sphere and short-ranged attractive potentials has been numerically
verified.20

Beyond mean-field effects can be amplified by tuning the scattering
length to large values. Previous approaches along this line with 85Rb
reached na3 = 0.1, but were complicated by limited lifetimes due to three-
body inelastic collisions. Here we point out that a careful choice of scattering
length and a fast measurement can allow for a detectable beyond mean-field
signal.

To see this, we first note that the LHY term, on the order of (na3)1/2, is
a lower order process than is the three body process of na3. Measurement
of the former effect can be immune from three-body loss when na3 is low.
For example, the typical mean-field energy of a BEC is U = h × 1 kHz
and the scattering length can be tuned such that na3 = 0.01. In this case,
the LHY term is about (na3)1/2 = 10% of the mean-field energy and is 10
times larger than the three-body energy scale. The associated three-body
time scale is na3U/� ≈ (10 ms)−1. Determination of interaction energy
of a condensate within 10 ms can be realized by promptly releasing the
condensate into free space. The expansion of the condensate thus converts
the interaction energy into detectable atomic kinetic energy.
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6. Experimental approach

Two powerful experimental tools will be employed to explore few-body
physics: optical lattices to confine and isolate few atoms at each lattice
site in the Mott insulator phase, and magnetic Feshbach resonances to
control atomic interactions. Both can lead to precise control of the few-
body samples in different interaction regimes.

6.1. Scattering properties of Cesium atoms

Cesium-133 is chosen in the experiment for their convenient tuning of in-
teraction. In the range of 0 to 50 G, the s-wave scattering length in the
lowest hyperfine ground state |F = 3,mF = 3〉 can be smoothly tuned
from −2500 a0 to 1000 a0. Here, F is the total angular momentum quan-
tum number and mF its projection along the magnetic field. At higher
fields, two more broad resonances exist at 547 G and 800 G. See Fig. 2.
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Fig. 2. Calculated s-wave Feshbach resonances in collisions of ground state cesium
atoms. Three broad resonances at -11.7 G, 547 G and 800 G allow for tuning of the
scattering length. Other higher-order resonances are omitted here for simplicity. The
numerical calculation code is provided by Eite Tiesinga, NIST.

The existence of multiple broad s-wave Feshbach resonances permits
tests of universality by probing the cold atoms sample at different scattering
lengths. As discussed in Secs. 3.2 and 4.1, unique tests of universality in
two- and three-body systems can be performed by tuning the scattering
length to the same value, but near different Feshbach resonances.

6.2. Fast evaporation to Bose-Einstein condensation in

optical traps

We employ a novel scheme to achieve fast, runaway evaporative cooling of
cesium atoms in optical traps. This is realized by tilting the optical potential
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with a magnetic field gradient. Runaway evaporation is possible in this
trap geometry due to the very weak dependence of vibration frequencies on
trap depth, which preserves atomic density during the evaporation process.
When the trap depth is reduced by a large factor of 100, the geometric mean
of the trap frequencies is only reduced by a factor of 2 and thus preserves
the high collision rate.21

Using this scheme, we show that Bose-Einstein condensation with ∼
105 cesium atoms can be realized in 2 ∼ 4 s of forced evaporation.21 The
evaporation speed and energetics are consistent with the three-dimensional
evaporation picture, despite the fact that atoms can only leave the trap in
the direction of tilt.

6.3. Preparation of few-atom systems in optical lattices

Few-body experiments will begin with segmentation of a bulk condensed
superfluid into the ground states of isolated optical lattice sites. Each site
will be populated with a small and in general indefinite number, 1 < N <

10, of atoms.

(a)                                      (b)                    (c)

Fig. 3. Loading an optical lattice and preparation of lattice sites with three atoms. (a)
Optical lattices are formed by the interference pattern of intersecting laser beams. For a
red-detuned lattice, the potential minima are defined by the anti-nodes of the standing
waves. (b) Condensed atoms are loaded into the optical lattices. (c) To prepare lattice
sites with three and only three atoms, atoms in lattice sites with other occupancies may
be removed by precision radio-frequency excitation.

We have constructed a novel optical lattice configuration - a thin layer,
2D optical lattice, which permits direct imaging of atomic density by send-
ing an imaging beam perpendicular to the lattice plane. The optical lattice
is defined by interfering four laser beams derived from a single frequency
fiber laser operated at a wavelength λ = 1.06µm. Two counterpropagating
beam pairs on the horizontal plane form a square optical lattice. In the ver-
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tical direction, confinement is provided by a single CO2 laser beam focused
to 50 µm vertically and 2 mm in the radial direction. This tight vertical
confinement holds atoms against gravity without need for a magnetic field
gradient, and provides an ideal mode-matching potential for transferring
condensates into the 2D lattice, see Fig. 3.

Probing of few-body energies will be performed through the combined
methods of precision radio-frequency spectroscopy, collective mode excita-
tion and dynamic evolution of matter wave coherence. In particular, meth-
ods which allow precise determination of the variation of few-body energies
with atom number will permit direct investigation of various interactions,
including two- and three-body scattering of free atoms, strong correlations,
unitarity at strong confinement, atom-dimer interactions, and three-body
recombination. Working in a tightly bound optical lattice allows quantum
pressure to determine atomic density profiles and permits accurate extrap-
olation of single-particle measurements to interacting few-body systems. In
addition, methods of adiabatically preparing specific few-body systems as
combinations of free and bound states (e.g. atom+dimer) will be explored,
providing a basis for directly studying the universality of higher complexity
interactions.

7. Conclusion

We describe key issues in three- and many-body physics including Efimov
physics and beyond mean-field effects in the context of Feshbach tuning in
quantum gases. In both cases, Bose-condensed cesium atoms provide unique
opportunities to investigate universal behavior of energy shifts and energy
structure. In particular, we point out possible non-universal parameters,
including the finite interaction range ā, Feshbach coupling length scale R∗

and three-body phase shift.
We propose a brand new approach to prepare and study few-body sys-

tems in optical lattices by inducing superfluid-Mott insulator transitions
in a single-layer 2D optical lattice. This system provides complete and in-
dependent control over the filling factor, on site interaction and tunneling.
Together with the rich interaction properties of cesium atoms and fast evap-
oration, one expects a new level of few-body physics can be explored in this
lattice setting. We anticipate that a firm understanding of universality in
finite systems will provide practical applications in quantum simulation of
few-body systems in nuclear physics, helium physics, physical chemistry
and the physics of atom clusters.
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Bose-Einstein condensates have long been considered the most appropriate
source for interferometry with matter waves, due to their maximal coherence
properties. However, the realization of practical interferometers with conden-
sates has been so far hindered by the presence of the natural atom-atom in-
teraction, which dramatically affects their performance. We describe here the

realization of a lattice-based interferometer based on a Bose-Einstein conden-
sate where the contact interaction can be tuned by means of a Feshbach res-
onance, and eventually reduced towards zero. We observe a strong increase
of the coherence time of the interferometer with vanishing scattering length,
and see evidence of the effect of the weak magnetic dipole-dipole interaction.
Our observations indicate that high-sensitivity atom interferometry with Bose-
Einstein condensates is feasible, via a precise control of the interactions.

Keywords: Atom interferometry, Bose-Einstein condensates.

1. Introduction: atom interferometry with quantum gases

Interferometry with atoms allows one to perform measurements that are
complementary to those achievable with photons: besides accelerations and
rotations, atoms allow detection of gravitational, magnetic and electric
forces. Many atom interferometers capable of performing high-accuracy
measurements and tests of physical laws have been demonstrated in re-
cent years.1 The field has however not yet reached the stage of light in-
terferometers, where coherent sources are routinely employed. Most inter-
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ferometers are so far operated with ultracold but nondegenerate samples
of atoms, the main requirement being a momentum spread smaller than
the momentum associated to the photons that are used to manipulate the
atoms. Bose-Einstein condensates have actually long been considered the
most appropriate source for interferometry, due to their maximal coherence
properties, and various interferometric schemes have been demonstrated in
recent years,2–7 but not yet employed in precision measurements because
of the presence of atom-atom interactions. This is a serious roadblock that
is not present in light interferometers: the strong nonlinearity arising from
interaction degrades the performances of atom interferometers by adding a
phase shift and, even worse, a decoherence term. The effects of interactions
become dramatic when one wants to work with a trapped, high-density
sample.

The leading contact interaction of atoms in a condensate is described
by the s-wave scattering length a, which is typically of the order of 100
a0. This translates into an energy per atom U c = (4π�

2 a n)/m that for a
typical density n = 1013cm−1 is of the order of h×1 kHz. Let us now con-
sider a two-arm, e.g. a Mach-Zehnder, interferometer. When a condensate
is split into the two arms of the interferometer, the two separate conden-
sates can be described by two superpositions of numbers states with a finite
variance and with possibly different mean values. In the presence of a total
interaction energy that depends quadratically on the atom number, such
superpositions give rise to both a phase diffusion and a phase shift that can
dramatically degrade the performance of the interferometer. In particular,
the unavoidable phase diffusion8 has a rate of the order of U c/h, which
limits the phase coherence time to few ms. This fundamental problem can
be partially solved by employing the same interaction to squeeze the atom
number fluctuations during the splitting procedure, as it has been recently
demonstrated in experiments.9,10 Number squeezing does however degrade
the phase coherence of the condensate, and hence the ultimate sensitiv-
ity of the interferometer. In addition, other issues related to the possible
phase shifts caused by fluctuations of the splitting procedure and to the
recombination process are not easily solved.

One possibility is of course to use a non-interacting sample. A single-
species Fermi gas provides an example of a very weakly interacting quantum
gas. We recently studied the operation of a specific lattice-based interferom-
eter based on a Fermi gas, which appeared to perform much better than an
analogous interferometer based on a standard interacting condensate.11 The
Fermi gas however suffers from a rather poor phase coherence that arises
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from its broad momentum distribution. The best solution would therefore
be to use a non-interacting Bose gas. We explore here the performance of
an interferometer based on a Bose gas where the natural contact interaction
has been reduced via magnetic tuning in the neighborhood of a Feshbach
resonance. We employ a 39K gas, which turns out to be very appropriate
for this kind of application, because of the high degree of control of the
s-wave scattering length around zero.12 We find that the performance of
an interferometer based on a Bose gas greatly improve when the system is
brought into the weakly interacting regime. One can have at the same time
a good phase coherence and a long coherence time, which result in an over-
all large phase sensitivity. The control of the scattering length around zero
is so good that we are able to detect the next order interaction term, i.e. the
magnetic dipole-dipole interaction, which in a standard alkali condensate
is more than two orders of magnitude smaller that the contact interaction.
We study the interplay of the two different interactions, and find that they
partially compensate each other. We finally discuss prospects for employing
such a system for high-sensitivity atom-interferometry schemes.

2. Weakly interacting potassium condensate

A promising atomic system for interferometry with weakly interacting gases
is potassium, which has a bosonic isotope (39K) where the s-wave scatter-
ing length can be conveniently controlled through Feshbach resonances.12,13

We have in particular focused our attention on the absolute ground state
F = 1, mF = 1. The molecular potential of 39K2 has a relatively deeply
bound state which is responsible for a small background scattering length
abg = −29 a0 and a low background three-body recombination rate K3 =
(1.3± 0.5)×10−29 cm6s−1. A molecular state with a relative magnetic mo-
ment of 1.5 µB crosses the atomic threshold around 402 G, giving rise to
a 52-G broad Feshbach resonance,13 as shown in Fig. 1a. As a result of
this, around 350 G the s-wave scattering length crosses zero, i.e. the low-
temperature phase shift associated with a two body collision is zero, and the
particles effectively do not interact. The slope of a(B) in this region is about
0.6 a0/G.

In a first experiment, described in more detail in Ref. 12, we have tested
our capability of changing the interaction in a 39K condensate by measuring
the release energy and the stability properties in the magnetic field region
350–402 G where the scattering length is positive. The condensate is pro-
duced by evaporative cooling in an optical trap at 395 G, where a = 180 a0,
and the magnetic field is then adiabatically tuned in about 100 ms to a
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different value. The trap, which has a mean frequency of 90 Hz, is then
switched off and the condensate is imaged after a long ballistic expansion
of 31 ms. From the rms size of the cloud we extract the kinetic energy the
atoms, which in general is the sum of kinetic energy and interaction energy
in the trap. The data reported in Fig. 1b clearly show how the interac-
tion energy decreases with vanishing a, until in the zero-crossing region
the energy is purely kinetic, due to the zero point motion in the trap. For
sufficiently large negative a the condensate collapses, and the total energy
of the system rises abruptly. Note that the finite precision of our collisional
model13 allows us to predict the scattering length with an accuracy of about
0.4 a0 around 350 G (error bars in the inset).

Fig. 1. Control of the interaction in a 39K condensate. a) The broad Feshbach resonance
in the absolute ground state employed in this experiment. b) Release energy per atom in
the condensate, as extracted from the rms size of the cloud after a long free expansion.
The increase in energy for negative scattering lengths signals a collapse of the condensate.
The continuous line is the prediction of the Gross-Pitaevskii theory.

3. Control of the interaction in an atom interferometer

The interferometer we adopted is based on a multiple well scheme3,11 re-
alized with an optical lattice. This kind of interferometer is particularly
sensitive to interactions, because it is hard to avoid a large number un-
balance between the several arms. The condensate is adiabatically loaded
into a sinusoidal potential with period λ/2, realized with an optical stand-
ing wave of wavelength λ. In the presence of an external force F (which
in our case is gravity), the macroscopic wavefunction ψ of the condensate
can be described as a coherent superposition of Wannier-Stark states φi,14

parametrized with the lattice site index i, characterized by complex am-
plitudes of magnitude

√
ρi and phase θi, ψ =

∑
i

√
ρiexp(jθi)φi.17 In the
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absence of interaction the phase of each state evolves according to the en-
ergy shift induced by the external potential, i.e. θi = Fλit/2. By releasing
the cloud from the lattice, the macroscopic interference between different
Wannier-Stark states gives rise to the well known Bloch oscillations of the
density pattern, with period tbloch = 2h/Fλ. A measurement of the fre-
quency of such oscillations allows a direct measurement of the external
force.

The presence of interactions and of the spatial inhomogeneity of the
trapped condensate shifts the energy of individual Wannier-Stark states, as
shown in the cartoon in Fig. 2(a). Generally, interactions give rise to a com-
plex system of non linear equations for ρi and θi. In the weakly interacting
limit the ρi don’t change and, in addition to θi, extra phase terms θ′i, pro-
portional to the local interaction energy, are accumulated, i.e. θ′i ∝ gρit/h,
where g is the interaction strength. This causes a phase broadening, hence
a progressive destruction of the interference pattern, as shown by the ab-
sorption images of a condensate with a = 100 a0 in Fig. 2(b). After two
Bloch periods the interference pattern is drastically broadened. Fig. 2(b)
shows also an analogous experiment performed with a very weakly inter-
acting condensate with a = 1 a0. No broadening is discernible on the same
time scale.

E
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y

Position time ( ms ) 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4

100 a0

1 a01 a0

a) b)

Fig. 2. (a) modification of the regular Wannier-Stark ladder, due to the interaction
energy in an inhomogeneous condensate (only every third state is shown, for clarity).
(b) Bloch oscillations of a Bose gas with standard interaction strength, a = 100 a0 and
of a weakly interacting Bose gas, a = 1 a0.

To analyze quantitatively the effect of the interactions on the dephas-
ing of the interferometer we repeated the same experimental sequence for
different a, measuring the width of the central peak at integer times of the
Bloch period. Initially the widths increase linearly with time, as a direct
consequence of the phase terms θ′i ∝ gρit/h, with ρi =const.17 Later on,
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when the momentum distribution of the condensate occupies the whole first
Brillouin zone, the widths saturate. In Fig. 3 we compare the measured de-
coherence rate, defined as the the slope at short times of the width of the
central interference peak in units of 2�k, with theory. The theoretical curve
is derived from a numerical calculation of ρi and the analysis described in.17

Fig. 3. Decoherence in the interferometer with tunable interactions. (a) Time evolution
of the momentum width (in units of 2�k) for three different values of a: 29 a0 (triangles),
6 a0 (squares), 2.5 a0 (circles). (b) Decoherence rate, defined as the slope of the curves
in a), vs the scattering length. The grey region is the theoretical prediction of the model
in Ref. 17. Below 1 a0 the decoherence rate is dominated by laser noise.

The experimental data feature an almost linear decrease of the deco-
herence rate with decreasing a. The rate passes from about 500 s−1 for
a = 100 a0 to about 2 s−1 for a = 1 a0. Below 1 a0 we find that noise in
the lattice laser starts to significantly contribute to the decoherence, pre-
venting a quantitative comparison of the observation with theory. We have
however further investigated the effect of interactions on the decoherence of
the interferometer around the zero crossing. In this region we have used a
cloud dense enough to make the effect of interactions visible but sufficiently
diluted in order to exclude the effect of three body losses and to prevent
the condensate from collapse for small negative a.12 A condensate with
a = ain �= 0 is initially prepared. Right after the beginning of Bloch oscilla-
tions the external magnetic field is tuned to a final value in 2 ms. This value
is kept constant for 180 ms of Bloch oscillations and for 12 ms of expansion
from the lattice. The width of the interference peak reveals a minimum at
350.0(1) G, close to the expected position of the zero crossing, 350.4(4) G.
The symmetric trend of the data confirms that the decoherence depends on
the magnitude and not on the sign of the scattering length. More details on
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the experiment can be found in Ref. 15. Note that an analogous experiment
has been performed with Cs atoms16 in Innsbruck.

4. Interplay of contact and magnetic
dipole-dipole interactions

In this magnetic field region we have a ≈ 0.1 a0, which corresponds to
a contact energy so small that the next order interaction term, i.e. the
magnetic dipole-dipole interaction, can start to contribute significantly.18

We have actually investigated the role of such a dipolar interaction in fur-
ther experiments.19 The two-body dipolar interaction has a long-range and
anisotropic nature:

Ud(�r) =
µ0µ

2

4π
(1 − 3 cos2 θ

r3
)
, (1)

where µ is the magnetic moment of the atoms (µ ≈ 0.95µB for ground-state
39K atoms at 350 G, with all dipoles aligned along the Feshbach field), and
θ is the angle between µ̂ and r̂. For two atoms separated by r = 0.1µm the
interaction strength is about 10 Hz, which is comparable to the strength
of the contact interaction for a = 0.1 a0. If one notes that from Eq. (1)
two dipoles aligned with θ = 0 attract each other with a strength that is
double the repulsion they experience for θ = π/2, it is easy to evaluate
the character of the dipolar interaction for our experimental configuration.
As summarized in the cartoon in Fig.4a, if we model the condensate in
each lattice site as a quasi-2D pancake, the interaction within each site is
purely repulsive. A weaker attractive contribution however comes from dis-
tant sites, since for them θ ≈ π/2. Note that the total dipolar interaction
will change along the extension of the condensate, hence giving rise to a
decoherence term in analogy with the contact interaction. One could there-
fore expect that the minimum of decoherence we find in the experiment
corresponds to a slightly negative value of a, for which an attractive con-
tact interaction compensates the repulsive dipole interaction. To test this
conjecture, we have repeated the experiment in a different geometry, where
now the lattice axis is oriented perpendicular to the magnetic field, as de-
picted in Fig.4b. The on-site dipolar interaction is now attractive, while the
small correction from distant sites is repulsive. One could therefore expect
that a minimum of decoherence should now be found for a slightly positive
value of a. This is actually what we observe in the experiment, when we
drive Bloch oscillations with an appropriate magnetic field gradient.

We have developed a simple model for dipolar interaction in a deep
lattice to quantitatively check the observations. The model is based on a
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Fig. 4. Decoherence of the interferometer around the zero crossing due to the interplay
of contact and dipolar interactions. The character of the dipolar interaction depends
on the relative orientation of the lattice and magnetic field: (a) prevalently repulsive
interaction; (b) prevalently attractive interaction. (c) The width of the momentum dis-
tribution after a few 100 ms of Bloch oscillations shows a minimum when the contact
interaction compensates the dipolar one: circles are for the case (a), while squares are
for the case (b). The lines are parabolic fits to the data, which constrain the position of
the zero-crossing in a comparison with theory (black region in the lower panel) better
than Feshbach spectroscopy (gray region).

discrete, non-linear Schrödinger equation that assumes a Gaussian density
distribution of each condensate trapped in individual sites of the lattice:

i�
∂

∂t
ψj = −J(ψj+1 + ψj−1) + ∆jψj +NU c(as)|ψj |2ψj +

+NUd
j,j|ψj |2ψj +N

∑
δ �=0

Ud
j,j+δ|ψj+δ|2ψj (2)

Here, J is the tunnelling energy between neighbouring lattice sites and Ud
j,j′

is the dipolar interaction energy between the lattice sites j and j′. Note that
the inter-site contribution of the dipolar interaction Ud

j,j′ �=j does not have
the same spatial dependence as the on-site contribution Ud

j,j, and therefore
it cannot be completely compensated by the contact interaction. The model
indicates that the minimal decoherence is reached when the spatial variance
of the total interaction energy (contact interaction plus on-site and inter-
site dipolar interaction) is minimal. This happens close to the minimum for
the total energy. The predicted positions of the two minima of decoherence
for our experimental parameters are a = −0.32 a0 and a = +0.15 a0, with a
residual decoherence rate of the order of 0.05 Hz at the minima. Since our
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uncertainty in the predicted position of the zero-crossing is large, we can
only compare the separation of the two minima in experiment and theory.
The experimental observation is ∆a = 0.34(10) a0, which is close to the
theoretical value ∆a = 0.47 a0.

In the present experiment we cannot test the theory prediction for the
residual decoherence rate due to the uncompensated dipolar interaction,
because decoherence due to technical noise is one order of magnitude larger.
We plan to study this fundamental limit to the interferometer’s coherence
with an optimized experimental apparatus in the near future. A higher
sensitivity to interaction-induced decoherence would also allow to verify
the presence of second-order effects that cannot be taken into account by
our simple model, such as the possible formation of density waves due to the
dipolar interaction. Note that in principle the dipolar interaction could be
canceled by choosing a ”magic angle” between the dipoles and the lattice
axis θ = 54.7◦. At such angle, the (1 − 3 cos2 θ) factor for two dipoles
on the lattice axis in different sites is zero, while it is ranges from +1
to -1 for two dipoles in the same site. Given the cylindrical symmetry of
our system, both on-site and inter-site terms will therefore on average be
zero.

5. Microscopic atom interferometer

Tuning the scattering length has another important consequence. During
Bloch oscillations, the in-trap extension of the sample results from the spa-
tial interference of different Wannier-Stark states φi. Therefore the size of
the cloud can have at most a variation on the order of the extension l of the
single φi. In our case, for s = 6, l ∼ 2µm.14 As a consequence the spatial
resolution of our interferometer depends on the initial size of the condensate
if this is larger than l. Tuning a to zero allows the condensate to occupy the
ground state of the trapping potential and by an appropriate choice of the
external confinement we can prepare very small samples. We have verified
that our condensate occupies only about 10 lattice sites, in agreement with
the 4.5 µm 1/e2 spatial width of the ground state of our combined poten-
tial with 100 Hz trapping frequency. The possibility of reaching the ground
state of the trapping potential has clearly a great importance in view of
using an atom interferometer for local phase or force sensing. One example
is the application of atom interferometers to the measurement of Casimir-
Polder and possible non-Newtonian gravitational forces in the proximity of
surfaces, where an atomic sample with size of the order of 1 µm would allow
to access unexplored regions.20
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One should keep in mind that for very small values of a the peak
density of the condensate in the presence of the lattice can approach
1015 atoms/cm3. Having a system with a low K3 coefficient, like potassium,
is therefore of crucial importance for interferometric applications where
the observation time needs to be long. Note however that three-body re-
combination in a non interacting condensate only causes losses, but is not
accompanied by heating.

6. Outlook

In conclusion, we have shown how the coherence time of an atom inter-
ferometer based on Bose-Einstein condensates can be greatly increased by
reducing the contact interaction with an appropriate Feshbach resonance.
The interaction energy U/h can be reduced from a few kHz down to the Hz
level, where the weaker magnetic dipolar interaction comes into play. Our
study also demonstrates that also the latter can be partially canceled by
a weak contact interaction of opposite sign. We speculate that the resid-
ual sub-Hz inhomogeneous interaction energy will not be a major obstacle
on the way to the realization of high-sensitivity condensate-based interfer-
ometers, since it can also be canceled by a proper choice of the system
geometry. A potential issue is of course the high stability of the magnetic
field gradients that are unavoidably associated with the Feshbach field.
In this respect, we note that other Feshbach resonances at lower mag-
netic field in excited states of potassium13 might provide an analogous
fine-tuning of the scattering length with weaker requirements for the field
stability.

The possibility of a dynamical tuning of the interaction we demonstrated
here is of course also very appealing for the implementation of schemes aim-
ing at sensitivities below the shot-noise. It is well known that the ultimate
phase sensitivity of an atom interferometer fed with a Bose-Einstein con-
densate, i.e. a coherent state, scales as 1/

√
N , where N is the number of

particles. In principle it is possible to feed the interferometer with squeezed
or entangled states, which should give phase sensitivities that scale as 1/N
(for a general review, see21). All the various proposals that have been made
in this direction rely on relatively strong interactions to create squeezed
or entangled states in condensates during a preparation phase,22 but of
course the interaction must be canceled during the measurement phase. The
potassium condensate is a good candidate system for future experiments in
this direction.
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Topological matter is an unconventional form of matter: it exhibits a global
hidden order which is not associated with the spontaneous breaking of any
symmetry. The defects of this exotic type of order are anyons, quasiparticles
with fractional statistics. Moreover, when living on a surface with non-trivial
topology, like a plane with a hole or a torus, this type of matter develops
a number of degenerate states which are locally indistinguishable and could
be used to build a quantum memory naturally resistant to errors. Except for
the fractional quantum Hall effect there is no experimental evidence as to the
existence of topologically ordered phases, and it remains a huge challenge to
develop theoretical techniques to look for them in realistic models and find them
in the laboratory. Here we show how to use ultracold atoms in optical lattices to
create and detect different instances of topological order in the minimum non-
trivial system: four spins in a plaquette. By combining different techniques we
show how to prepare these spins in mimimum versions of topical topological
liquids like resonant valence bond or Laughlin states, probe their fractional
quasiparticle excitations, and exploit them to build a mini-topological quantum
memory.

Keywords: Topological matter; plaquette; anyons; optical lattices.

1. Introduction

Strong correlations between particles can lead to unconventional states of
matter that break the traditional paradigms of condensed matter physics.1

Among these exotic phases, topological liquids2 are at the frontier of cur-
rent theoretical and experimental research. They are disordered states
that do not break any symmetries when cooled to zero temperature. Sur-
prisingly, they exhibit some kind of exotic order, dubbed topological or-
der,2,3 which cannot be understood in terms of a local order parameter.
This global hidden pattern is revealed in the peculiar behavior both of
the ground state, with a degeneracy that depends on the topology of the
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system, and of the elementary excitations, which are anyons with fractional
statistics.4

The interest in topological liquids started in connection with two land-
mark phenomena in condensed matter physics: the fractional quantum Hall
effect5 and high temperature superconductivity.6 In fractional quantum
Hall systems electrons organize themselves in topological liquids, like the
Laughlin state,7 following a global pattern that cannot be locally destroyed.
High temperature superconductivity was proposed by Anderson8 to occur
when doping a topological spin liquid: a resonating valence bond (RVB)
state in which the system fluctuates among many singlet bond configura-
tions.8,9 Recently, the study of topological states of matter has received spe-
cial attention in the context of topological quantum computation,3,10 which
seeks to exploit them to encode and manipulate information in a manner
which is resistant to errors. Moreover, understanding topological order may
help us to understand the origin of elementary particles. According to Wen’s
theory,11 fundamental particles, like photons and electrons, may be indeed
collective excitations that emerge from a topologically ordered vacuum, a
string-net condensate.11

Except for the fractional quantum Hall effect, there is no experimental
evidence as to the existence of topologically ordered phases. It remains a
huge challenge to develop theoretical techniques to look for topological liq-
uids in realistic models and find them in the laboratory. In this direction,
artificial design of topological states in the versatile and highly control-
lable atomic systems in optical lattices12 appears to be a very promising
possibility.13–19

Here we show how to use ultracold atoms in optical lattices to create and
detect different instances of topological order in the minimum non-trivial
lattice system: four spins in a plaquette. Using a superlattice structure20–24

it is possible to devise an array of disconnected plaquettes, which can be
controlled and detected in parallel. When the hopping amplitude between
plaquette sites is very small, atoms are site localized and the physics is gov-
erned by the remaining spins. By combining different techniques we show
how to prepare these spins in minimum versions of topical topological liq-
uids like resonant valence bond states or Laughlin states, probe their frac-
tional quasiparticle excitations and exploit them to build a mini-topological
quantum memory.

We will start by briefly discussing the concept of topological order and
its manifestations within the example of fractional quantum Hall systems.
Next we will show that a plaquette can exhibit the two marks of topological
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order, namely, existence of locally indistinguishable ground states and any-
onic excitations. In particular we will show the existence of two degenerate
ground states and discuss how they could be used to encode a qubit in a
manner resistant to local errors. We will then present experimental schemes
with atoms in a superlattice optical structure to realize such a mini topolog-
ical quantum memory. Finally, we will propose a way to design a four-body
plaquette interaction, a Hamiltonian exhibiting anyonic excitations.

2. Topological order with an example

Fractional quantum Hall systems5 are the only ones in nature in which
we can find topologically ordered phases. They are systems of electrons
living at the interface of two semiconductors and subject to a very strong
perpendicular magnetic field. For certain magic ratios ν = 1/m between
the density of electrons and the magnetic flux piercing the two-dimensional
sample (with m being an odd integer) the ground state of the system is
a very special quantum liquid. It can be described by a wave function
proposed by Laughlin,7 which, in the case, for example, of m = 3 has the
form:

ψ ∝
∏
i<j

(zi − zj)3, (1)

with the z’s being complex coordinates in the plane. What makes this state
of matter unconventional is that despite not breaking any symmetry and

Fig. 1. Schematic for a fractional quantum Hall liquid at ν = 1/3. The system behaves
as made of composites of one electron and three flux quanta. Any pair of electrons is
obliged to be in a state of relative angular momentum 3.
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therefore looking completely disordered, it has, however, a hidden pattern.
This pattern is associated with the fact that every pair of electrons in
the state (1) is obliged to have a relative angular momentum 3. Using
Wen’s language2 we can think of state (1) as a correlated dancing among
the electrons where every electron has to perform three steps (the three
nodes of the relative wave function) when going around any other electron,
no matter what the distance between them. Organizing such a dancing
with local means would be an impossible task. We would need to have a
global vision of the system to make sure that every electron is obeying the
dancing rules. It is this hidden pattern with global character what we called
topological order.

Fig. 2. Schematic for anyons in a Laughlin liquid with ν = 1/3. A quasihole with
charge e/3 is created when adding a single flux quantum. The composite objects flux
plus fractional charge are anyons with fractional statistics.

How could we detect this type of order? How can we learn about this
number 3 characterizing the dancing pattern? There are two manifesta-
tions of topological order. The first one is its defects, which are fractional
quasiparticles with fractional statistics. If we imagine piercing the sam-
ple with a single quantum of flux the system will feel it as if 1/3 of an
electron was missing (see Fig. 2). This fractional quasihole will pick up a
fractional phase when surrounding the flux quantum of another quasiparti-
cle. The other manifestation, which is indeed a consequence of the existence
of anyons, is more subtle. When the system is put onto a surface with non-
trivial topology like, for example, a plane with a hole, or a torus, the ground
state is degenerate with a degeneracy equal to 3 times the genus (number of
handles) of the surface. This can be understood intuitively in the following
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way. Starting with a state like (1) in a plane with a hole (see Fig. 3), let us
pierce the hole with a quantum of flux. The energy of the system does not
change, however, the state is different. The dancing pattern of the new state
has an additional rule: the system as a whole has to make one step when
surrounding the hole. The center of mass has a unit of angular momentum.
By adding a second flux to the hole we obtain a third distinct state. Adding
a third one, however, puts as back to the initial pattern: the system will
feel that a new dancer has entered into the hole, but the dancing rules will
be the same as in the initial state. These three states look locally identical,
but they are however topologically different. In order to distinguish them
we would need to make a complete turn around the hole, a highly non-local
operation.

Fig. 3. Schematic of the three degenerate ground states of a fractional quantum Hall
system at ν = 1/3 in a plane with a hole. They correspond to different excitations of the
center of mass and cannot be distinguished locally. To go from one state to the other
one has to pierce a quantum of flux through the hole, an operation which is a highly
non-local.

3. Topological order in a plaquette

In the following we will show that a plaquette, that is, a lattice with four
sites and four spins is a minimum system in which we can find the man-
ifestations of topological order that we have described above, namely, the
existence of degenerate ground states that cannot be locally distinguishable
and anyons. The fundamental reason behind the fact that we can find the
same properties as in a macroscopic system is topological: a plaquette has
the same topology as a plane with a hole (Fig. 4).

Considering a plaquette is motivated by recent experiments with optical
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Fig. 4. Topological equivalence between a plane with a hole and a plaquette.

superlattices in which an array of independent double wells can be created
with full control over the parameters of the double well. In a similar way,
we can envision a situation in which two superlattices are created in the
two perpendicular directions so that an array of independent plaquettes is
created (see Fig. 5).

Fig. 5. Schematic of optical lattice setup. Using an optical superlattice configuration
along two orthogonal lattice directions, an array of decoupled plaquettes can be created.
By controlling the two optical superlattices independently, different potential biases, ∆x

and ∆y, can be introduced along the x and y direction, leading to different site energy
offsets µi as well as different vibrational level splittings at the lattice sites.



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

An optical plaquette: minimum expressions of topological matter 269

3.1. Topological degeneracy and protected

qubit in a plaquette

A plaquette is the minimum system in which we can write down a Hamilto-
nian with two degenerate ground states which are locally indistinguishable.
To show this let us consider the following Hamiltonian:

H =
∑
ij

Xij = (�S1 + �S2 + �S3 + �S4)2, (2)

consisting of the sum of all possible exchange operators

Xij =
1
2

+ 2�Si · �Sj (3)

between two spins in the plaquette, which is identical to the square of
the total spin operator of the system. We will be only interested in this
Hamiltonian for theoretical purposes, to analyze the properties of its ground
state. It is clear that the ground state subspace corresponds to the subspace
of total singlet states, that is, states with total spin equal to zero. This
subspace is doubly degenerate and is generated by the states:

|Bx〉 = s†1,2s
†
4,3|0〉 (4)

|By〉 = s†2,3s
†
1,4|0〉. (5)

Here, the operator s†i,j creates a singlet between the spins on sites i and j, so
that states (4) and (5) consist of two singlets along the x and y directions,
respectively. The states (4) and (5) are not orthogonal. Let us consider the
orthogonal basis:

|Ψ−〉 = |Bx〉 − |By〉 (6)

|Ψ+〉 =
1√
3

(|Bx〉 + |By〉) . (7)

These states are the ones we are looking for (Fig. 6). They are disordered
states that do not break any symmetries: as total singlets, they are both
spin rotationally invariant, and additionally, they are also invariant under
spatial rotations of the plaquette. They are locally indistinguishable, since
any local measurement, which will be generally described by an operator
of the form

∑
i,α b

α
i S

α
i (with bαi arbitrary coefficients), will give the same

output for both states:

〈Ψ−|Sα
i |Ψ−〉 = 〈Ψ+|Sα

i |Ψ+〉 = 0. (8)
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Fig. 6. Schematic representation of the two resonating valence bond states in a plaque-
tte. They have a hidden order along the diagonal bonds.

However, the states (6) and (7) are distinct. They behave differently when
the plaquette is rotated by π/2: |Ψ+〉 is symmetric (has s-wave sym-
metry) whereas |Ψ−〉 is antisymmetric (has d-wave symmetry). It is in-
teresting to note that this rotation operation, which can be written as
Rπ/2 = X12X14X34 is equivalent within the total singlet subspace we are
considering to the spin exchange operator along the diagonals (see Fig. 7)

Rπ/2 ≡ X13 ≡ X24. (9)

This reveals a different symmetry of the two states along the diagonals:
|Ψ−〉 has singlets whereas |Ψ+〉 has triplets. Thus, even though these states

Fig. 7. Equivalence within the total singlet subspace between exchange of spins along
the diagonals X13 and rotation of the plaquette by an angle π/2.

do not have local order, they do exhibit a hidden order, which is as much
hidden as it can be in a plaquette: it will be only revealed by a two-point
measurement, where the two is for a plaquette the size of the system.
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We could use this degenerate subspace to encode a qubit

|Ψ−〉 ≡ | ⇓〉 (10)

|Ψ+〉 ≡ | ⇑〉, (11)

that will be immune to local decoherence. It is straightforward to see that
the corresponding Pauli matrices are encoded in two-body operators of the
form:

σz = X13 = X24 (12)

σx =
1√
3

(X12 −X13) . (13)

Therefore local errors will not affect (in first order perturbation) the state
of the qubit.

We will show below how to realize this mini-quantum memory with cur-
rent experimental techniques. To emphasize more the connection to a large
topological system we will show first that these two states are minimum
versions of the Laughlin states we discussed in the introduction.

3.2. Laughlin states in an plaquette

The topological character of the previous states becomes more explicit when
we realize that they are indeed minimum versions of two indistinguishable
Laughlin states. To see this, let us write the spin states (6) and (7) as states
of two spin up particles in a background of spin down particles:

|Ψ±〉 =
∑

x1,x2

ψ±(x1, x2)S+
x1
S+

x2
|↓↓↓↓〉. (14)

Here S+
x is the spin raising operator on site x = 1, . . . , 4, and | ↓↓↓↓〉 =

a†1↓a
†
2↓a

†
3↓a

†
4↓|0〉.

If we remove the background of spin down particles, that is, if we apply
the operator

∑
i�=j ai↓aj↓ to the states (14), we are left with a system of

two polarized hard-core bosons with wave functions ψ±(x1, x2). These wave
functions have the form

ψ−(x1, x2) = z1z2(z1 − z2)2 (15)

ψ+(x1, x2) = (z1 + z2)2z1z2(z1 − z2)2, (16)

where zi = ei π
2 xi , xi = 1, . . . , 4. The state (15) is the Laughlin state for

two particles (up to the gauge transformation z1z2), whereas the state (16)
is the same Laughlin state but with its center of mass excited with two
units of angular momentum. We have then the same situation as for the
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Fig. 8. Schematic of the correspondence between the two resonant valence bond states
in a plaquette and two indistinguishable Laughlin states, which differ by a flux quantum
piercing or not the hole.

macroscopic fractional quantum Hall system in a plane with a hole. Two
indistinguishable states appear corresponding to whether or not a quantum
of flux is pierced through the hole (Fig. 8).

4. Optical plaquette

We consider a system of atoms in two internal states σ =↑, ↓, which for
the case of e.g. 87Rb atoms could correspond to the hyperfine states |F =
1,mF = +1〉 and |F = 1,mF = −1〉. The atoms are loaded into a two
dimensional superlattice, which is produced by superimposing a long and
a short period lattice22 both in the x and ydirection in such a way that
an array of disconnected plaquettes is created (see Fig.5). The dynamics of
atoms in a single plaquette is governed by the Hubbard Hamiltonian

H = −
∑

〈i,j〉,σ
tij(a

†
iσajσ + H.c.) + U

∑
i,σ,σ′

niσniσ′ +
∑
i,σ

µiσniσ,

where aiσ and niσ are, respectively, the bosonic annihilation and the particle
number operator at site i and for spin σ. By controlling the superlattice
structure, the tunneling amplitudes in the x and y direction, tx ≡ t12 =
t34 and ty ≡ t23 = t14, can be tuned independently. Furthermore, the
dependence of the offset energies µiσ on position and spin state can be
designed using additional magnetic offsets or gradient fields. In the following
we will make full use of the experimental ability to control these parameters,
as already demonstrated in22,23 for a single double well.

We are interested in a situation in which we have N = 4 atoms per
plaquette and where the tunneling amplitudes tx and ty are very small in
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comparison to the on-site interaction energy U . Under these conditions, the
particles are site localized and we are left with an effective system of four
spins in a plaquette.

4.1. Superexchange interaction

In the optical plaquette described above the effective interaction between
spins is the superexchange interaction. In the presence of a dominating
interaction U , particles can only hop virtually to an already occupied site
(see Fig. 9). This results in an exchange between the two spins, which is
indeed nothing else but the Heisenberg interaction between them:

Xij =
1
2

+ 2�Si · �Sj (17)

The spin Hamiltonian that can be realized for spins in an optical plaquette

Fig. 9. Superexchange interaction is realized by virtual tunneling to an occupied site.

is

HS = Jx (X12 +X34) + Jy (X23 +X14) , (18)

where the couplings Jx = t2x/U and Jy = t2y/U can be controlled indepen-
dently both in sign and strength.

4.2. Merging and splitting

Additionally, the superlattice structure behind the optical plaquette allows
us to merge and split double wells along the x or y direction (see Fig. 11).
This will be a useful tool when creating and detecting the topological order
in the plaquette.
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Fig. 10. Schematic of basic Hamiltonians that can be realized in an optical plaquette
by disconnecting the x or y bonds.

Fig. 11. Splitting and merging double wells in the plaquette in the x and y direction.

5. Experimental realization of a mini topological
quantum memory

We will show here how to realize the mini quantum memory that we intro-
duced above using the optical plaquette described in the previous section.
There are two basic Hamiltonians that can be naturally realized in the
optical plaquette:

hx = X12 +X34 (19)

hy = X23 +X14, (20)

which correspond, respectively, to a situation in which tunneling along the
y or x bonds is suppressed. Combining gates based on these Hamiltonians
together with merging of the wells of the plaquette we will see how writing
and reading can be easily performed.
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5.1. Writing

Let us show how to write in the plaquette a desired state of our encoded
qubit. Let us assume that we have prepared the system in the state |By〉 in
(4). As an illustrative example let us first prepare the state |Ψ−〉 ≡ | ⇓〉. It
is clear that |Ψ−〉, with singlets along the diagonals, is obtained from |By〉
by exchanging the two spins along one of the x bonds (see Fig. 12), so that
we have:

Fig. 12. By exchanging spins 1 and 2 or 3 and 4 the valence bond state is converted
into the qubit down state.

| ⇓〉 = e−ithx |By〉, (21)

where the time scale is t = π�/4Jx. In general the Pauli matrices in Eq. (13)
can be generated by using the elementary Hamiltonians (19) and (20) in the
following way. Within the total singlet subspace we have that

∑
ij Xij = 0,

since the total spin is zero, and that X12X34 = 1 since we have specular
symmetry. Therefore

X12 +X34 +X23 +X14 = X13 = X24, (22)

and

σz = hx + hy (23)

σx =
1√
3
(hx − hy) (24)

5.2. Reading

In order to distinguish the states | ⇑〉 and | ⇓〉 we have to probe their
different symmetry (hidden) along the diagonals. However, the diagonal
is not a natural direction for the square lattice. What we propose is to
apply the operator X13 so that the symmetry is transferred to the vertical
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bonds. Then we can merge the wells along the vertical direction and monitor
singlets using the band-mapping technique presented in Ref. 22.

6. Minimum lattice gauge theory in a plaquette

Lattice gauge theories29 play an essential role in describing topological
matter.3 The building block Hamiltonian for a lattice gauge theory is the
following four-body interaction among the spins of a plaquette:

H� = −J� Sx
1S

x
2S

x
3S

x
4 . (25)

We propose a way to realize this four-body interaction in a single plaquette
via a two-body Hamiltonian on a time scale of the order of J = t2/U . We
start by considering the following two-body Hamiltonian:

H = JzHz + JxHx, (26)

where

Hz = Sz
2S

z
3 + Sz

3S
z
4 + Sz

4S
z
1 , Hx = Sx

1S
x
4 + Sx

2S
x
3 . (27)

Fig. 13. String representation of spin states and spin operators in a plaquette. A spin
down is represented by a string at that site, whereas a spin up is represented by the
absence of the string. The spin operator Sx is represented by a string, with the convention
that two strings cancel each other. The spin operator Sz is represented by a string along
the opposite diagonal, with the convention that two strings crossing each other give a
minus sign.

The Hamiltonian Hz is engineered to give an appropriate energy distri-
bution of the plaquette spin states.

As we can see in Fig. 14, every state is degenerate with its completely
flipped one, but far away in energy from any state to which the perturbation
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Hamiltonian Hx would couple it. If the coupling Jx is much smaller than
Jz we have that Hx can only produce virtual transitions and end up in
the completely flipped state. Effectively the Hamiltonian of the system is
(25) with J� = J2

x/Jz. By locally addressing the sites of the plaquette we
can create anyonic excitations and test their fractional statistics as we have
proposed in Ref. 31.

Fig. 14. Spin states of a plaquette ordered by energy of the Hamiltonian Hz .

Fig. 15. Effective plaquette interaction (closed string operator) via virtual processes.

References

1. F. Alet, A. M. Walczak and M. P. A. Fisher, Physica A 369, 122 (2006).
2. X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford Univer-

sity Press, Oxford, 2004).



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

278 B. Paredes

3. S. Das Sarma, M. Freedman, C. Nayak, S. H. Simon and A. Stern,
arXiv:0707.1889 (2007).

4. F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
5. See, for example, S. Das Sarma and A. Pinczuk (eds.), Perspectives in Quan-

tum Hall Effect (Wiley, New York, 1996).
6. S. Sachdev, Rev. Mod. Phys. 75, 913 (2003).
7. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
8. P. W. Anderson, Science 235, 1196 (1987).
9. S. A. Kivelson, D. S. Rokhsar and J. P. Sethna, Phys. Rev. B 35, 8865 (1987).

10. A. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
11. M. Levin and X.-G. Wen, Rev. Mod. Phys. 77, 871 (2005), Phys. Rev. B 71,

045110 (2005).
12. I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. (in press).
13. A. Micheli, G. K. Brennen and P. Zoller, Nat. Phys. 2, 341 (2006).
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Interacting bosons, fermions and Bose-Fermi mixtures in optical lattices form
novel model systems for the investigation of fundamental quantum many body
effects. This article summarizes some of our recent work on interacting bosonic
and fermionic quantum gases in optical lattices. We show how the compressibil-
ity of a fermionic quantum gas mixture can be evaluated by measuring its size
vs trap confinement. The results are compared to ab-initio Dynamical Mean
Field Theory (DMFT) calculations, for which we find very good agreement
with the experiment. Furthermore, quantum phase diffusion is introduced as a
powerful method for the measurement of the renormalized Hubbard parameters
underlying most lattice models.

Keywords: Optical lattices; Quantum Gases; Strong correlations.

1. Interacting Fermions with Repulsive Interactions in
Optical Lattices

Interacting fermions in periodic potentials lie at the heart of modern con-
densed matter physics, presenting some of the most challenging problems
to quantum many-body theory. A prominent example is high-Tc supercon-
ductivity in cuprate compounds.1 In order to capture the essential physics
of such systems, the fermionic Hubbard Hamiltonian2 has been intro-
duced as a fundamental model describing interacting electrons in a periodic
potential.1,3 In a real solid, however, the effects of interest are typically com-
plicated by, e.g., multiple bands and orbital degrees of freedom, impurities,
and the long-range nature of Coulomb interactions, which becomes espe-
cially relevant close to a metal to insulator transition. It is therefore crucial
to probe this fundamental model Hamiltonian in a controllable and clean ex-
perimental setting. Ultracold atoms in optical lattices provide such a defect-
free system,4,5 in which the relevant parameters can be independently con-
trolled, allowing quantitative comparisons of the experiment with modern
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quantum many-body theories. For the case of bosonic particles,6,7 a series
of experiments carried out in the regime of the superfluid to Mott insula-
tor transition8–10 have demonstrated the versatility of ultracold quantum
gases in this respect. Recently, experiments with two-component fermionic
quantum gases have extended this to the regime of the fermionic Hubbard
model with attractive and repulsive interactions.11–13 For both bosonic and
fermionic systems, the entrance into a Mott insulating state is signaled by a
vanishing compressibility, which can in principle be probed experimentally
by testing the response of the system to a change in external confinement.
This is probably the most straightforward way to identify the interaction-
induced Mott insulator and to distinguish it, e.g., from a disorder induced
Anderson insulator.14–16

Here we report on our work on non-interacting and repulsively inter-
acting spin mixtures of fermionic atoms deep in the degenerate regime in
a three-dimensional optical lattice. In the experiment, we are able to in-
dependently vary the interaction strength between the fermions using a
Feshbach resonance, as well as the lattice depth and the external harmonic
confinement of the quantum gas. By monitoring the in-trap density dis-
tribution of the fermionic atoms for increasing harmonic confinements, we
directly probe the compressibility of the many-body system. This mea-
surement allows us to clearly distinguish compressible metallic phases from
globally incompressible states and reveals the strong influence of interac-
tions on the density distribution. For non-interacting clouds the system
changes continuously from a purely metallic state into a globally incom-
pressible band-insulating state with increasing confinement. For repulsive
interactions, we find the cloud size to be significantly larger than in the
non-interacting case, indicating the resistance of the system to compres-
sion. For strong repulsion, the system evolves from a metallic state into a
Mott insulating state and eventually a band insulator as the compression
increases. In previous experiments, a suppression of the number of dou-
bly occupied sites was demonstrated for increasing interaction strength for
bosons17 and fermions12 at fixed harmonic confinement and used as an in-
dicator to show that the system had entered a strongly interacting quantum
phase.

The experimentally observed density distributions are compared to nu-
merical calculations using Dynamical Mean Field Theory (DMFT).18–21

DMFT is a central method of solid state theory and is widely used to ob-
tain ab-initio descriptions of strongly correlated materials.19
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1.1. Hubbard Hamiltonian and trapping effects

Restricting our discussion to the lowest energy band of a simple cubic 3D
optical lattice, the fermionic quantum gas mixture can be modeled via
the Hubbard-Hamiltonian2 together with an additional term describing the
potential energy due to the underlying harmonic potential:

Ĥ = − J
∑

〈i,j〉,σ
ĉ†i,σ ĉj,σ + U

∑
i

n̂i,↓n̂i,↑

+ Vt

∑
i

(i2x + i2y + γ2i2z) (n̂i,↓ + n̂i,↑) . (1)

Here the indices i, j denote different lattice sites in the three-dimensional
system (i = (ix, iy, iz)), 〈i, j〉 neighboring lattice sites, σ ∈ {↓, ↑} the two
different spin states, J the tunneling matrix element and U the effective
on-site interaction energy. The operators ĉi,σ(ĉ†i,σ) correspond to the an-
nihilation (creation) operators of a fermion in spin state σ on the ith lat-
tice site and n̂i,σ counts the number of corresponding atoms on the ith
lattice site. The strength of the harmonic confinement is parameterized
by the energy offset between two adjacent lattice sites at the trap center
Vt = 1

2mω
2
⊥d

2, with ω⊥ = ωx = ωy �= ωz being the horizontal trap fre-
quency and d the lattice constant. The constant aspect ratio of the trap is
denoted by γ = ωz/ω⊥. Due to the Pauli principle every lattice site can be
occupied by at most one atom per spin state.

The quantum phases of the Hubbard model with harmonic confine-
ment are governed by the interplay between three energy scales: kinetic
energy, whose scale is given by the lattice bandwidth 12J in three di-
mensions, interaction energy U , and the strength of the harmonic con-
finement, which can conveniently be expressed by the characteristic trap
energy Et = Vt(γNσ/(4π/3))2/3, which denotes the Fermi energy of a non-
interacting cloud in the zero-tunneling limit with Nσ being the number of
atoms per spin state (N↓ = N↑). The characteristic trap energy depends
both on atom number and trap frequency via Et ∝ ω2

⊥N
2/3
σ and describes

the effective compression of the quantum gas, which is controlled in the
experiment by changing the trapping potential.

Depending on which term in the Hamiltonian dominates, different kinds
of many-body ground states can occur in the trap center (see Fig. 1). For
the case of weak interactions in a shallow trap U � Et � 12J the Fermi
energy is smaller than the lattice bandwidth (EF < 12J) and the atoms
are delocalized in order to minimize their kinetic energy. This leads to
compressible metallic states with central filling n0,σ < 1 (Fig. 1(a)), where
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Fig. 1. Relevant phases of the Hubbard model with an inhomogeneous trapping po-
tential for a spin mixture at T = 0. A schematic representation is shown in the left
column. The center column displays the corresponding in-trap density profiles and the
right column outlines the distribution of singly and doubly occupied lattice sites after a
rapid projection into the zero tunneling limit J = 0, with p denoting the total fraction
of atoms on doubly occupied lattice sites.

the local filling factor ni,σ = 〈n̂i,σ〉 denotes the average occupation per
spin state of a given lattice site. A dominating repulsive interaction U �
12J and U�Et suppresses the double occupation of lattice sites and can
lead to either Fermi-liquid (n0,σ < 1/2) or Mott-insulating (n0,σ = 1/2)
states in the center of the trap (Fig.1(b)), depending on the ratio of kinetic
to characteristic trap energy. Stronger compressions lead to higher filling
factors, ultimately (Et � 12J , Et � U) resulting in an incompressible
band insulator with unity central filling at T = 0 (Fig.1(c)).

Finite temperature reduces all filling factors and enlarges the cloud size,
as the system needs to accommodate the corresponding entropy. Further-
more, in the trap, the filling always varies smoothly from a maximum at
the trap center to zero at the edges of the cloud. For a dominating trap
and a strong repulsive interaction at low temperature (Et > U > 12J),
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the interplay between the different terms in the Hamiltonian gives rise to a
wedding-cake like structure13 consisting of a band-insulating core (n0,σ ≈ 1)
surrounded by a metallic shell (1/2 < ni,σ < 1), a Mott-insulating shell
(ni,σ = 1/2) and a further metallic shell (ni,σ<1/2).20 The outermost shell
remains always metallic, independent of interaction and confinement; only
its thickness varies.

U/12J = 1.5
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Fig. 2. Cloud sizes of the interacting spin mixture versus compression. Measured cloud
size Rsc in a Vlat = 8 Er deep lattice as a function of the external trapping poten-
tial for various interactions U/12J = 0 (black), U/12J = 0.5 (green), U/12J = 1
(blue), U/12J = 1.5 (red)). Dots denote single experimental shots, lines the theoreti-
cal expectation from DMFT for T/TF = 0.15 prior to loading. The insets (a-e) show
the quasi-momentum distribution of the non-interacting clouds (averaged over several
shots). (f) Resulting cloud size for different lattice ramp times at Et/12J = 0.4 for a
non-interacting and an interacting Fermi gas. The arrow marks the ramp time of 50ms
used in the experiment.

In the corresponding experiment, we first prepare a 50/50 spin mix-
ture of 40K in the spin states (F = −9/2,mF = −9/2) and (F = −9/2,
mF = −7/2) at an initial temperature of T/TF ≈ 0.15 in a crossed optical
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dipole trap. Then a simple cubic three dimensional optical lattice poten-
tial is ramped up within 50 ms using three counterpropagating standing
wave laser fields at an optical wavelength of λ = 738nm. The red detuned
crossed optical dipole trap allows for an independent control of the overall
harmonic confinement of the trapped quantum gas. We use phase contrast
imaging to determine the in-trap density distribution of the quantum gas
mixture at different external confinements. The behaviour of the system
can be quantified by plotting the cloud size Rsc (dots) in rescaled units
as a function of the characteristic trap energy Et ∝ ω2

⊥N
2/3
σ (see Fig. 2).

For the non-interacting case we find the cloud sizes (Fig. 2, black dots) to
decrease continuously with compression until the characteristic trap energy
roughly equals the lattice bandwidth (Et/12J ∼ 1). For stronger confine-
ments the compressibility of the quantum gas, determined by ∂Rsc/∂Et,
approaches zero, as almost all atoms are in the band insulating regime while
the surrounding metallic shell becomes negligible. The corresponding quasi-
momentum distribution (Fig. 2a-e) changes gradually from a partially filled
first Brillouin zone, characteristic for a metal, to an almost evenly filled first
Brillouin zone for increasing compressions, as expected for a band insula-
tor. The measurements shown here directly demonstrate the global incom-
pressibility of the fermionic band insulator, in excellent agreement with the
theoretical expectation for a non-interacting Fermi gas (black line).

The green, blue and red dots in Fig. 2 represent the size of repulsively
interacting clouds with U/12J = 0.5, 1 and 1.5 in comparison with the
DMFT calculations (lines). For moderately repulsive interaction (U/12J =
0.5, 1) the cloud size is clearly bigger than in the non-interacting case but
eventually reaches the size of the band insulator. For stronger repulsive
interactions (U/12J = 1.5) we find the onset of a region (0.5<Et/12J <
0.7) where the cloud size decreases only slightly with increasing harmonic
confinement, denoting a very small compressibility, whereas for stronger
confinements the compressibility increases again. This is consistent with
the formation of an incompressible Mott-insulating core with half filling
in the center of the trap, surrounded by a compressible metallic shell.13

For higher confinements an additional metallic core (1/2<ni,σ< 1) starts
to form in the center of the trap. When the system is compressed even
further, all cloud sizes approach that of a band insulating state and all
compressibilities tend to zero.

Overall, we find the measured cloud sizes to be in very good quan-
titative agreement with the theoretical calculations up to U/12J = 1.5
(B = 175 G). Nevertheless, for repulsive interactions and medium compres-
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sion (Et/12J ≈ 0.5) the cloud size is slightly bigger than the theoretical
expectation. The discrepancies become more prominent for stronger inter-
actions, i.e. when tuning the scattering length to even more positive values
below the Feshbach resonance. This could be caused by non-equilibrium dy-
namics in the formation of a Mott-insulating state for strong interactions
or may be an effect not covered by the simple single-band Hubbard model
or the DMFT calculations and requires further investigation.

2. Quantum Phase Diffusion as a Probe for Strongly
Interacting Atoms in Optical Lattices

When an initial coherent state of a Bose-Einstein condensate with N atoms
is split adiabatically into two internal or external modes, the resulting atom
number distribution in each of the modes becomes number squeezed as a
result of the non-linear repulsive interactions between the particles. In the
extreme limit of dominating repulsive interactions, this results in a Mott
insulator like transition, where each mode is now populated by a Fock state
with N/2 atoms. In case of a rapid non-adiabatic splitting process into two
decoupled modes (see Fig. 3), the condensate is split into two coherent mat-
ter waves with a fixed relative phase, each condensate exhibiting a binomial
atom number distribution. This binomial distribution resembles that of a
coherent state and represents an out-of-equilibrium quantum state of the
total two-mode many-body system. Under the influence of the interactions
between the particles, each of the coherent states in the different modes
will undergo a quantum phase diffusion due to the non-linear interactions
between the particles.22–28 Both number squeezed states and the quantum
phase diffusion in external and internal modes have recently been revealed
in several experiments.29–35

The dynamical evolution of the matter wave field based on quantum
phase diffusion can be easily explained for the case of repulsively interact-
ing particles and only two modes into which the condensate is split. After
the rapid splitting process, each mode is populated by a superposition of
different atom numbers. For simplicity, we assume each superposition to
have the form of a Glauber coherent state. In order to determine how such
superpositions of atom number states evolve over time, the interactions be-
tween the atoms have to be taken into account. Let us first assume that all
atoms within a subsystem occupy the ground state of their external confin-
ing potential. If the interaction energy is small compared to the vibrational
spacing in this potential well, the Hamiltonian governing the behavior of
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Fig. 3. A Bose-Einstein condensate is split into two parts with an initially con-
stant phase between the two subsystems BEC1 and BEC2.

the atoms is given by:

H =
1
2
Un̂(n̂− 1), (2)

where U denotes the two-particle interaction energy in a single mode and
n̂ counts the number of particles in this mode.

Subsequently, under the action of this Hamiltonian, our initial coherent
state |α〉 will evolve according to:

|α〉(t) = e−|α|2/2
∑

n

αn

√
n!
e−i 1

2 Un(n−1)t/�|n〉. (3)

Here α is the amplitude and |α|2 corresponds to the average atom number
of the coherent state (see e.g. Ref. 36).

The coherent matter wave field ψ in each of the subsystems can then
be evaluated through ψ = 〈α(t)|â|α(t)〉, which exhibits a series of collapses
and revivals due to the quantum phase diffusion of Eq. 3. At first, the
different phase evolutions of the atom number states lead to a collapse
of ψ. However, at integer multiples in time of h/U , all phase factors in
the above equation re-phase modulo 2π and thus lead to a revival of the
initial coherent state (see also Fig. 4). Such a collapse and revival of the
coherent matter wave field of a BEC is reminiscent of the collapse and
revival of the Rabi oscillations in the interaction of a single atom with a
single-mode electromagnetic field in cavity quantum electrodynamics.37,38

There, the nonlinear atom-field interaction induces the collapse and revival
of the Rabi oscillations whereas here the nonlinearity due to the interactions
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Fig. 4. Calculated quantum dynamics (represented via the Q-function) of an initial
coherent state with an average number of three atoms. The dynamical evolution of the

quantum state is caused by the coherent cold collisions between the atoms. The graphs
show the overlap of the dynamically evolved input state with an arbitrary coherent state
of amplitude β. Evolution times are a 0 h/U ; b 0.1 h/U ; c 0.4 h/U ; d 0.5 h/U ; e 0.6h/U ;
f 0.9 h/U ; and g h/U .

between the atoms themselves leads to the series of collapse and revivals of
the matter wave field.

Up to four or five such collapses and revivals have been observed with
ultracold bosonic atoms in an optical lattice.30 Starting from a shallow
lattice, where each lattice site is approximately occupied by a coherent
state, the lattice potential was rapidly increased to a large lattice depth,
for which the atomic wells were essentially decoupled and the interaction
energy U dominated over the kinetic energy J . The resulting series of col-
lapses and revivals, however, was damped due to inhomogeneities in the
external confinement that precluded observing more periods of the quan-
tum phase diffusion dynamics in the experiment. In our novel experimental
setup used here, the combination of a blue detuned lattice potential to-
gether with an independent red detuned crossed optical dipole trap, has
allowed us to control the harmonic confinement independent of the lattice
depth. This laser combination has enabled us to realize conditions with
a very weak external confinement, thus minimizing any inhomogeneities.
Based on these experimental improvements, we are now able to observe up
to 10 times longer time evolutions due to quantum phase diffusion. An ex-
ample of such a trace can be seen in Fig. 5. In the inset of the same figure,
the power spectrum of the time trace is shown, revealing three frequency
components with different amplitudes that contribute to the collapse and
revival dynamics. Such different frequencies can be expected if the onsite
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two-body interaction energy becomes dependent on the filling n on a lat-
tice site. Within a single-band approximation, the two-particle interaction
energy U is given by:

U =
4π�

2a

m

∫
|w(x)|4d3x, (4)

with a being the scattering length, m the mass of a single atom and w(x)
denoting the onsite Wannier function within the lowest energy band (see
e.g. Ref. 5). For this case, the interaction energy U is independent of the
local filling n. For interacting particles, higher energy bands can be ad-
mixed, yielding an effective broadening of the on-site wavefunction w(x)
due to the repulsive interaction between the particles. This becomes es-
pecially relevant when the interaction energy approaches the vibrational
energy level splitting on a single lattice site. Such a wave function broad-
ening will depend on the number of particles occupying a single lattice site
n and essentially yields discrete values for the two-particle interaction en-
ergy: U(2), U(3), U(4), . . . U(n). These different interaction values result in
the different collapse and revival frequencies observed in the experiment.
Not only do they allow one to determine the effective renormalized Hub-
bard parameters U(n), but their amplitudes also contains information on
the population of the different atom number states that form the superpo-
sition state on a single lattice site. Just as in cavity QED experiments,38,39

they can be used to reveal the atom number statistics of the atomic quan-
tum states and are a direct proof of the quantum granularity present in the
coherent matter wave field of a BEC.

Quantum phase diffusion experiments have allowed us to precisely de-
termine the effect of interactions on the atomic wave functions in a lattice.
The resulting effective renormalized Hubbard parameters can be compared
to ab-initio calculations and yield valuable input for multi-band Hubbard
physics which can become especially relevant for the case of Bose-Fermi
mixtures in a lattice. There a strong shift of the bosonic superfluid to Mott
insulator transition has been observed as fermionic atoms with attractive
interactions are added to the system.40–42 In a recent experiment we have
found that the observed shift is in fact in very good agreement with a very
strong renormalization of the Hubbard parameters.42,43 Quantum phase
diffusion enables one to quantitively measure these shifts in a direct way
using fundamental quantum optics effects.
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92, 130403 (2004).
10. I. B. Spielman, W. D. Phillips and J. V. Porto, Phys. Rev. Lett. 98, 080404

(2007).
11. J. Chin, D. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu and

W. Ketterle, Nature 443, 961 (2006).



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

290 I. Bloch
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The cold-molecules field is very active trying to transfer laser cooling tech-
niques from atoms to molecules. Photoassociation of cold atoms, followed by
spontaneous emission of the electronically excited molecules, produces transla-
tionally cold molecules, but in several vibrational levels v of the ground state.
We have recently shown that vibrational cooling can be obtained by optical
pumping with a shaped broadband femtosecond laser. The broadband laser
electronically excites the molecules, leading via a few absorption - spontaneous
emission cycles to a redistribution of the vibrational population in the ground
state. By removing the laser frequencies corresponding to the excitation of the
v = 0 level, a dark state is produced by the so-shaped laser, yielding with
successive laser pulses an accumulation of the molecules in the v = 0 level.

Keywords: Cold molecules, photoassociation of cold atoms, optical pumping,
laser cooling, shaped femtosecond laser.

1. Introduction

Full control of the dynamics of a quantum system is crucial in both physics
and chemistry.1 For atoms, precise control of both internal and external
degrees of freedom has been achieved thereby opening fascinating new
fields.2 Extension to molecules is not straightforward, but the impetus to
prepare robust samples of trapped ultracold ground-state molecules with
neither vibration nor rotation is strong. Indeed, significant advances are ex-
pected3 in molecular spectroscopy, molecular clocks, fundamental tests of
physics, super or controlled photo-chemistry, and also in quantum computa-
tion based on polar molecules. Slowing pre-existing molecules, for instance
by buffer-gas cooling or supersonic beam deceleration, typically delivers
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molecules with translational temperatures down to a few millikelvins.4 Tem-
peratures in the sub-millikelvin range can only be achieved starting from
cold atoms.5,6 In quantum degenerate gases, a magneto-association step
via Feshbach resonances followed by adiabatic population transfer was re-
cently found to successfully form ultracold molecules in a single deeply
bound level.7,8 Photoassociation (PA) of ultracold atoms from a standard
magneto-optical trap (MOT) is a well known efficient process to produce
ultracold molecules with a rate as high as 106−107 s−1. Among the current
methods used to prepare dense and ultracold samples of molecules,9 here
we report on photoassociation (PA) of laser cooled Cs atoms. In particular,
we demonstrate efficient production of deeply-bound cesium dimers and vi-
brational cooling in the v = 0 level of the ground electronic single state.
For cesium, the photoassociation process corresponds to the reaction

Cs(6s, F ) + Cs(6s, F ) + hνL −→ Cs∗2(Ω (6s+ 6pj) ; v, J) (1)

Two colliding atoms in a hyperfine level F of their 6s ground state absorb
one laser photon at frequency hνL red-detuned from the atomic resonance
frequency (6s+ 6pj, j = 1/2 or 3/2) and form a molecule in a well defined
rovibrational level (v, J) of an excited molecular state Ω correlated to one
of the asymptotes (6s + 6p1/2) or (6s + 6p3/2). The resolution of the PA
process is limited by the width (∼ kBT ) of the statistical distribution of
the relative kinetic energies of the colliding atoms. For ultracold atoms,
(kBT ∼ h × 2MHz at T ∼ 100µK), it is smaller than any other relevant
energy spacing of the system. Thus, cold atom PA is a powerful tool for
high-resolution molecular spectroscopy. It has given access to previously
unexplored domain of molecular dynamics at distances well beyond those
of well-known chemical bonds. A pair of identical ground state atoms in-
teracts at large interactomic distances R through their R−6 van der Waals
interaction while for an excited atom pair the R−3 dipole-dipole interac-
tion is dominant. Vibrational levels with a very large elongation (from a
few tens up to a few hundred atomic units) are then efficiently populated
by photoassociation. From a classical point of view, the ideal vibrational
motion of the PA molecule should slow down in the intermediate distance
range (say, around 15−20 atomic units) to let spontaneous decay occur be-
fore going back towards long range. This was demonstrated10 by using the
0−g and 1u double-well potential curves correlated to the Cs(6s)+Cs(6p3/2)
limit, shown in Fig. 1. These peculiar states, known as pure long-range
molecules, result from the competition between the spin-orbit interaction
and the long-range dipole-dipole interaction. The slow R−variation of the
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left edge of the outer potential well induces a “speed bump” in the distance
range appropriate for radiative decay towards stable vibrational levels.
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Fig. 1. Long-range Cs2 attractive molecular potential curves correlated to the (6s+6s)
and (6s + 6p1/2,3/2) dissociation limits. The attractive 0−u and 2u states, forbidden for
dipole transitions, are not shown. Following spontaneous emission, the formation of cold
molecules is pictured by dashed arrows (ii) and (iii), and dissociation by arrow (i).

2. Formation and detection of Cs2 molecules

Within their short lifetime of a few tens of nanoseconds, the electronically
excited molecules created by photoassociation, most often spontaneously
decay back to a pair of “hot” atoms, i.e. with a large relative kinetic energy.
In magneto-optical traps, the fluorescence intensity decrease due to the
escape of the hot atoms from the trap provides a simple detection method.
Fig. 2 displays a typical PA spectrum from a Cs MOT when the PA laser
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frequency (in our setup a cw Ti:Sa laser, intensity 300 Wcm−2, pumped
by an argon-ion laser) is scanned below the 6s + 6p3/2 dissociation limit.
The upper trace corresponds to the fluorescence spectrum due to trap loss,
revealing rovibrational progressions for all attractive potentials which can
be reached by photoassociation (cf. Fig. 1). Decays into either a pair of hot
atoms or into a stable molecule induce a decrease of the trap fluorescence.
The lower trace is the Cs+2 yield obtained by photoionization of the stable
Cs2 cold molecules created either in the ground state, X1Σ+

g , (through 1u

excitation) or in the lowest triplet state, a3Σ+
u , (through 0−g excitation). The

electronically excited molecules formed by photoassociation have too short
a lifetime to give a significant contribution to the photoionization signal.
The 0−g (6s+ 6p3/2) and 1u(6s+ 6p3/2) double-well potentials are the only
states which contribute significantly to the molecular ion signal.11,12 In the
former case, the cold molecules are distributed over several rovibrational
levels with binding energies in the middle of the lowest triplet state a3Σ+

u ,
while in the latter case, the populated levels are close to the dissociation
limit, where the gerade (g) and ungerade (u) characters are no longer good
symmetries. The Cs+2 ion spectrum of Fig. 2 exhibits 133 well resolved
structures assigned to the vibrational progression of the 0−g (6s+6p3/2) outer
well, starting at v = 0. The rotational structure, shown for v = 10 in the
inset, is observed up to J = 8 for most of the vibrational levels below v = 74.
The double-well route via the 0−g potential correlated to the 6s+6p3/2 limit
was also demonstrated for rubidium. For other alkalies the 0−g outer well
is still present, but located too far out to provide a Condon point in the
desired distance range, and no significant formation of ultracold molecules
can occur. The double-well route is an optimized compromise between an
efficient photoassociation at long range and a quite reasonable branching
ratio for spontaneous decay at intermediate distances.

The previous mechanism relies on the specific shape of the molecular
potential curves. It is limited to Rb2 and Cs2 for the 0−g symmetry, and
to Cs2 for the 1u symmetry. Another possibility is provided by the more
general pattern of interactions in diatomic molecules, taking place when
two (or more) molecular states interact together at a given interatomic
distance. Such an example is given by the 0+

u (6s+6p1/2) and 0+
u (6s+6p3/2)

coupled states in Cs2. A detailed analysis of this mechanism13 suggests that
a resonant coupling between vibrational levels of the 0+

u (6s + 6p1/2) and
0+

u (6s+6p3/2) states enables formation of ultracold molecules. As with the
double-well configuration, the PA excitation occurs at large distance while
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Fig. 2. Cs+2 ion signal (lower curve) and trap fluorescence yield (upper curve) versus
detuning of the PA laser relative to the 6s + 6p3/2 dissociation limit. The rotational

progression of the v = 10 level of the 0−g long-range potential well is shown in the inset.
The dashed line indicates the correspondence of a vibrational level of the 0−g state on
both spectra.

the coupling acts at short distances, favoring spontaneous emission towards
stable bound levels of the X1Σ+

g Cs2 ground state.
The detection of cold molecules is made through REMPI (Resonant En-

hanced MultiPhoton Ionization) detection,11 whose sensitivity can reach
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one single ion.14 The cold molecules are ionized into Cs+2 ions by a pulsed
dye laser (7 ns duration, 1 mJ energy, focused spot ∼ 1 mm2, 10GHz resolu-
tion) pumped by the second harmonic of a Nd-YAG laser at 10Hz repetition
rate. The top of Fig. 3 shows the REMPI spectrum recorded by scanning
the frequency of the pulsed REMPI laser in the range 13500− 14500cm−1,
when the molecules are formed via the photoassociation of the vibrational
level v = 79, of the state 0−g (6s+6p3/2). For frequencies above 13850 cm−1,
the REMPI process consists of a first resonant step corresponding to tran-
sitions between ro-vibrational levels of the lowest triplet state a3Σ+

u and
the 23Πg state converging to the 6s+5d dissociation limit. The second step
corresponds to a one-photon ionization of the intermediate ro-vibrational
level of the 23Πg state. After the photoionization laser pulse, a pulsed high
electric field (3 kV/cm, 0.5µs) is applied at the trap position by a pair of
grids spaced by 15 mm. Ions extracted from the photoassociation region
cross a 6 cm free field zone, acting as a time-of-flight mass spectrometer
to separate the Cs+2 ions from spurious Cs+ ions, and are detected by a
pair of microchannel plates. The global efficiency of the process is limited
by the ion collection efficiency (80%) and the microchannel plate efficiency
(35%). The REMPI efficiency is roughly estimated around 10% by compar-
ing the Cs+2 ion signal with the trap loss fluorescence signal and by using
calculated branching ratios between bound-bound and bound-free transi-
tions for the photoassociated molecules. This relatively low rate for the
REMPI process is related to its resonant character. It means that only a
few initially populated ro-vibrational levels, for which the two-photon pro-
cess is resonant, are efficiently ionized. For frequencies below 13850 cm−1,
the scan yields a well resolved spectrum (bottom of Fig. 3). The first reso-
nant step of the REMPI process corresponds closely to transitions between
ro-vibrational levels of the lowest triplet state a3Σ+

u and the 23Σ+
g state

converging to the 6s + 5d dissociation limit. The analysis shows that the
vibrational levels between v = 12 and 16 of the lowest triplet state, a3Σ+

u ,
are populated. Evidently, the detected cold molecules are vibrationally ex-
cited in the lowest triplet state. Molecules in the singlet ground state,
such as those obtained via photoassociation into the 1u(6s + 6p3/2) and
0+

u (6s + 6p1/2) states, are also detected in highly excited vibrational lev-
els. Thus, two questions arise: Can molecules be formed in low vibrational
levels of the singlet ground state? How can such molecules be efficiently
detected?
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Fig. 3. Photoionization spectrum of Cs2 cold molecules formed after spontaneous emis-
sion from the vibrational level, v = 79, in 0−g (6s + 6p3/2) state. Each transition is
indicated by a triangle.

3. Novel scheme for the formation of cold Cs2 molecules

A recent novelty of our experiment is the modification of the detection
of ground-state molecules after spontaneous decay of the photoassociated
molecules. A broadband (FHWM ∼ 25 cm−1) dye (LDS751) laser, pumped
by the second harmonic of a pulsed Nd:YAG laser, excites the molecules on
the vibrational transitions X1Σ+

g (v) −→ B1Πu(v′). The second harmonic of
the pulsed Nd:YAG laser ionizes these excited molecules and the Cs+2 ions
are detected through a time-of-flight mass spectrometer. Such a broadband
laser, tunable over a wide range (13500 - 14500 cm−1), is able to detect cold
molecules in a broad distribution of ro-vibrational levels. By scanning the
cw Ti:Sa PA laser, we have found several new pathways for the formation
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(b) REMPI detection process via the C1Πu state, and transition (X1Σ+
g towards B1Πu)

induced by the fs laser.

of cold molecules in the singlet ground state. Both the experimental and
theoretical studies of these different mechanisms are in progress. Here, we
focus our attention on one pathway involving the excitation of the 1g state
(Fig. 4a). The PA cw laser, ∼ 1 cm−1 to the red of the atomic transition
6s1/2 −→ 6p3/2, is tuned to a chosen vibrational level (v, J) of a state,
spectroscopically labelled 1g, converging towards the electronically excited
limit 6s1/2 + 6p3/2. The process is

2Cs(6s) + hνPA −→ Cs2(1g(6s+ 6p); v, J).

The complete mechanism of molecule formation in the singlet ground state
is complex and not described in detail here. It involves an internal cou-
pling13 with the 1g(6s+5d) state. Although these photoassociated molecules
spontaneously decay mainly towards the triplet ground state, a reasonable
branching ratio allows a two-photon spontaneous cascading towards the
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singlet ground state via the 0+
u states, i.e. the process

Cs2(1g)
sp.em.−→ Cs2(0+

u )
sp.em.−→ Cs2(X1Σ+

g )

To analyze the vibrational distribution of these cold molecules in the singlet
ground state, we use the REMPI process via the C1Πu electronic excited
state, depicted in Fig. 4(b). The transition frequencies and their Franck-
Condon factors are well known. Fig. 5(a) shows the observed spectrum.
Different vibrational levels, from v = 1 to v = 10, are populated, but no
molecules are present in the vibrational level v = 0.

4. Efficient vibrational cooling by optical pumping with a
broadband laser

Different schemes have been proposed to favor the formation of cold
molecules in their lowest vibrational level. A few v = 0 (no vibration)
ultracold ground-state potassium dimers have been observed15 by two-
photon PA, but several other vibrational levels were populated as well.
By transferring a given vibrational level into the lowest vibrational one,
cold ground state rubidium-cesium molecules have been prepared.16 Ra-
man PA for preparing ultracold molecules in a well defined level has been
studied by different groups. Its efficiency is unfortunately limited, because
the so-prepared molecules can be excited again, and spontaneously decay
toward other vibrational levels.

Several theoretical approaches have also been proposed to favor the
spontaneous emission towards the lowest ro-vibrational level. For instance
the use of an external cavity has been envisaged.17 The vibration of the
molecule can also be manipulated through quantum interferences between
the different transitions. Interplay of control laser fields and spontaneous
emission has been investigated for rotational or vibrational cooling.18–20

As in this theoretical proposal, our recent approach uses a shaped laser.
However, in our case the coherence of the field does not play any role since
it is a simple incoherent optical pumping process that uses femtosecond
pulses spectrally broad enough to excite all relevant vibrational levels.

We have demonstrated the transfer of population from the vibrational
levels of cold singlet-ground-state Cs2 molecules prepared via photoasso-
ciation, towards the level, v = 0, with no vibration. The main idea is to
use a broadband femtosecond laser tuned to the transitions X1Σ+

g (vX) to-
wards B1Πu(vB) encompassing different vibrational levels of the ground
state and the electronically excited one. With successive laser pulses, the
absorption-spontaneous emission cycles lead through optical pumping to a
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redistribution of the vibrational population in the ground state, as sketched
in Fig. 6(c). By shaping the laser to remove frequencies corresponding to
the excitation of the vX = 0 level (Fig. 6(a)), this state become dark and
molecules are accumulated in the X1Σ+

g (v0), meaning vibrational laser cool-
ing (Fig. 5(b)). The fs laser is a Tsunami mode locked laser from Spectra
Physics with repetition rate 80 MHz, average power 2W, pulse duration
100 fs and σ-gaussian bandwidth 54 cm−1. By tuning the laser wavelength,
low vibrational levels (vX < 10) are excited to vibrational levels vB of the
B state that through optical pumping redistribute the populations among
the different vibrational levels of the ground state. Without shaping the
fs laser, we observe a wavelength dependent modification of the molecular
resonance lines, interpreted as a transfer of population between vibrational
levels through optical pumping (Fig. 5(a)). Figure 6(b) shows the Condon
parabola of the Franck-Condon factors for the X1Σ+

g (v) −→ B1Πu(v′) tran-
sitions. The importance of the Franck-Condon factors is indicated by the
level of grey. Figure 6(b) shows the overlap between the radial wavefunc-
tions, showing how the Franck-Condon factors depend on the square of the
overlap of the wavefunctions in the X and B wells. The transitions from the
vX = 0 level towards vB levels are at frequencies above 13030 cm−1. The
spectral shape of the laser does not contain any transitions from vX = 0 (see
Fig. 6(a)). Our home made shaper is a simple 4-f line using a grating (1800
lines per mm) for diffracting the laser beam. In this way, the vibrational
level, vX = 0, becomes a dark state for the shaped laser. If we consider for
instance vX = 4, it is essentially excited in vB = 1, which decays with a
probability of about 30% into the dark level, vX = 0, and with a probabil-
ity of 70% essentially into the levels vX = 3, 4 or 5. More generally, after
a few cycles of absorption of laser light then spontaneous emission, a large
fraction of the molecules can be accumulated in the lowest vibrational level
vX = 0.

5. Vibrational cooling by a shaped femtosecond laser

Figure 5(b) shows the experimental results. The shaped laser strongly mod-
ifies the spectrum. The resonance lines corresponding to the transitions
vX = 0 −→ vB = 0 − 3, mostly absent in the spectrum of Fig. 5(a), are
here very strong. Their broadening corresponds to the saturation of the
resonance in the REMPI process. The intensity of the lines indicates a very
efficient transfer of the molecules into the lowest vibrational level, mean-
ing a vibrational laser-cooling of the molecules. Figure 7(a) shows the time
evolution of the population in the different vibrational levels. Population
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Fig. 7. (a) Temporal evolution of the population transfer. (b) Simulation of the vibra-
tional laser cooling.

transfer into the vX = 0 level is almost saturated after the application
of 1000 pulses, which requires ten microseconds. The depumping of the
vX = 1 level is not very efficient due to the rough shaping of the laser
pulse, and could be improved with further development of the shaper. Tak-
ing into account the efficiency of the detection (<10%), the detected ion
signal corresponds to about one thousand molecules in the vX = 0 level,
corresponding to a flux of vX = 0 molecules of more than 105 per second.

We have modeled the optical pumping in a very simple way. Using the
known X1Σ+

g and B1Πu potential curves and their rotational constants,21,22

we have calculated the ro-vibrational energy levels. In the perturbative
regime, we assume that the excitation probability is simply proportional
to the laser spectral density at the transition frequency, to the Franck-
Condon factor,22 and to the Hönl-London factor.23 We assume a laser
spectrum shape very close to the experimental one: average intensity of
150 mW/cm2; Gaussian shape centered at 12940 cm−1 with a Gaussian
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linewidth σ = 54 cm−1; and all spectral components above 13030 cm−1 re-
moved by the shaping. After being excited by a pulse and before the arrival
of the next pulse, we assume a total decay of the excited state population
with branching ratios given by the Franck-Condon factors and the Hönl-
London factors. The perturbative regime and the ∼ 15 ns lifetime of the
electronically excited state, close to the 12.5 ns period of the pulses, make
reasonable the hypothesis of neglecting any accumulation of coherence due
to the excitation by a train of ultrashort pulses.24 This simple model shows
that the molecules make a random walk, mostly in low vibrational levels,
until reaching the vX = 0 vibrational level. The accumulation of many
molecules in the lowest vibrational level occurs with near unit transfer effi-
ciency. Fig. 7b shows a simulation of the transfer of 70% of the population
into the vX = 0 level after 1000 pulses when the molecules are initially in
a distribution of vibrational levels simulating the experimental one. The
model agrees well with the data. It indicates that only about 5 cycles of
absorption-spontaneous emission (the number of necessary laser pulses de-
pends on the intensity) are enough to transfer into vX = 0 all molecules
initially in vX < 10 vibrational levels. The limitation of this mechanism is
the optical pumping towards high vibrational levels. A broader bandwidth
laser could probably increase the population in vX = 0. Nevertheless the
Franck-Condon factors favor the accumulation of population in low vibra-
tional levels.

6. Conclusion

We have demonstrated that optical pumping of molecules modifies the dis-
tribution of populations in the vibrational levels. By making v = 0 a dark
state, we enable the accumulation of the population in this level, hence
we have demonstrated laser cooling of the molecular vibration. Work is in
progress to develop a specific high resolution detection for the analysis of
rotational populations of vibration-free ground state molecules. The theo-
retical model indicates that the shaped lasers do not produce a significant
heating of the molecular rotation. Rotational cooling can be performed in
a similar way, provided the laser bandwidth and laser shaping match the
rotational energy spread. The trapping of molecules can provide a way to
prepare a sample of one million or more molecules. Similar results could also
be reached for hetero-nuclear systems and the formation of polar molecules,
opening exciting prospects in quantum information.

The result obtained is at the frontier of the ultracold and ultrafast fields.
The use of femtosecond optical sources and pulse-shaping techniques25 has
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enabled several advances in the manipulation of the internal degrees of
freedom in both atoms26 and molecules.27,28 For example, performing pho-
toassociation while controlling the whole dynamics of the reaction in a
pump-dump experiment is a very exciting challenge. The broadband char-
acter of the femtosecond laser is however, the essential property of our
experiment. Easy shaping is also an important argument for using it, but
a continuous broadband laser such as fiber laser or diode laser might offer
the same capability and should be tested in the near future.

Optical pumping of molecules has other important implications,29 for
instance for the combined control and cooling of vibration and rotation.
Particularly interesting is the cooling of internal degrees of freedom of po-
lar molecules loaded in an electrostatic trap, after velocity filtering of an
effusive molecular beam.30,31

This work is supported by the “Institut Francilien de Recherche sur les
Atomes Froids” (IFRAF).
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A DISSIPATIVE TONKS-GIRARDEAU
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Strongly correlated states in many-body systems are traditionally created us-
ing elastic interparticle interactions. Here we show that inelastic interactions
between particles can also drive a system into the strongly correlated regime.
This is shown by an experimental realization of a specific strongly correlated
system, namely a one-dimensional molecular Tonks-Girardeau gas.

Keywords: Strong correlations, optical lattices, one dimensional systems,
Tonks-Girardeau gas.

Strong correlations give rise to many fascinating quantum phenomena in
many-body systems, such as high-temperature superconductivity,1 excita-
tions with fractional statistics,2 topological quantum computation,3 and a
variety of exotic behaviors in magnetic systems.4 Such strong correlations
are typically the result of a repulsive, elastic interparticle interaction. This
makes it energetically unfavorable for particles to be at the same position
and thus the wave function tends to vanish at those positions.

In this work we show that inelastic interactions offer an alternative route
into the strongly correlated regime. The inelastic collisions also lead to a
situation in which the wave function tends to vanish at positions where two
particles are at the same position.

∗Present address: Institute of Quantum Electronics, ETH-Hönggerberg, 8093 Zürich,
Switzerland
†Present address: Institut für Photonik, Technische Universität Wien, Gußhausstr. 25-29,
1040 Wien, Austria
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This behavior might seem counter-intuitive, but it can be understood
in terms of an analogy in classical optics: consider an electromagnetic wave
in a medium with refractive index n1 impinging at normal incidence onto
a surface with another medium with refractive index n2. Fresnel’s formula
yields that a fraction

R =
∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2 (1)

of the light intensity is reflected. This formula also holds if absorption occurs
in the media. In a nonmagnetic medium, dispersion and absorption are
expressed by the real and imaginary parts, Re(χ) and Im(χ), of the electrical
susceptibility χ, which determines the refractive index n =

√
1 + χ.

In Fresnel’s formula, the limit |n2| → ∞ yields R → 1, which is called
index mismatch. This result is independent of whether n2 is real or complex.
Even for strong pure absorption, Im(χ2) → ∞, we obtain R → 1. In this
limit, the light would be absorbed very quickly once inside the medium,
but the index mismatch prevents it from getting there.

We add that the result R→ 1 in the limit of strong loss is quite different
from the well-known result R ≈ 1 for light impinging onto a metal. In a
metal with negligible ohmic resistivity, the interaction is purely dispersive,
so that χ2 is purely real. At frequencies below the so-called plasma fre-
quency, a metal has χ2 < −1 so that n2 is purely imaginary, thus causing
R = 1 for real n1 and for any value of Im(n2). This reflection is due to
surface charges that build up. They cancel the field inside the metal, which
results in a reflection of the wave from the surface. In the static limit, we
obtain the well-known result that a static electric field cannot penetrate
a conductor because of surface charges. For comparison, for reflection in
the limit of strong loss, Im(χ2) → ∞, we obtain n2 ≈ eiπ/4

√|χ2| so that
Re(n2) ≈ Im(n2). Furthermore, R ≈ 1 is only obtained for large Im(χ2).

These reflection properties of light waves have a one-to-one analogy in
the reflection of matter waves. This becomes obvious when defining the
refractive index for matter waves obeying the Schrödinger equation as5

n(x) =
√

1 − V (x)/E, where V (x) is the potential and E > 0 is the energy
of the particles. One can show fairly easily that the fraction of particles
that are reflected from a potential step at normal incidence is also given
by Eq. (1). Loss of particles is expressed by Im(V ) < 0 and strong loss,
Im(V2) → −∞, yields R → 1, in full analogy to classical optics.

What we are really interested in is a system in which the loss is not
caused by a static medium, but by inelastic interparticle interactions. The
analogy to the case of reflection from the surface of a static medium is
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clear: once the wave functions of two particles overlapped, they would be
lost very quickly. This corresponds to an index mismatch which prevents
the wave functions from overlapping. The particles are thus reflected from
one another, causing the wave function to vanish at the positions where
they would overlap, just like in the case of strong elastic interactions.

An example of a strongly-correlated system that is well known in the
field of ultracold gases is a Mott insulator of atoms in an optical lattice.6 In
this system, strong elastic, repulsive interactions between the particles make
it energetically favorable that each site of an optical lattice contains the
exact same number of particles. In a recent experiment,7 we demonstrated
that this interaction-induced property of an atomic gas can be maintained
when converting atom pairs to molecules. To this end, an atomic Mott
isolator was prepared such that it contained exactly two atoms at each
site of the central region of the optical lattice. These atom pairs were then
associated into molecules8 using a Feshbach resonance.9 In Ref. 7 the lattice
was so deep that tunneling of molecules was negligible on the time scale
of the experiment. The association thus mapped the strong correlations of
the interaction-induced atomic Mott insulator to a corresponding quantum
state of molecules. But this state was independent of any molecule-molecule
interactions.

Studies of the excitation spectrum of this system showed that the
molecule-molecule interactions are predominantly inelastic.10 In the fol-
lowing, we thus neglect the elastic part of the molecule-molecule interac-
tions. The inelastic character of the collisions arises from the fact that the
molecules formed with the Feshbach resonance are in a highly excited ro-
vibrational state. If two such molecules collide, it is possible that one of
them falls down on the vibrational ladder, thus releasing binding energy
into kinetic energy of the relative motion of the colliding particles. The
released energy is typically much larger then the trap depth, so that all
collision partners are quickly lost from the sample.

A natural question to ask is: What happens to this quantum state if
the lattice depth is reduced so much that tunneling of molecules becomes
significant? We addressed this question experimentally in Ref. 11 and we
discuss the results of this experiment in the following. As hinted above, we
find that for sufficiently strong inelastic interactions the system remains
strongly correlated. It is well known that a reduction of the dimensionality
of the system makes it easier to reach the strongly-correlated regime. We
thus choose to lower the depth of the three-dimensional (3D) optical lat-
tice only along one direction, as shown in Fig. 1. The strongly correlated
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Fig. 1. 2D scheme of the 3D experiment in the optical lattice. The lattice depth along
one dimension is lowered to zero so that the molecules are free to move along the resulting
1D tubes.

gas of repulsively interacting particles in the resulting 1D tubes is known
as a Tonks-Girardeau gas12,13 and has been observed in previous experi-
ments with atoms.14,15 Instead of elastic interactions, our experiment relies
on inelastic interactions to reach the strongly correlated regime and thus
represents a dissipative Tonks-Girardeau gas. Another novel aspect of our
experiment is that it realizes the first Tonks-Girardeau gas of molecules.

A characteristic property of the Tonks-Girardeau gas is that the proba-
bility to find two particles at the same position is strongly suppressed.16,17 A
mathematical expression that captures this property is the pair-correlation
function

g(2)(x1,x2) =
〈Ψ†(x1)Ψ†(x2)Ψ(x1)Ψ(x2)〉

〈Ψ†(x1)Ψ(x1)〉 〈Ψ†(x2)Ψ(x2)〉 , (2)

where Ψ(x) is the bosonic field operator that annihilates a molecule at
position x. The probability to find two particles at the same position x
is proportional to g(2)(x,x). For a homogeneous system, this quantity is
independent of x and we denote it simply as g(2). For an uncorrelated
system g(2) = 1.

Loss of particles due to inelastic two-body collisions occurs only if the
particles come close together. The rate at which the loss occurs thus depends
on g(2); more quantitatively11

dn

dt
= −Kn2g(2), (3)

where n is the 1D density of particles and K is a rate coefficient, which
can be determined from independent measurements. A measurement of the
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Fig. 2. Time-resolved loss of the number of molecules in 1D tubes. If the system were
uncorrelated the loss would be expected to follow the dashed line, which is way off the
experimental data (•). A fit to the data (solid line) reveals that the probability to find two
particles at the same position is reduced by a factor of ∼ 10 compared to an uncorrelated
system, thus showing that the system is strongly correlated. Reproduced from Ref. 11.

loss rate can thus serve as a probe whether the strongly correlated regime
is reached.

The following experimental procedure is used to study this effect: First,
a state with exactly one molecule at each lattice site is prepared as in
Ref. 7. Second, the lattice depth along one direction is lowered to zero in
0.5 ms. Third, the system is allowed to evolve for a variable hold time,
during which the relevant loss occurs, and finally, the molecule number is
measured.

Figure 2 shows experimental data (•) for the decay of the molecule
number as a function of the hold time. No noticeable loss is observed during
the lattice ramp down, which ends at t = 0. The subsequent loss differs
significantly from the expectation for an uncorrelated system (dashed line),
which is calculated from the independently determined parameters of the
system, including a measurement of the 3D loss rate coefficient in Ref. 18.
The solid line shows a fit to the data that reveals a value of g(2) = 0.11±0.01,
see Ref. 11 for details. The fact that g(2) differs from 1 by a large factor
shows that the system is strongly correlated, thus realizing a dissipative
Tonks-Girardeau gas.

An interesting variation of this experiment is obtained when consider-
ing the situation where the lattice depth V‖ along the 1D tubes is lowered
to a nonzero value. Of course, this is closely related to the above experi-
ment, but there are three aspects that make this system interesting: first,
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Fig. 3. Understanding the loss in terms of the quantum Zeno effect. The initial state
|1〉 contains exactly one particle at each site of a double-well potential. Tunneling with
amplitude Ω coherently couples this state to state |2〉, where both particles occupy the
same site. In this configuration, the particles can collide inelastically, resulting in loss
of both particles, thus transferring the system into state |3〉. The rate coefficient for
this incoherent loss is Γ. In the limit Ω � Γ, loss from the initial state occurs at an
effective rate Γeff = Ω2/Γ.19 If Γ is large, then Γeff becomes small. Fast dissipation thus
freezes the system in its initial state, which can be interpreted as a manifestation of the
continuous quantum Zeno effect.20 Reproduced from Ref. 11.

the case V‖ �= 0 offers new physical insight because the reduction of the
loss can be interpreted in terms of the quantum Zeno effect as illustrated
in Fig. 3; second, time-resolved calculations of the dynamics of the loss
become numerically feasible; and third, a much larger suppression of g(2)

is obtained.
In the following, we concentrate on the last two aspects. The pair-

correlation function can again be determined from time-resolved measure-
ments of the loss of molecule number. Results (•) are shown in Fig. 4 as a
function of V‖/Er, where Er is the molecular recoil energy. The solid line
shows an analytical model discussed in Ref. 11 that represents essentially
the Zeno effect illustrated in Fig. 3. In addition, we performed time-resolved
numerical calculations that make much fewer approximations than the an-
alytical model. The numerical results are also shown in Fig. 4 and agree
well with the analytical model and the experimental data. The lowest value
of g(2) measured here is ∼ 1/2000.

To summarize, inelastic collisions can be used to drive a many-body sys-
tem into the strongly correlated regime, much like elastic collisions. This
general concept is illustrated in an experimental realization of a dissipative
Tonks-Girardeau gas. The suppression of the loss rate due to the correla-
tions is used to measure the pair-correlation function, which quantifies the
degree of correlation in the experiment. The physical origin of the suppres-
sion can be interpreted in terms of index mismatch in Fresnel’s formula or
in terms of the quantum Zeno effect.
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Fig. 4. Pair-correlation function as a function of the lattice depth applied along the
one dimension. Experimental data (•), numerical results (◦), and analytical model (solid
line) agree well with each other. Reproduced from Ref. 11.
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SPECTROSCOPY OF ULTRACOLD KRB MOLECULES

WILLIAM C. STWALLEY
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When ultracold (T < 1 mK) molecules are formed by photoassociation (PA)
followed by spontaneous emission, they commonly are formed in high vibra-
tional levels, typically within 30 cm−1 of the dissociation limit.1,2 Such levels
are difficult to produce in other ways, and, because their bands include only
a few rotational quantum numbers (typically < 5 for KRb at 0.2 mK), their
electronic spectra are readily assignable, especially when accurate ab initio
calculations are also available. Research at the University of Connecticut has
demonstrated how the spectroscopy of KRb ultracold molecules formed by
PA3,4 can be studied using multiple resonance spectroscopy.1,5–7

Keywords: Ultracold molecules; KRb; photoassociation; spectroscopy.

1. Introduction

Among the alkali metals, the energetically most similar are K and Rb.
Thus the molecule KRb has a small dipole moment and is to some extent
a “pseudo-homonuclear” molecule. The long range potential energy curves
at the K(4s)+Rb(5p) asymptotes are all strongly attractive, while those at
the K(4p)+Rb(5s) asymptotes are all strongly repulsive.8 Moreover, these
four asymptotes are closely spaced at 12578.950, 12816.545, 12985.186, and
13042.896 cm−1, a range of only 464 cm−1.

The photoassociation (PA) of ultracold K and Rb atoms to form elec-
tronically excited KRb molecules (and then X- and a-state molecules by
spontaneous emission) has been studied extensively,3,4 the latter reference
giving an extensive discussion of previous KRb spectroscopy and the de-
tailed assignments of the eight electronic states observed.4 These states are
labelled in Hund’s case c notation as 2(0+), 2(0−), 2(1), 3(0+), 3(0−), 4(1),
and 1(2), where the number in parentheses is the Ω value and the number
before the parentheses indicates the energy order at long range.

In particular, we used a relatively low resolution tunable pulsed
laser with significant amplified spontaneous emission for detection. This



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

316 W. C. Stwalley

produced ion signal at virtually any wavelength within a few nanometers of
602.5 nm, which was the central wavelength used in most experiments.3,4

This laser ionized X1Σ+ ground state and a3Σ+ metastable state molecules
by two-photon REMPI (resonance-enhanced multiphoton ionization). The
KRb+ molecular ions produced were then detected by time-of-flight mass
spectroscopy. In this way, other ions (e. g. Rb+

2 ) produced by the simulta-
neous Rb2 PA and REMPI did not interfere.

An example of a recently assigned PA spectrum is shown in Figure 1.
Two previously assigned bands of the 2(1) and the 3(0+) states correspond
to the stronger lines, marked above the spectrum. Two newly assigned
bands of the 4(1) and the 5(1) states correspond to the weaker lines, marked
below the spectrum. The 4(1) and 5(1) states become the 11Π and the 21Π
states at short distance. These two states have been previously studied by
conventional spectroscopy.12–14 Thus the vibrational assignments (v = 60
and 17) are unambiguous.

Fig. 1. Fragment of the photoassociation spectrum of 39K85Rb in the 12533.8-12535.4
cm−1 range, showing two previously assigned strong bands of the 2(1) and 3(0+) states4

and two newly assigned weaker bands of the 4(1) (11Π) and 5(1) (21Π) states, corre-
sponding to v = 60 and v = 17, respectively.

The 4(1) (11Π) v = 61, 62, and 63 levels were previously observed,3,4

so observation of v = 60 is not unexpected. The 5(1) (21Π) state, however,
would not normally be expected to be observed in PA since it has a potential
barrier at long range (shown in Figure 2). Thus the wavefunction of the
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v = 17 level just below the K(4s)+Rb(5p1/2) asymptote would be expected
to decay rapidly outside its outer turning point at 12 ao, and overlap with
the continuum wavefunction of the colliding K + Rb pair would be very
small. However, the v = 60 level of the 11Π state is perturbed (“resonantly
coupled”) by the v = 17 level of the 21Π state,13 so PA to the 21Π state
becomes possible via the coupled 11Π (4(1)) state, which can be formed by
PA at long range.

Figure 2 also illustrates a very promising expectation for the 21Π v = 17
level: namely, PA to this level should spontaneously emit to v = 0 of the
X ground state. Moreover, stimulated Raman transfer via the resonantly
coupled v = 60 and 17 levels to v = 0 of the X state should also be
possible starting in high vibrational levels of the X and a states, these last
levels being formed by PA (or by magnetoassociation (MA) via Feshbach
resonances).

2. Vibrational-level-selective Detection

By switching to an improved pulsed laser with a bandwidth of 0.2 cm−1

and a low level of amplified spontaneous emission, we were able to obtain
higher resolution spectra which allowed us to detect ultracold molecules
with vibrational level selectivity.1,5 The very small rotational spacings were
not resolved, however. In particular, we were able to identify X-state levels
v = 86-92 (in excellent agreement with the predicted levels10 and the 3(0+)-
X Franck-Condon factors1), and the a-state levels v = 16-22 (in excellent
agreement with the subsequent spectra of Ref. 11). [Note that the tentative
a-state vibrational numbering reported in Ref. 1 has been corrected.] These
high vibrational levels of the X and a states are all within 30 cm−1 of
dissociation. It is also worth noting that the X-state levels still possess
significant dipole moments10 (0.033 and 0.008 atomic units for v = 86 and
92, respectively, compared to 0.257 for v = 0 and 3.2×10−5 for the last
level, v = 98).

The REMPI spectra of the X- and a-state molecules allowed assignment
of a large number of vibrational levels of the 41Σ+ and the 51Σ+ excited
states, and the 43Σ+ and the 33Π excited states, respectively.5 Eigenvalue
calculations of vibrational levels and spacings of ab initio potential curves
of KRb for these states9 were in very good agreement with these observa-
tions.5 Subsequently, we have observed a variety of lower energy excited
states (which all happen to have a potential barrier to dissociation): 23Π
(Ω = 0+, 0−,1, and 2), 33Σ+, and the 5(0+) (the outer well of the 23Π
(Ω = 0+)) state.7 The 33Σ+ state has also been observed in a spin-forbidden
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Fig. 2. Potential energy curves (in 103 cm−1 vs R in ao) of KRb, based on the high
quality ab initio calculations of Rousseau et al.9 The horizontal dotted line represents
the K(4s)+Rb(5p1/2) asymptote. The vertical line at 7.7 ao indicates the center of the
region of overlap of the X-state v” = 0 wavefunction, e.g. with the inner turning point
region of the 21Π v′ = 17 level.

transition from the X state,15 in very good agreement with our results, as
were eigenvalue calculations using the ab initio potential.11 It is clear that
such spectroscopy is a convenient complement to PA spectroscopy, poten-
tially allowing observation of highly excited states and even autoionizing
levels not readily reached with cw lasers.

Both ultracold molecule spectroscopy as just described and PA spec-
trscopy are particularly sensitive to potential curves at intermediate and
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long range, which are not readily studied in other ways. The ultracold
molecule spectroscopy approach should also be applicable to more weakly
bound “Feshbach molecules” formed by magnetoassociation (MA).

3. Rovibrational-level-selective Detection

In order to obtain higher resolution to resolve the rotational and hyperfine
structure of vibrational levels near dissociation in the X and a states of
KRb, we developed an ion depletion spectroscopic technique for ultracold
molecules.6 As before, a PA laser excites a pair of colliding K and Rb atoms
to an excited state of KRb, which decays by spontaneous emission to the
high vibrational levels of the X and a states of KRb within 30 cm−1 of
dissociation. Molecules in a given X- or a-state vibrational level are then
ionized by REMPI to form KRb+, which is detected by time-of-flight mass
spectroscopy. In our new depletion technique, we add a high resolution cw
tunable laser which can deplete the population of a given high rovibrational
level when it is tuned to a resonance, thereby decreasing the KRb+ ion
signal.

A simple application of this technique is the determination of the bind-
ing energy of a particular (v, J) level of the X ground state. Consider the
case of a X-state high vibrational level (e.g. v = 87) formed from a particu-
lar level (e.g. v′, J′ = 1) of the excited 3(0+) state formed by PA. One can
simply tune the depletion laser back to the 3(0+) (v′, 1) level. The difference
between the depletion laser frequency (E3(v′,1) – EX(87,0)) cm−1 and the
PA laser frequency (E3(v′,1) – 2×10−5) cm−1 is simply the binding energy
of the (87,0) level with respect to dissociation (23.397 ± 0.002 cm−1).6 This
may be compared to the corresponding binding energy of 23.492 cm−1 for
the fit given in Ref. 11,16 where the uncertainty is not given, but is probably
∼0.01 cm−1, the uncertainty in the dissociation energy in the fit.11 Thus
the two values do not agree and further experiments are needed to resolve
the 0.1 cm−1 difference. Both binding energies can be combined with the
separation of the v = 87 and v = 0 levels to obtain the dissociation energy,
Do, of KRb. The best value of (EX(87,0) – EX(0,0)) is 4156.475 cm−1,16

which yields Do values of 4179.872 and 4179.967 cm−1, respectively. A pre-
liminary value of Do =4179.92 ± 0.05 cm−1 is recommended.

Another application is confirmation of the long range selection rules. For
example, for a 3(0+) state J′ = 1 level, spontaneous emission is observed
to J” = 0 and 2 only, as expected.

An important application is to investigate possible intermediate levels
for stimulated Raman transfer from the high vibrational levels of the X and
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a states to the v′′ = 0 level of the X state (or other low-lying levels). In the
X state case, the 31Σ+ state is promising and levels near v′ = 40 have large
Franck-Condon factors for both the PUMP and DUMP transitions involved
in stimulated Raman transfer.6 We have identified such levels by depletion
spectroscopy, so the frequencies of selected PUMP and DUMP transitions
are now accurately established.6 For the a state case, the intermediate state
is preferably a perturbed state of mixed singlet-triplet character,17 as in the
pioneering RbCs experiments of Ref. 18.

Thus we believe this depletion technique provides a powerful comple-
ment to the vibrational-level-selective technique discussed in the prior sec-
tion, particularly where rotational and hyperfine structure plays a signifi-
cant role.
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Single molecular ions can be sympathetically cooled to a temperature in
the mK-range and become spatially localized within a few µm3 through the
Coulomb interaction with laser-cooled atomic ions, and hence be an excellent
starting point for a variety of single molecule studies. By applying a rather sim-
ple, non-destructive technique for the identification of the individual molecular
ions relying on an in situ mass measurement of the molecules, studies of the
photofragmentation of singly-charged aniline ions (C6H7N+) as well as inves-
tigations of isotope effects in reactions of Mg+ ions with HD molecules have
been carried out.

Keywords: Single molecular ions; laser-cooling; photofragmentation; isotope
effects.

1. Introduction

For the past decade, research involving cold molecules has gone through
an extremely rapid developing phase. For neutral molecules the advances
have, in particular, been relying on developments within the following ap-
proaches: Photo association of laser-cooled atoms,1–5 buffer-gas cooling of
molecules held in magnetic traps,6–8 deceleration,9 filtering10 and trap-
ping of molecules by electrostatic fields,11–14 Feshbach resonance generated
molecules in degenerated quantum gasses,15,16 and deceleration of molecules
by intense laser pulses.17 Cooling techniques for molecular ions have been
developed in parallel, so that e.g. it has become a standard to work with
molecular ions which are sympathetically cooled into Coulomb crystals
through the Coulomb interaction with laser-cooled atomic ions.18–25 In the
past years, the technique of He buffer gas ion cooling26 has furthermore
been extended to molecular anions.27 Most recently, even the combination
of cold neutral and ionic molecular techniques has made the first progress.25

After a presentation of our non-destructive single molecular ion mass
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measurement technique,20 the focus in this report will be on the latest
results from our laboratory regarding experiments with single molecular
ions.23,24

2. Non-destructive single-molecular ion-mass measurement

In order to experiment with single molecular ions, it has been necessary to
develop a technique to identify the ion under investigation with high effi-
ciency without destroying it. A schematic of such a non-destructive identifi-
cation technique used in our single molecular ion experiments is presented in
Figure 1. More detailed information on the technique can be found in.20,28

The technique relies on the measurement of the resonant excitation fre-
quency of one of the two axial oscillation modes of a trapped and crys-
tallized linear two-ion system consisting of one laser-cooled atomic ion of
known mass m1 and an a priori unknown molecular ion, whose mass m2

has to be determined for ion identification. From this measured frequency,
the mass m2 of the unknown ion can be deduced from a simple relation
between the frequency and the relative mass of the two ions:

ω2
± =
(

1 +
1
µ

+
√

1 − 1
µ

+
1
µ2

)
ω2

1 , (1)

where µ = m2/m1, and ω1 is the single ion oscillation frequency of the
known ion. The solutions ω+ and ω− correspond to the mode with eigen-
vectors where the ions move in phase (COM mode) and out of phase (BR
mode), respectively, with mass-dependent amplitudes.29

The crystallization of the two-ion system results from the sympathetic
cooling of the molecular ion through the Coulomb interaction with the
laser-cooled ion. This crystallization can be observed by imaging the flu-
orescence light emitted by the laser-cooled ion onto a CCD camera chip.
Here, a well-localized spot appears with the atomic ion displaced a spe-
cific distance away from the trap center when it is trapped together with
a non-fluorescing unknown ion. In the linear rf trap used in our experi-
ments19 the two-ion system is aligned along the traps main axis (the z-axis
in Fig. 1). The resonant excitation can be promoted either by applying a
sinusoidal electric field along this axis (through sinusoidal voltages applied
to the end-electrodes of the trap), which will exert a force on both ions,
or by periodically modulating the laser intensity of one of the cooling laser
beams propagating along the main axis, which leads to a periodically vary-
ing scattering force on the laser-cooled ion. The resonance frequencies are
determined by monitoring the fluorescence light from the laser-cooled ion
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Fig. 1. Sketch of the experimental setup. Shown on the figure are the linear rf trap
electrodes, the cooling laser beams and the CCD camera used to monitor the fluorescence
from the laser-cooled atomic ions. An image-intensifier based shutter that can be gated
phase-locked to a periodic driving force is installed in front of the camera. A driving
force is applied either in the form of a sinusoidal voltage applied to the end-electrodes
of the trap or through modulation of the scattering force on the atomic ion by using an
electro-optic chopper (EOC) for scattering force modulation.

by the CCD camera while scanning the period of the applied driving force.
When the period is equal to the period of one of the two oscillation modes
(the center-of-mass (COM) mode and the breathing (BR) mode), the mo-
tion of the ions is most highly excited (neglecting damping exerted by the
cooling lasers. Details on that see Refs. 20, 28. For CCD camera exposure
times larger than the oscillation period of the ions, an enlarged axial ex-
tension of the fluorescence spot is observed close to these mode resonance
frequencies as seen in Fig. 2. This detection method easily leads to a rela-
tive mass resolution ∆m/m below 10−2, and can for optimized conditions
even lead to a resolution at the 10−4 level.28

For long measuring times, more precise mass measurements are expected
when the phase of the motion of the laser-cooled ion is monitored. This can
be done by gating the CCD camera such that only light emitted at a certain
phase with respect to the phase of the driving force is detected. Examples
of such measurements can be seen in Fig. 3. Due to systematic errors, such
measurements have so far also been limited to mass resolutions ∆m/m of
a few times 10−4.20,28

In the following sections, a few recent single molecular ion experiments,
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Fig. 2. (a) Fluorescence image of two laser-cooled Ca+ ions. (b) An image of a laser-
cooled Ca+ ion trapped together with a sympathetically cooled a priori unknown singly
charged ion. (c) and (d) are the images when the frequency of the electrical driving force
is close to the COM mode frequency of the respective two-ion systems. For all images the
camera integration time was 100 ms, which is much longer than the oscillation period of
the ions of typical ∼10 ms.

Fig. 3. The position resolved fluorescence along the trap axis (z axis) as a function of
the drive frequency an intensity modulated cooling laser beam. (a) Two 40Ca+ ions.
(b) One 40Ca+ ion and one 42Ca+ ion, where only the 40Ca+ ion is fluorescing. Each
gray-scale (false-colored) contour plot is composed of axial projections of the fluorescence
intensities in gated images recorded during the frequency scans. Dashed lines indicate
equilibrium positions of the ions in the absence of modulation. The dark gray (red) areas
near the dashed lines correspond to high intensity, while the dark (blue) areas are low
intensity regions.

where the non-destructive mass measurement method is applied, will be
discussed.
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3. Consecutive photofragmentation of an aniline ion

The motivation for studying consecutive photofragmentation of aniline ions
has been manifold. First, we wanted to prove that the non-destructive
identification method described above allows detailed studies of the time
evolution of light-induced consecutive fragmentation at long time scales
(milliseconds up to several hours). Secondly, we wanted to prove that non-
destructive detection of photofragments is a viable way for probabilistic
preparation of a wealth of single-molecular ions which can be used as tar-
gets for other experiments (e.g., astrophysical studies). Thirdly, more gen-
erally, we wanted to prove that studies of spatially localized and very cold
single ions can be extended from diatomic systems20 to complex molecular
systems. In all, this opens up new opportunities in molecular science, in-
cluding molecular rotational dynamics and chemical reaction dynamics on
long time scales.

In the experiments, a single aniline ion (C6H5NH+
2 ) is irradiated by

the combination of cw light at 397 nm (originating from the laser beams
used to cool the calcium ions which provide the sympathetic cooling), and
nanosecond pulses of light at 294 nm (used to produce the aniline ions in
the first place through a 1+1 REMPI process).23 In Fig. 4(a), the frequency,
at which a specific molecular ion mass has been detected during a series of
77 experiments, is presented. As clearly seen, a series of molecular ions, and
not only C6H5NH+

2 ions (mass 93 amu), are produced. By repeatable mass
scans we can follow the photofragmentation of the original aniline ion in
time as the few examples in Fig. 4(b) show. In Fig. 5, a simplified picture
is presented of how the photofragmentation is progressing. In a single ex-
periment we were indeed able to monitor all the indicated molecular ions,
but the initially produced aniline ion, as seen in Fig. 6.23 While C6H5NH+

2 ,
C5H+

6 , and C5H+
5 ions were only sometimes found to be stable against fur-

ther photofragmentation (corresponding to a probabilistic preparation of
those ions), the C3H+

3 ion was always stable.
How sequential breakage of larger molecules into lighter fragments takes

place can potentially be monitored non-destructively on time scales ranging
from less than a second to several hours by the applied technique.

4. Isotope effects in reaction of Mg+ ions with
HD molecules

Studies of isotope effects in chemical reactions can often help to obtain
a better understanding of the underlying reaction dynamics. Resonance
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Fig. 4. (a) Molecular ion mass spectrum with aniline ions (C6H5NH+
2 ions) produced

through a 1+1 REMPI process as the starting point. The height of the bars indicates how
often a specific ion mass was detected in a series of experiments. (b) Three recorded time
sequences of the photodissociation of C5H+

6 . The statistical nature of the dissociation
process is clearly visible by the three single molecule experiments.

effects observed in the F + H2 reaction and isotopic analogs have e.g. re-
sulted in a much improved understanding of this benchmark reaction.30–32

In a series of experiments, we have studied reactions between Mg+ in the
3p2P3/2 excited state (excitation energy of 4.4 eV) with isotopologues of
molecular hydrogen at thermal energies. Due to the simple internal struc-
ture of the reaction partners, these reactions represent a particularly simple
test case for reaction dynamics involving an electronically excited atomic
collision partner, and hence can serve as good benchmark reactions for re-
action dynamics simulations. In brief, we here consider only reactions of
the types represented by the Eqs. (2) and (3). Reactions with other iso-
topologues of molecular hydrogen can be found in Ref. 24. From the results
presented in Fig. 7, corresponding to a total of only about 300 single ion
reactions, the branching ratio between the reactions

Mg+
(
3p2P3/2

)
+ HD → MgD+ + H (2)

Mg+
(
3p2P3/2

)
+ HD → MgH+ + D (3)
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Fig. 5. Energy level scheme with indication of the ground state energies of several
relevant molecular ions relative to the ground state of neutral aniline. The dashed (solid)
arrows indicate some of the photodissociation paths observed in the experiments due to
the presence of light at 294 nm (397 nm).

Fig. 6. A consecutive photodissociation sequence observed in an experiment. The
dashed (solid) wriggly arrows represent 294 nm (397 nm) photons responsible for the
fragmentations.

has been found to be larger than 5. This strong isotope effect cannot be
explained by a simple statistical model based on an assumption of an
equal probability for populating energetically accessible states of MgH+
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and MgD+, but must be attributed to a dynamical mechanism. In the ion
beam experiments of Ref. 33 a similar isotope effect was observed in reac-
tions between ground state Mg+ ions and HD molecules at center-of-mass
energies up to 11 eV. This was rationalized in terms of an impulsive inter-
action with a thermodynamic threshold.

Fig. 7. The ratio between the number of formed 26MgD+ and 26MgH+ ions as a func-
tion of the relative pressure of HD and H2. From left to right, the data points correspond
to the following numbers of times measuring MgD+ / MgH+: 17/75, 21/45, 33/14 and
32/10. The error bars represent statistical uncertainties. The blue (solid) and the red
(dashed) curves represent results from a simple theoretical model based on Langevin
capture (See Eq. (3) in Ref. 24). While the dashed curve is the expected result for equal
probability of forming 26MgD+ and 26MgH+ after Langevin capture of HD, the solid
curve shows the best fit to the experimental data. The error bars of the measurements
taken into account, the fit suggests a ratio of the formation rate of 26MgD+ and 26MgH+

ions in the range of ∼ 6 to ∞ for the Mg+(3p2P3/2) + HD reaction.

A schematic view of the potential surfaces involved in the reaction is
shown in Fig. 8. Investigations of photofragmentation of MgD+

2 indicate
that the Mg+ + HD reaction discussed here proceeds via the 12B2 surface
through a bond-stretch mechanism that eventually favors the formation of
MgD+.34,35 To fully understand the transition from an MgHD+ complex
to a potential surface favoring the MgD+ + H asymptote rather than the
MgH+ + D asymptote, a detailed theoretical study is required. It might
be necessary to consider the details of the conical intersection which arises
from the crossing of the 12A1 and 12B2 potential surfaces. Non-adiabatic
couplings at the conical intersection could give rise to a preference of the
MgD+ channel over the MgH+ channel. The same mechanism could as well
be responsible for the isotope effect observed in reactions with ground state
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Mg+ ions.33

Fig. 8. Sketch of relevant potential surfaces in Cs symmetry for the Mg+ + HD reaction
proceeding by insertion of Mg+ into the HD bond on the 2 2A’ potential surface, followed
by Mg+-D or Mg+-H bond formation. On the left-hand side the C2v symmetry labels
in parentheses are valid for the analogous reaction with H2 or D2.35

The above discussed reaction experiments demonstrate the prospects for
similar single molecular ion studies using state prepared molecular ions,36,37

complex molecular ions22,23 or molecules of astrophysical interest.38,39 The
high detection efficiency can furthermore be useful for studies of reactions
involving ions of rare species, e.g. super-heavy elements.40
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The genesis of light pulses with attosecond (10−18 seconds) durations signi-
fies a new frontier in time-resolved physics. The scientific importance is obvi-
ous: the time-scale necessary for probing the motion of an electron(s) in the
ground state is attoseconds (atomic unit of time = 24 as). The availability
of attosecond pulses would allow, for the first time, the study of the time-
dependent dynamics of correlated electron systems by freezing the motion,
in essence exploring the structure with ultra-fast snapshots, then following
the subsequent evolution using pump-probe techniques. This paper examines
the fundamental principles of attosecond formation by Fourier synthesis of
a high harmonic comb and phase measurements using two-color techniques.
Quantum control of the spectral phase, critical to attosecond formation, has
its origin in the fundamental response of an atom to an intense electromag-
netic field. We will interpret the laser-atom interaction using a semi-classical
trajectory model.

Keywords: Attophysics, spectral phase, harmonic generation, strong field
physics.

Introduction

The interaction of radiation with atoms or molecules, one of the basic tools
of quantum mechanics, is traditionally applied to uncover the structure
of matter. As sources of radiation, lasers have provided new spectroscopic
tools with fantastic resolution, given rise to nonlinear optics and to the con-
trol of an atom’s external degrees of freedom. Strong field atomic physics
which includes Above-Threshold Ionization (ATI), High Harmonic Gener-
ation (HHG) and, recently, attophysics, belongs to a class of effects which
become observable only when the laser interaction energy is comparable or
larger than the atomic potential. One physical effect, the quiver motion of
a free electron in the electromagnetic field, provides a metric for the in-
teraction: in atomic units the cycle-averaged kinetic energy, also dubbed
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ponderomotive energy, of this motion is UP = I/4ω2 where I is the inten-
sity (equivalent to one atomic unit of field = 3.5× 1016 W/cm2) and ω the
angular frequency (atomic unit= 4.14× 1016 s−1). The ratio z = UP /ω is a
dimensionless parameter which, when ≈ 1, indicates the limit of the strong
field domain.1z is ∝ ω−3 and reaches easily values > 1 at long wavelength.
Another parameter, the ratio η of the interaction hamiltonian to the atomic
hamiltonian is related to the so-called adiabaticity parameter γ =

√
EB

2UP

(EB is the ionization energy) by η = 1/γ2. The γ parameter was introduced
by Keldysh2 to measure the transition from multiphoton ionization (γ > 1)
to tunneling or strong field ionization (γ < 1). Since γ ∝ ω, at constant
intensity, the longer the wavelength (the smaller ω), the smaller γ and the
more in the strong field regime.

Recent advances in laser technology have resulted in intense, short
pulse, mid-infrared (i.e. with wavelength ranging between 1.5 and 4 mi-
crons with the current technology) lasers and open a new route to reach
the strong field physics domain at lower intensities. Besides, and this is
the main topic of this article, mid-infrared has a number of advantages
in the production of photons and attosecond pulses: (i) As well known,
the high harmonics cutoff energy increases as UP , and mid-infrared long
wavelength drivers help produce hard harmonic photons since UP ∝ ω−2.
(ii) In the domain of attophysics, the duration of the periodic attosec-
ond bursts of light emitted by the high harmonics is limited by the dis-
persion (linked to the quantum mechanical nature of the process) of the
spectral group delay and the corresponding limitation of the effective spec-
tral bandwidth. Long wavelengths allow the reduction of this group delay
dispersion proportionally to the wavelength and therefore produce shorter
attosecond pulses by permitting larger bandwidths. It results that such
drivers are favorable to the generation of ultrashort soft/hard X-ray pulses,
(which currently are at best around 100 as for a photon energy of 100 eV)
and offer a promising route to produce pulses reaching the atomic unit of
time (24 as).

In the following, Section 1 deals with the semiclassical description of
strong field interaction, harmonic generation and attosecond pulse gen-
eration by Fourier synthesis. Section 2 briefly reviews the technology of
mid-infrared femtosecond pulses as implemented at OSU. Section 3 dis-
cusses the scaling of high harmonics cutoff and yield with the funda-
mental wavelength, and finally that of the group delay dispersion or
“attochirp”.
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1. High Harmonic generation of attosecond pulses

1.1. Basic principles

Following Keldysh,2,3 ionization of, say, an hydrogen atom by a strong elec-
tric field E cosωt is described (� = m = e = 1) as a transition from the
ground state to a Volkov state which includes the quiver motion of the
free electron in the field and has an asymptotic momentum �p. The transi-
tion rate is that of a tunneling process through the quasi-static potential
barrier formed by the Coulomb potential −1/r and the dipole interaction
− �E • �r. The free electron wavepacket oscillating in the field acquires a ki-
netic energy ∝ UP which may be transformed into a hard harmonic photon
if it recombines with the nucleus after a fraction of optical cycle. This is
the essence of the non-perturbative theory of high harmonics.4 Since this
process reproduces every half-cycle it gives rise to a train of light bursts
separated by π/ω which, in the frequency domain, corresponds to a series
of odd harmonics separated by 2ω (the “plateau”). Theory and experiment
agree that the spectrum extends up to a so-called cutoff frequency which
is determined by the maximum kinetic energy of 3.17UP acquired by the
electron in the field.5 Filtering a group of N consecutive harmonics yields a
series of bursts of duration ∆t = π/2Nω if the harmonic spectral phase is
constant or linear.6 Moreover, the theory predicts that among all possible
electron quantum paths starting and ending in the vicinity of the nucleus,
for each harmonic energy, the main contribution arises from two trajectories
only, for which the quasi-classical action is stationary (those are dubbed the
short and the long trajectories.6 This forms the basis of attosecond pulse
generation via Fourier synthesis.

1.2. Attochirp

The synthesis of the first attosecond pulse train by Paul et al.7 showed that
the spectral phase was approximately constant over a few harmonic orders
in argon. To achieve agreement with the calculation6 it was necessary to
admit that the experiment somewhat filtered out the contribution of the
long trajectories. This was clarified and systematically investigated a few
years later.8 Although the spectral phase appeared to be quasi linear, under
careful examination Paul’s data revealed a small quadratic term.9 Since
dϕ/dω is associated with a group delay, ∆tG, this term corresponds to a
group delay dispersion d∆tG/dω = d2ϕ/dω2 or attochirp.

What is the origin of the attochirp? Simply the different lengths of
the electron trajectories that give rise to consecutive harmonics. As such,
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it can be calculated from classical mechanics.9 A simple argument allows
the determination of the scaling as a function of the driving wavelength
and intensity (Fig. 1). A plot of the trajectory duration, i.e. the difference
between the return time and the emission time, versus the harmonic energy
is comprised in a rectangle of height ∝ λ/c and width ∝ Iλ2(c the speed of
light and I the intensity). The attochirp is the slope of the diagonal and is
therefore ∝ 1/Iλ (see Ref. 10).

Fig. 1. Group Delay, and Group Delay Dispersion and scaling with laser intensity (I)
and wavelength (λ).

The attochirp has obvious consequences on the duration of the short-
est burst of light emitted in the attosecond pulse train. To decrease this
duration it is not sufficient to increase the bandwidth. Taking into ac-
count the group delay dispersion (GDD) shows that there is an optimum
bandwidth.11 One way to compensate for the GDD is by propagating the
pulses in a medium with an opposite group velocity dispersion (GVD): for
the short trajectories the intrinsic attochirp is positive and must be com-
pensated by a negative GVD found in metals or fully ionized plasmas.8,10

Another way is to reduce as much as possible the intrinsic GDD by taking
advantage of the wavelength/intensity scaling discussed above. The mid-
infrared range is in principle well suited for that purpose with its high
energy harmonic cutoffs as well as high energy photoelectrons.12 As will be
shown here, experiment confirms this expectation.13

Note that the attochirp is a concept valid in the harmonic plateau. For
harmonics generated in the cutoff region the short and long trajectories
coalesce and the spectral phase becomes constant.14 This is one option to
produce isolated attosecond pulses by combining sub-10 fs pump pulses and
spectral filtering15 although the drop of the spectral amplitude in that re-
gion is a clear handicap. The production of single attosecond pulses is also
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possible in the plateau using the polarization gating technique17 which re-
duces the number of effective optical cycles to one. Long wavelength drivers
have another advantage in this case since the number of cycles for a given
duration decreases with the optical period which is ∝ λ.

2. Mid-Infrared technology

2.1. The 2µm optical parametric amplifier

Generation of the 2 µm radiation is based upon a commercial optical para-
metric amplifier (OPA) (Light Conversion HE-TOPAS-5/800). The OPA is
pumped by 5 mJ, 50 fs Ti:S pulses derived from a homemade Ti:S system,
using a small amount of pump light to generate a broadband spectrum via
superfluorescence. A narrow spectral portion is then used as a seed with the
remaining 0.8 µm light. After 6 passes in two BBO (beta-barium borate)
nonlinear crystals, up to 600 µJ of 2 µm radiation is available. In the basic
process of a parametric amplifier, one 0.8 µm photon is split into two lower
energy ones: conservation of energy implies that close to 1 mJ of 1.3 µm
idler radiation is also generated. The beam quality is fair and it can be
focused down to a spot about twice the diffraction limit.

(a) (b)

Fig. 2. (a) Focal spot image of the 3.6 µm source. (b) Interferometric autocorrelation
trace

2.2. The Difference Frequency Generation 3.6µm source

In this case, two laser pulses are combined in a mixing non-linear crys-
tal. The 3.6 µm radiation is generated through Difference Frequency Gen-
eration (DFG): the nonlinear crystal (KTA) converts the wavelengths of
0.815 µm (“pump”) and that at 1.053µm “idler”) into the “signal” at
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3.6 µm. Typically, 2.5 mJ, 100 fs Ti:S pulses centered at 0.815 µm and
500 µJ, 16 ps Nd:YLF pulses centered at 1.053 µm are used in a 5 mm
long KTA crystal to produce 160 µJ of MIR corresponding to 28% of the
theoretical maximum possible MIR energy. At the mixing crystal, the Ti:S
and Nd:YLF FWHM spot sizes are ≈ 2.5 mm. Mixing the amplified Ti:S
and Nd:YLF beams requires locking the repetition rates of the two oscil-
lators. To do so, the cavity length of one oscillator must be referenced to
the other.18 A typical spot image recorded with a thermal camera is dis-
played in Fig. 2(a). The pulse duration was measured by performing an
interferometric autocorrelation, which yields a value of 115 fs FWHM (see
Fig. 2(b)).

3. Harmonic cutoff with the 2µm laser

The harmonic spectrum is expected to extend to values between IP+3.2UP

(theoretical single atom response) and ≈ IP + 2UP (when phase-matching
is taken into account) where IP is the atom ionization potential.5 The
cutoff is in general not easy to measure because it is not abrupt, because
the intensity is averaged over the interaction volume, because of the un-
known transmission of the apparatus... The only previous measurement19

at a wavelength other than 0.8 µm or 1 µm has been performed by Shan
and Chang, and illustrated those difficulties. Our harmonic setup includes
a soft X-ray spectrometer (Hettrick Scientific) with three different graz-
ing incidence gratings. Differentially pumped with respect to the harmonic
source chamber with the gas cell, it is placed at the spectrometer’s entrance
plane. The dispersed spectrum is detected on a back-illuminated soft-X-ray
CCD (charge-coupled device) camera (Andor). Different metal filters (Al
or Zr) are used to suppress the fundamental and low-order harmonics.

Excitation with 2 µm pulses produces a dense (consequence of the small
photon energy) harmonic comb extending to the Al L-edge at ≈ 70 eV en-
ergy. Using a Zr filter instead, the argon harmonic comb is found to extend
over the entire Zr filter transmission window (60-200 eV) (Fig. 3).12 Mea-
surements using the second Al transmission window establish that the cutoff
is ≈ 220 eV, which is consistent with previous calculations and extends the
argon cutoff well beyond the previous measurement at 1.5 µm.19

4. Harmonic yield

The above spectra qualitatively agree with the cutoff law and highlight
the effectiveness of the UP -scaling. The scaling of the yield on the laser
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Fig. 3. Harmonic spectrum from the 2000 nm laser in the cutoff region obtained at
an intensity of 1.8×1014W/cm2. Left: Spectrum with aluminum filter, compared with
the spectrum at 0.8µm. Right: Spectrum through a Zirconium filter and through the
Aluminum filter second transmission window.

wavelength however is not as clearly defined theoretically. One must spec-
ify what quantities are kept constant and what is meant by “yield” for
a single harmonic/ over which bandwidth etc. For instance the usual un-
derstanding from the Lewenstein model4 was that at a constant UP the
modulus square of the dipole scales as λ−3. Actually this is misleading
since it ignores the effect of the change of intensity required to maintain
UP constant while changing λ and it can be shown that a more dramatic
decrease is to be expected.20 At constant intensity the scaling found11 from
numerical solutions of the time-dependent Schrödinger equation (TDSE) is
∝ λ−5.5±0.5, ignoring the phase-matching effects. Experimentally, in argon
the yield at constant intensity, atomic density and focusing, over the band-
width 35 − 50 eV drops by a factor 1000 between 0.8 and 2 µm, close to
the TDSE prediction. This confirms the model but naturally does not pre-
vent an independent optimization of the yield at 2 µm. Preliminary results
suggest that the brightness of a 2 µm harmonic source can be comparable
to that of an 0.8 µm one in the extreme-UV region(ω ≈ 50 eV) and even
higher at higher energies (ω ∈ (50−200) eV). Consistent with our findings,
a recent theoretical study21 shows that favorable phase matching conditions
can be realized at mid-infrared wavelengths.

5. Attochirp

The attosecond metrology is usually based on photoionization of a target
atom (with an ionization energy IP ) by a superposition of the weak in-
tensity harmonics and a relatively intense infrared beam.7,8,15This method
called “RABBITT” (Reconstruction of Attosecond Beating By Interference
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of Two-photon Transitions) has been well validated and documented.10,16

It requires, however, sophisticated equipment which is under construction
at OSU but not yet available. Dudovich and coworkers22 have demonstrated
an all-optical method which is simpler to implement. A small amount of
the driving field is converted to its second harmonic (2ω) and propagates
with the fundamental beam to the atomic jet where the harmonics are
generated. The superposition creates even harmonics (through transitions
involving, for instance, an even number of ω-photons and one 2ω-photon).
The amplitude of the even harmonics as a function of the relative phase
φ between the ω and 2ω fields is modulated at a frequency 4ω and the
phase φmax(2q) which maximizes the even harmonic 2q depends on q (see
Fig. 4). The method relies then on theory associating φmax(2q) to the spec-
tral GDD, with an arbitrary shift of the phase origin (fixed at zero for the
harmonic generation cutoff in Ref. 22). In the original paper,22 the calcula-
tion is based on the assumption that the second harmonic field only slightly
perturbs the fundamental and that the even harmonics phases interpolate
that of the “normal” odd-harmonics. This is the case as the intensity of
the second harmonic is limited to less than 1% of the fundamental. Other
calculations23,24 drop that approximation and allow higher 2ω fields. It is
the Dudovich method which has been implemented and used to measure
the mid-infrared attochirp.

Fig. 4. Typical 2D plot of the harmonics amplitudes vs the relative ω − 2ω delay . The
modulation of the even harmonics is clearly visible as well as the shift in the position of
the maxima

The experimental setup is similar to the one of Dudovich et al. The
OPA described above yields 550µJ of 2 µm light with a pulse duration of
50 fs. A 300µm BBO crystal tuned out of phase-matching generates a small
amount of second harmonic polarized perpendicularly to the fundamental.
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The group delay accumulated between the two color pulses through prop-
agation in air and glass, is compensated by calcite plates. A pair of fused
silica wedges is used as well for compensation and to control the subcy-
cle delay between the electric fields of the two pulses. A zero order half
waveplate resets the two polarizations along the same direction. The two
beams are focused by a silver-coated mirror into the harmonic generation
atomic jet (argon or xenon). Phase matching conditions and spatial fil-
tering of the on-axis radiation due to the very small acceptance angle of
the Hettrick spectrometer combined to select the contribution of the short
trajectory quantum path and eliminate the more diverging one due to the
long trajectory. Following Dudovich et al., by varying the delay between
the fundamental and the second harmonic fields the φmax(q) is extracted
to an arbitrary origin and then compared to a simple theoretical modeling
in which the quantum paths are limited to the classical trajectories. This
is obviously a great simplification and does not yield any information on
the classically forbidden cutoff region. It is actually unclear whether the
method works in that region.

We first validated the method at 0.8 µm with a result in agreement with
both the RABBITT measurement10 and the ω−2ω one.22 The attochirp at
2 µm13 is as expected from the λ-scaling, about 2.5 times smaller. Energy
losses in the setup limited greatly the generation cutoff that we could obtain
in Argon with the 2 µm driver, and our spectrometer resolution prevented
us from observing all the harmonic orders generated. Those limitations
combined in a full measurement over a limited total bandwidth (35-60 eV).
In Fig. 5, we present the reconstructed attosecond pulse train corresponding
to our measurements. Dudovich et al stress that their method, in contrast
to RABBITT, which measures the harmonic phases on a target which might
be located quite far from the source, yields the attochirp in-situ, i.e. where
the harmonics are generated. This is both an advantage (to compare with
theory) and a drawback (to evaluate the duration of attosecond pulses on
target).

6. Conclusion: the attophysics frontier

Currently the record for attosecond pulses is of 130 as at qω ≈ 30 eV17 and
100 as at qω ≈ 90 eV.25 The mid-infrared driving lasers promise attosec-
ond sources beyond the 800 nm harmonic cutoff that are both shorter and
brighter. So far it has not been possible to generate harmonics with driv-
ing wavelengths longer than 2 µm. However ionization of argon or helium
atoms with the 3.6 µm source has been observed12 and therefore harmonic
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Fig. 5. An attosecond pulse train from the 2000 nm harmonics. The dotted line rep-
resents the transform limited pulses (135 as FWHM), while the solid line takes the
measured attochirp into account (170 as FWHM).

generation will most likely be achieved in the near future. With the tremen-
dous values of UP created at that wavelength, the generation of hard har-
monics (currently limited to about 100 eV with the Ti:Sapphire laser) be-
comes possible. The cutoff has already been pushed above 200 eV using
a 2 µm driver. One atomic unit (24 as) of several hundreds eV of central
frequency can be envisioned. The current mid-infrared sources are hindered
by the low intensity of the commercial systems. The 2 µm OPCPA under
construction at OSU should remove this limitation and finally open the
road to intense X-ray attosecond pulses and thus provide a real chance for
the spectacular applications that attophysics promises.
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Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular
physics has begun. Not only is it possible to control outer-shell electron dy-
namics with intense optical lasers, but now control of ultrafast inner-shell pro-
cesses has become possible by combining strong optical laser fields with tunable
sources of X-ray radiation. This marriage of strong-field laser and X-ray physics
has led to the discovery of methods to control reversibly resonant X-ray ab-
sorption in atoms and molecules on ultrafast timescales. Here we describe three
scenarios for control of resonant X-ray absorption: ultrafast field ionization,
electromagnetically induced transparency in atoms and strong-field molecular
alignment.

Keywords: Ultrafast X-rays, resonant X-ray absorption, strong-field laser in-

teractions, electromagnetically induced transparency, molecular alignment.

1. Introduction

Control of X-ray processes using intense optical lasers represents an emerg-
ing scientific frontier — one which combines X-ray physics with strong-
field laser control.1 While the past decade has produced many examples
where intense lasers at optical wavelengths are used to control molecular
motions,2–5 extension to the control of intraatomic inner-shell processes is
quite new.1,6–9 At first glance, it is an unusual concept to control X-ray
processes using an optical or infrared radiation field since X-rays interact
predominantly with inner-shell electrons, whereas longer wavelength radia-
tion interacts with outer shell electrons. However, the inner and outer shells
of atoms are coupled through resonant X-ray absorption, e.g. promotion of
a K-shell electron to an empty outer shell orbital. Because outer shell elec-
tronic structure can be perturbed (dressed) by an optical radiation field,
one can exert control over resonant X-ray absorption using optical lasers.
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Reversible control is possible when the applied dressing field is gentle
enough to significantly perturb outer-shell electronic structure, but is not
intense enough to destroy (ionize) the atom.

Let us consider the optical field strength necessary to achieve this con-
trol, i.e. to induce outer-shell transitions at a rate comparable to inner-
shell processes. If we take the simplest case, X-ray absorption by an atom
ejects a K-shell electron to create a 1s hole. The resulting atom is unstable
and decays via both radiative and non-radiative (Auger) channels.10 These
inner-shell decay rates increase with atomic number; for neon Z = 10 the
lifetime of the 1s−1 hole state is 2.4 fs. In order to compete with the ul-
trafast inner-shell decay, transitions in the outer shell must be driven at
a comparable rate. Transitions in a resonantly driven two-level system oc-
cur at the Rabi flopping frequency, Ω12 = µ12E/� where µ12 = 〈1|ez|2〉
is the transition dipole matrix element between levels 1 and 2, and, E
is the electric field amplitude. For the hydrogen 1s1/2 → 2p1/2 transi-
tion, µ12 = 1.05ea0, and a driving field of amplitude E = 1 atomic unit,
the Rabi flopping frequency greatly exceeds the Ne 1s−1 decay rate; i.e.
Ω12 = 1.05/t0 ∼ (1/0.024) fs−1, where t0 is the atomic unit of time. For
E = 1 atomic unit (51 V/Å), the equivalent laser intensity is 3.5 × 1016

W/cm2, a value routinely achieved by focusing modern ultrafast Ti:sapphire
laser systems. The versatile Ti:sapphire medium permits engineering of
laser pulse amplitude and phase on the femtosecond to hundreds of picosec-
ond timescale thus enabling exposure of atoms and molecules to arbitrary
pulse shapes at high intensity.

After the strong optical laser field, the next ingredient needed to study
control of ultrafast inner-shell processes is a tunable X-ray source. Syn-
chrotrons provide a convenient source of pulsed, tunable, polarized radia-
tion from 10 eV — 100,000 eV. This range covers inner-shell edges of all
elements. In the left panel of Fig. 1 the three dominant photoprocesses, pho-
toabsorption, elastic (Rayleigh) scattering and inelastic (Compton) scatter-
ing are shown for krypton. Photoabsorption cross sections greatly exceed
scattering cross sections over energy ranges from below to far above the
respective K edges of each atom. Zooming in on the region near the K -
edge, resonances occur due to the presence of unoccupied outer shell or-
bitals (Rydberg states), as shown in Fig. 1 for krypton in various stages
of ionization.

In order to probe resonant X-ray interactions in atoms and molecules
in the presence of strong pulsed optical fields one must have precision
overlap in a five-dimensional space, namely three spatial dimensions, time
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Fig. 1. Left: X-ray photoprocesses in krypton. Right: Resonances near the K edge for
krypton neutral, Kr1+ and Kr2+

and X-ray energy. For this purpose, we have pioneered development of
a synchrotron-based X-ray microprobe.6 In the X-ray microprobe, laser
and X-ray pulses are overlapped with precisions of ∼ 2 microns, ∼ 5 pi-
coseconds and the x rays are tuned to an absorption resonance (band-
width ∼ ∆E/E= 10−4). For typical synchrotron X-ray pulses of 100 ps
duration one can probe atoms and molecules at laser intensities of 1012

W/cm2 with millijoule laser pulse energies focused to tens of microns.
The powerful characteristics of synchrotron radiation, i.e. user-controlled
continuous tunability of photon energy, polarization and bandwidth com-
bined with exquisite energy and pulselength stability at high average flux
(1014/s at ∆E/E= 10−3) are ideal for these investigations. To probe
targets subjected to higher laser intensities shorter X-ray pulses are re-
quired. X-ray pulse lengths, ∼ 100 fs, are currently available at synchrotron
sources12–14 using laser slicing techniques,11 albeit at much reduced flux
(106/s at ∆E/E= 10−3). Importantly, even using X-ray pulses with dura-
tions longer than the laser pulse new insights into ultrafast processes can
be revealed.

In the next three sections we discuss examples of laser-controlled X-ray
processes in free atoms and molecules for three regimes of laser intensity:
Section 2 — ultrafast field ionization of atoms at 1014 − 1015 W/cm2;
Section 3 — laser-dressed atoms at 1012 − 1013 W/cm2; Section 4 — laser-
aligned molecules at 1011 − 1012 W/cm2.
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2. Orbital alignment in ultrafast field ionization

When atoms are exposed to strong optical fields (∼1014–1015 W/cm2), they
rapidly ionize losing their least bound electrons through tunnel ionization.15

Questions naturally arise. What is the nature of the initial electron distri-
bution in the residual ion? Will the valence hole orbital that is created by
tunnel ionization be aligned with the polarization axis of the laser? How
does the hole orbital distribution evolve in time? These questions can be di-
rectly answered using an ultrafast resonant X-ray absorption microprobe.6

Unlike laser-only experiments which detect ejected particles resulting from
the high-field laser/atom interaction, i.e. ions, electrons and high-order har-
monic photons, the X-ray microprobe method directly addresses the quan-
tum state distribution in the residual ion using a well-understood process
— resonant X-ray absorption.

We examine ultrafast field ionization in krypton.6 For Kr, single ioniza-
tion saturates at an intensity of 1.6× 1014 W/cm2. We saturate ionization
in Kr gas using a 2 mJ, 45 fs Ti:sapphire laser pulse to produce a sample of
∼ 107 Kr ions. Relative to Kr neutral, Kr1+ ions contain a new absorption
feature, the 1s → 4p resonance, due to the creation of a 4p hole as shown
in the right panel of Fig. 1. We use Kα fluorescence, which occurs within
0.2 fs, as a collision-free signature of X-ray absorption.

Fig. 2. Left: X-ray absorption as a function of the angle between the X-ray and laser
polarization axes. Adapted from Ref. 6. Right: Initially populated ml = 0 hole states
redistribute over the spin-orbit timescale to mj = ±1/2 hole states.
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These experiments with linearly polarized light show a strong degree of
atomic alignment persisting for times far beyond the spin-orbit time scale
(6.2 fs) in Kr.6 The nonrelativistic tunnel ionization model predicts a strong
propensity for removing a 4p, ml = 0 electron,16 where the quantization
axis is taken along the linear polarization direction of the laser field, as
shown pictorially in the right panel of Fig. 2. A dependence of the 1s→ 4p
cross-section on the angle between the linear polarization vectors of the
laser and X-rays is expected and observed, but the measured parallel-to-
perpendicular cross-section ratio (≈2) is much smaller than predicted by
the nonrelativistic models by nearly a factor of 20!6 Inclusion of the effects
of spin-orbit coupling leads to calculated cross-section ratios in reasonable
agreement with the measured ratio.6,16 One may qualitatively understand
the observed cross-section ratio; p3/2 and p1/2 states are probed simultane-
ously and the p1/2 state cannot be aligned. More detailed analyses of the
quantum state distribution of the residual ion may be found in Refs. 17 and
18. New methods to visualize the electron distribution in the residual ion
using controlled electron recollisions are now under development.19

3. Electromagnetically induced transparency for X-rays

Electromagnetically induced transparency in the optical regime has been
widely studied.20,21 In a Λ-type medium characterized by atomic levels
|1〉, |2〉, and |3〉 with energies E1 < E2 < E3, resonant absorption on the
|1〉 → |3〉 transition can be strongly suppressed by simultaneously irradi-
ating the medium with an intense laser that couples the levels |2〉 and |3〉.
This phenomena, shown in Fig. 3a, is known as electromagnetically induced
transparency, EIT.

Fig. 3. (a) Optical EIT. (b) X-ray EIT in neon.

In the X-ray regime, EIT is considerably more complex. In the optical
regime, levels |1〉 and |2〉 are stable to electronic decay. However, in the
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X-ray regime the core-excited states, |2〉 and |3〉 are metastable. For the
quasi three-level system in neon, depicted in Fig. 3b, the lifetime for these
core-excited states is 2.4 fs (0.27 eV). Thus, at an optical field strength
sufficient to compete with inner-shell decay, multiphoton transitions to the
continuum can also play a role. Inner-shell decay rates are denoted by Γ2

and Γ3 and multiphoton transitions to the continuum are denoted by red
block arrows. Prior to calculation, it was not clear that the EIT effect would
persist in the X-ray regime.

Neon is particularly advantageous because the 1s → 3p transition is
isolated from neighboring resonances. The calculated X-ray photoabsorp-
tion cross section for 800 nm laser dressing of the 1s → 3p transition in
neon at 1013 W/cm2 with parallel and perpendicular laser/X-ray polar-
izations8 is shown in Fig. 4. At this intensity the 1s → 3p excitation at
867 eV is suppressed by a factor of 13 for the configuration in which the
laser and X-ray polarizations are parallel. A fit to a three-level EIT model
is shown to reproduce the general features of the calculated laser-dressed
X-ray photoabsorption spectrum, Fig. 4. In the three-level model effective
linewidths of Γ3 = 0.68 eV and Γ2 = 0.54 eV account for the laser-ionization
broadening.

Fig. 4. X-ray photoabsorption cross-section of neon near the K edge. Results from an
ab initio calculation and a three-level model are shown. From Ref. 8.

The ability to control X-ray absorption in Ne at the 1s→ 3p resonance
allows one to imprint pulses shapes of the optical dressing laser onto long
X-ray pulses.8 This idea is illustrated in Fig. 5. With a 2-mm long gas
cell containing 1 atmosphere of neon, the transmission of an X-ray pulse
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resonant with the 1s → 3p transition will be only 0.07%. A typical X-ray
pulse from a synchrotron source has a duration of 100 ps. Such an X-ray
pulse may be overlapped in time and space with one or several, ultrashort
intense laser pulses. Those portions of the X-ray pulse that overlap with
the laser are transmitted through the gas cell. In the case shown in Fig. 5,
where the two dressing laser pulses have a peak intensity of 1013 W/cm2,
the intensity of the two transmitted X-ray pulses is roughly 60% of the
incoming pulse. The time delay between the two X-ray pulses can be con-
trolled by changing the time delay between the two laser pulses, opening
a route to ultrafast all X-ray pump-probe experiments. With an analogous
strategy, controlled shaping of short-wavelength pulses might become a re-
ality. Experimental efforts to demonstrate EIT for X-rays are ongoing at
the Advanced Light Source’s soft X-ray laser slicing beamline.12

Fig. 5. Imprinting ultrashort laser pulses onto 100 ps X-ray pulses using EIT in a 2-mm
gas cell containing 1 atm neon. From Ref. 8.

4. Controlled X-ray absorption by laser-aligned molecules

An entirely different mechanism provides strong field control of resonant
X-ray absorption in molecules subjected to laser intensities 1011 −
1012 W/cm2. A non-resonant, linearly polarized laser field will align a
molecule by interaction with the molecule’s anisotropic polarizability; the
most polarizable axis within the molecule will align parallel to the laser
polarization axis.5 Since the laser polarization direction is under sim-
ple control with a waveplate, so is the direction of the molecule’s most
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polarizable axis with respect to the X-ray polarization axis, which is fixed
in the laboratory frame. It is well established that X-ray absorption reso-
nances in the near-edge region, resulting from the promotion of a 1s electron
to an empty σ* or π* orbital, are sensitive to the angle between the molec-
ular axis and the X-ray polarization axis.22 Thus, laser control of molecular
alignment implies laser control of resonant X-ray absorption.

We have demonstrated this principle using the X-ray microprobe
methodology,9 as shown in Fig. 6. We aligned CF3Br using 100 ps, 2 mJ
pulses from a Ti:sapphire laser. The alignment was detected using polarized
resonant X-ray absorption at the Br 1s→ σ∗ resonance at 13.476 keV. The
lowest unoccupied molecular orbital (LUMO) has σ∗ symmetry and largely
consists of the atomic Br 4pz orbital. The Br 1s → σ∗ X-ray absorption
resonance therefore has its transition dipole vector directed along the C–Br
axis (the x and y components of this vector vanish), so the absorption cross
section is sensitive to the angle between the X-ray polarization vector and
the C–Br axis.

Fig. 6. Top: CF3Br molecule and its lowest unoccupied molecular orbital. Bottom:
X-ray absorption by CF3Br as a function of ϑLX , defined as the angle between the
polarization vectors of the laser and X-ray pulses. Adapted from Ref. 9.

Laser-controlled molecular alignment also enables control over X-ray
diffraction; scattering from an ensemble of aligned molecules produces
Bragg-like diffraction spots rather than the concentric rings observed in
an isotropic gas. An important potential application is single biomolecule
structure determination using coherent diffractive imaging with X-ray free-
electron lasers.23 The original concept23 did not suggest aligned molecules,
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but rather proposed to scatter 1012 X-rays from a single biomolecule within
10 fs and collect a diffraction pattern with sufficient information for single-
shot molecular orientation. Having pre-aligned molecules will vastly sim-
plify the data collection and analysis — as pointed out by Spence and Doak
in the context of electron scattering.24 While these proposals23,24 focus on
scattering from a single large molecule, and multiple repetition to build
up statistics, i.e. “serial crystallography”, our work focuses on X-ray prob-
ing of an ensemble of 108 small molecules in the gas phase which have been
aligned with laser techniques.9 This strategy will allow one to acquire X-ray
diffraction patterns of aligned, non-interacting molecules and thus obtain
Ångstrom-level molecular images using existing synchrotron sources.

5. Outlook

The era in which characteristic X-ray processes can be considered invari-
ant is at an end. We have demonstrated that placing atoms and molecules
in strong optical fields can significantly affect resonant X-ray absorption.
We can reversibly control X-ray absorption with application of a strong-
optical field to a gaseous medium; the control mechanism is EIT in atoms
and laser-constrained rotation in molecules. One may be able to create an
X-ray amplitude pulse shaper using these tools. X-ray scattering from
aligned molecules is not far off as we harness high repetition rate meth-
ods to utilize the full flux of x rays at synchrotron sources. In addition,
we look forward using ultraintense X-ray radiation to alter characteristic
X-ray processes, such hollow atom formation25 and the competition be-
tween Auger decay and X-ray induced Rabi flopping,26 when the world’s
first X-ray free electron laser, the Linac Coherent Light Source, becomes
operational in 2009.
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Krässig, B. . . . . . . . . . . . . . . . . . . . . . 344

Kuhr, S. . . . . . . . . . . . . . . . . . . . . . . . . 98
Kuzmich, A. . . . . . . . . . . . . . . . . . . . . 88

L
Lahaye, T. . . . . . . . . . . . . . . . . . . . . . 160
Lan, S.-Y. . . . . . . . . . . . . . . . . . . . . . . . 88
Legere, R. . . . . . . . . . . . . . . . . . . . . . . . 67
Leroux, I. D. . . . . . . . . . . . . . . . . . . . 107
Lettner, M. . . . . . . . . . . . . . . . . . . . . 307
Liu, X.-J. . . . . . . . . . . . . . . . . . . . . . . 220
Lugan, P. . . . . . . . . . . . . . . . . . . . . . . 178
Lukin, M. D. . . . . . . . . . . . . . . . . . . . . 78
Luo, L. . . . . . . . . . . . . . . . . . . . . . . . . 201

M
Ma, Z.-Y. . . . . . . . . . . . . . . . . . . . . . . 117
March, A. M. . . . . . . . . . . . . . . . . . . 333
Martin, R. . . . . . . . . . . . . . . . . . . . . . . 67
Matsukevich, D. N.. . . . . . . . . . . . . .88
Maze, J. M. . . . . . . . . . . . . . . . . . . . . . 78
Metz, J.. . . . . . . . . . . . . . . . . . . . . . . .160
Meystre, P. . . . . . . . . . . . . . . . . . . . . . . . 1
Mirandes, E. de . . . . . . . . . . . . . . . . . 56
Modugno, G. . . . . . . . . . . . . . . 190, 251
Modugno, M. . . . . . . . . . . . . . 190, 251
Moore, K. L. . . . . . . . . . . . . . . . . . . . 117
Müller, H.. . . . . . . . . . . . . . . . . . . . . . .34
Murch, K. W. . . . . . . . . . . . . . . . . . . 117

N
Nez, F. . . . . . . . . . . . . . . . . . . . . . . . . . .56

P
Papp, S. B.. . . . . . . . . . . . . . . . . . . . . . .9
Paredes, B. . . . . . . . . . . . . . . . . . . . . 263
Petricka, J.. . . . . . . . . . . . . . . . . . . . .201
Pfau, T. . . . . . . . . . . . . . . . . . . . . . . . 160
Pillet, P. . . . . . . . . . . . . . . . . . . . . . . . 292
Pino, J. M. . . . . . . . . . . . . . . . . . . . . . . . 9
Pollack, S. E. . . . . . . . . . . . . . . . . . . 150
Purdy, T. P. . . . . . . . . . . . . . . . . . . . 117

R
Radnaev, A. G. . . . . . . . . . . . . . . . . . 88
Raimond, J. M. . . . . . . . . . . . . . . . . . 98
Rempe, G. . . . . . . . . . . . . . . . . . . . . . 307



February 16, 2009 14:30 WSPC - Proceedings Trim Size: 9in x 6in icap2008

Author Index 357

Roati, G. . . . . . . . . . . . . . . . . . . 190, 251
Ronen, S. . . . . . . . . . . . . . . . . . . . . . . . . 9

S
Sanchez-Palencia, L. . . . . . . . . . . . 178
Sankey, J. C. . . . . . . . . . . . . . . . . . . . 131
Santos, L. . . . . . . . . . . . . . . . . . . . . . . 251
Santra, R.. . . . . . . . . . . . . . . . . . . . . .344
Sarajlic, E. . . . . . . . . . . . . . . . . . . . . . . 34
Sayrin, C. . . . . . . . . . . . . . . . . . . . . . . . 98
Schirotzek, A. . . . . . . . . . . . . . . . . . . 230
Schleier-Smith, M. H. . . . . . . . . . . 107
Schunk, C. H. . . . . . . . . . . . . . . . . . . 230
Schwob, C. . . . . . . . . . . . . . . . . . . . . . . 56
Shin, Y.. . . . . . . . . . . . . . . . . . . . . . . .230
Simoni, A. . . . . . . . . . . . . . . . . . . . . . 251
Sofikitis, D. . . . . . . . . . . . . . . . . . . . . 292
Southworth, S. H. . . . . . . . . . . . . . . 344
Stamper-Kurn, D. M. . . . . . . . . . . 117
Stanwix, P. L. . . . . . . . . . . . . . . . . . . . 78
Stewart, J. T. . . . . . . . . . . . . . . . . . . 213
Stwalley, W. C. . . . . . . . . . . . . . . . . 315
Syassen, N. . . . . . . . . . . . . . . . . . . . . 307

T
Taylor, J. M. . . . . . . . . . . . . . . . . . . . . 78
Thomas, J. . . . . . . . . . . . . . . . . . . . . .201
Togan, E. . . . . . . . . . . . . . . . . . . . . . . . 78

V
Viteau, M. . . . . . . . . . . . . . . . . . . . . . 292
Volz, T. . . . . . . . . . . . . . . . . . . . . . . . . 307
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