Inferring the Initial Condition for the Balitsky - Kovchegov Evolution Equation

C. Casuga, H. Mäntysaari

QCD theory group, University of Jyväskylä

August 2023

Presentation for the UConn - NSF summer school 2023

Outline

1 DIS in the Dipole Picture

- some QCD
- Motivation

2 Bayesian Sampling Methodology

- Typical Workflow
- Emulator Training
- MCMC Sampling

3 Results

- Posterior Distributions
- Fitting Values

4 Predictions for observables

5 Conclusions • Summary & Outlook

Deep Inelastic Scattering in the Dipole Picture

rcBK:
$$\mathcal{N}(r, x = x_0; Q_{s0}^2, \gamma, e_c, C^2) \rightarrow \mathcal{N}(r, y)$$

Motivation

- Obtain posterior distribution for model parameter via Bayesian inference constraining against HERA *ep* scattering cross section data.
- Provide predictions and uncertainties for other observables.

Previous fits to HERA data:

- H.Mäntysaari, T. Lappi (2013): 1309.6963v1
- AAMQS Collaboration (2010) arXiv:1012.4408
- H.Hänninen et al(2020) arXiv:2007.01645

Motivation

- Obtain posterior distribution for model parameter via Bayesian inference constraining against HERA *ep* scattering cross section data.
- Provide predictions and uncertainties for other observables.

Previous fits to HERA data:

- H.Mäntysaari, T. Lappi (2013): 1309.6963v1
- AAMQS Collaboration (2010) arXiv:1012.4408
- H.Hänninen et al(2020) arXiv:2007.01645

Principal Component Analysis

Bayesian Sampling Methodology

Emulator Training

Principal Component Analysis

Principal Component Analysis

Bayesian Sampling Methodology

Principal Component Analysis

Bayesian Sampling Methodology

Principal Component Analysis

MCMC Sampling

Large number of walkers explore the parameter space and every step is accepted with a probability of $P(\theta_{i+1})/P(\theta_i)$

Bayesian Statistics

 $P(\theta) = \text{posterior} = \text{likelihood} \times \text{prior}$

Likelihood: how well constraining data matches the model at a certain design point; encodes model and experimental error

2 Prior: knowledge of preferred area of the parameter space (e.g. flat distribution)

MCMC Sampling

Large number of walkers explore the parameter space and every step is accepted with a probability of $P(\theta_{i+1})/P(\theta_i)$

Bayesian Statistics

 $P(\theta) = \text{posterior} = \text{likelihood} \times \text{prior}$

Likelihood: how well constraining data matches the model at a certain design point; encodes model and experimental error

2 Prior: knowledge of preferred area of the parameter space (e.g. flat distribution)

$$= x_0) = 1 - \exp\left[-\frac{1}{4} \ln\left(\frac{1}{r\Lambda_{\rm QCD}} + e_c \cdot e\right)\right]$$
$$= \frac{12\pi}{(33 - N_f)\log\left(\frac{4C^2}{r^2\Lambda_{\rm QCD}^2}\right)}$$

3
$$C^2 \sim \alpha_s^{-1} \sim N(r, y)^{-1} \sim \sigma_0/2$$

$\mathcal{N}(r, x = x_0) = 1 - \exp\left[-\frac{(r^2 Q_{s0}^2)^{\gamma}}{4} \ln\left(\frac{1}{r \Lambda_{\text{QCD}}} + e_c \cdot e\right)\right]$

$$s(r) = rac{12\pi}{(33 - N_f) \log\left(rac{4C^2}{r^2 \Lambda_{QCD}^2}
ight)}$$

1 HERA data prefers a $\gamma=1$

2 With γ as a free parameter, Q_{s0} is allowed to have a wider posterior distribution

$$\textbf{3} \quad C^2 \sim \alpha_s^{-1} \sim N(r, y)^{-1} \sim \sigma_0/2$$

- - **I** HERA data prefers a $\gamma = 1$
 - **2** With γ as a free parameter, Q_{s0} is allowed to have a wider posterior distribution

distribution

1 HERA data prefers a $\gamma = 1$

3
$$C^2 \sim \alpha_s^{-1} \sim N(r,y)^{-1} \sim \sigma_0/2$$

2 With γ as a free parameter, Q_{s0} is allowed to have a wider posterior

Posterior Samples, Median and MAP curves

• $\sqrt{s} = 318 \text{ GeV}$

Fitting Values

5 - parameter	Q_{s0}^{2}	γ	ec	<i>C</i> ²	$\sigma_0/2$	χ^2/dof
MAP	0.073	1.010	16.356	4.234	14.395	1.024
median	0.067	1.006	21.347	4.325	14.456	1.041

2D Fourier Transform, $\tilde{S}(k)$

$$\mathrm{d}\sigma^{q+A\to q+X} = xg(x,\mathbf{k}_T^2)\tilde{S}_{\rho}(\mathbf{k}_T)$$

where \tilde{S}_p is the 2DFT of the proton-dipole scattering matrix,

$$egin{aligned} & ilde{S}_{
ho}(\mathbf{k}_{\mathcal{T}}) = \int \mathrm{d}^{2}\mathbf{r}_{\mathcal{T}} \; e^{i\mathbf{k}_{\mathcal{T}}\cdot\mathbf{r}_{\mathcal{T}}} \ & imes \left[1 - \mathcal{N}(\mathbf{r}_{\mathcal{T}}, x = x_{0})
ight] \end{aligned}$$

- $\label{eq:previous fits have $\gamma>1$, which result to negative 2DFT values}$
- Uncertainty estimates are now provided!

2D Fourier Transform, $\tilde{S}(k)$

$$\mathrm{d}\sigma^{q+A\to q+X} = xg(x,\mathbf{k}_T^2)\tilde{S}_{\rho}(\mathbf{k}_T)$$

where \tilde{S}_p is the 2DFT of the proton-dipole scattering matrix,

$$egin{split} ilde{\mathcal{S}}_{p}(\mathbf{k}_{\mathcal{T}}) &= \int \mathrm{d}^{2}\mathbf{r}_{\mathcal{T}} \; e^{i\mathbf{k}_{\mathcal{T}}\cdot\mathbf{r}_{\mathcal{T}}} \ & imes \left[1 - \mathcal{N}(\mathbf{r}_{\mathcal{T}}, x = x_{0})
ight] \end{split}$$

- \blacksquare Previous fits have $\gamma>$ 1, which result to negative 2DFT values
- Uncertainty estimates are now provided!

2D Fourier Transform, $\tilde{S}(k)$

$$\mathrm{d}\sigma^{q+A\to q+X} = xg(x,\mathbf{k}_T^2)\tilde{S}_{\rho}(\mathbf{k}_T)$$

where \tilde{S}_p is the 2DFT of the proton-dipole scattering matrix,

$$egin{aligned} & ilde{\mathcal{S}}_{
ho}(\mathbf{k}_{\mathcal{T}}) = \int \mathrm{d}^{2}\mathbf{r}_{\mathcal{T}} \; e^{i\mathbf{k}_{\mathcal{T}}\cdot\mathbf{r}_{\mathcal{T}}} \ & imes \left[1 - \mathcal{N}(\mathbf{r}_{\mathcal{T}}, x = x_{0})
ight] \end{aligned}$$

- $\label{eq:previous fits have $\gamma>1$, which result to negative 2DFT values}$
- Uncertainty estimates are now provided!

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation

- Posterior distributions of quantities parametrizing the initial condition of the BK evolution has been extracted using Bayesian inference constrained against HERA data
- Correlations between parameters observed from the posteriors
- First time one obtains uncertainty estimates for the BK initial condition
- Theoretical predictions for observables now provides mean estimates and uncertainties.

- Extension to other functional forms of the initial condition
- NLO fits to further probe saturation