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Deep Inelastic Scattering in the Dipole Picture
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Motivation

Obtain posterior distribution for model parameter via Bayesian
inference constraining against HERA ep scattering cross section
data.

Provide predictions and uncertainties for other observables.

Previous fits to HERA data:

H.Mäntysaari, T. Lappi (2013): 1309.6963v1

AAMQS Collaboration (2010) arXiv:1012.4408

H.Hänninen et al(2020) arXiv:2007.01645
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MCMC Sampling

Large number of walkers explore the parameter space and every step is accepted with a
probability of P(θi+1)/P(θi )

Bayesian Statistics

P(θ) = posterior = likelihood× prior

1 Likelihood: how well constraining data matches the model at a certain design
point; encodes model and experimental error

2 Prior: knowledge of preferred area of the parameter space (e.g. flat distribution)
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Posterior Distributions

Results Posterior Distributions August 2023 7 / 11
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1 HERA data prefers a γ = 1

2 With γ as a free parameter, Qs0 is
allowed to have a wider posterior
distribution

3 C 2 ∼ α−1
s ∼ N(r , y)−1 ∼ σ0/2
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Posterior Samples, Median and MAP curves

Results Posterior Distributions August 2023 8 / 11

√
s = 318 GeV



Fitting Values

5 - parameter Q2
s0 γ ec C 2 σ0/2 χ2/dof

MAP 0.073 1.010 16.356 4.234 14.395 1.024
median 0.067 1.006 21.347 4.325 14.456 1.041

Results Fitting Values August 2023 9 / 11



2D Fourier Transform, S̃(k)

Predictions for observables August 2023 10 / 11

dσq+A→q+X = xg(x , k2T )S̃p(kT )

where S̃p is the 2DFT of the
proton-dipole scattering matrix,

S̃p(kT ) =

∫
d2rT e ikT ·rT

× [1−N (rT , x = x0)]

Previous fits have γ > 1, which
result to negative 2DFT values

Uncertainty estimates are now
provided!
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Summary

Posterior distributions of quantities parametrizing the initial condition of the BK
evolution has been extracted using Bayesian inference constrained against HERA
data

Correlations between parameters observed from the posteriors

First time one obtains uncertainty estimates for the BK initial condition

Theoretical predictions for observables now provides mean estimates and
uncertainties.

Further work

Extension to other functional forms of the initial condition

NLO fits to further probe saturation
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