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A sensitive torsion balance is used to measure the Newtonian gravitational constant G.

The equations of motion of the torsion balance are solved in terms of the experimentally

determined parameters, from which G is determined in two different limiting cases.

I. INTRODUCTION

The gravitational torsion balance of the Cavendish apparatus1–4 is shown in Fig.1. Two

small lead spheres are attached to the ends of a light rod. This rigid dumbbell is suspended

horizontally by a vertical torsion fiber. The two large lead outer spheres gravitationally

attract the inner spheres. Equilibrium is established when the torque on the dumbbell due

to the gravitational forces is balanced by the restoring torque from the torsion fiber. The

two large spheres can then be rotated from their initial positions, labeled A and B, to the

symmetrically located positions at A′ and B′. This disturbs the equilibrium and the torsion

FIG. 1: The two large spheres of mass M are initially at the positions A and B. The two small

spheres have a mass m and comprise the torsion balance.

balance begins to oscillate about a vertical axis. Attached to the center of the rod is a

small mirror. By observing the deflection of a beam of light reflected from this mirror, the

angular movement of the torsion balance can be measured. In the following section, we will

consider the motion of the torsion balance in two limiting cases following the displacement

of the large outer spheres. First, in the infinite-time limit when mechanical equilibrium is
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reestablished at a different angular position of the torsion balance, and then in the short-time

limit, immediately after the displacement.

II. EQUATIONS OF MOTION

A. Forces and Torques

Consider the gravitational force on the small lead sphere on the right hand side in Fig.2.

Show that the net gravitational force on the sphere, perpendicular to the line joining the

FIG. 2: The rotation of the rigid dumbbell in the xy plane will cause the position of the reflected

light beam to move across the viewing screen.

two small spheres is

F⊥ =
GMm

b2

(
1− b3

(b2 + 4d2)3/2

)
=

GMm

b2
β. (1)

The force on the small sphere on the left hand side is equal in magnitude but in the opposite

direction. The gravitational torque on the torsion balance due to these two forces is ΓG =

−2dF⊥. There is also a restoring torque on the torsion balance due to the twisting of the

torsional fiber of Γκ = −κθi where the clockwise initial angle θi is negative. Since the system

is initially in mechanical equilibrium, the net torque on the torsion balance must vanish,

∑
Γ = −κθi − 2dF⊥ = 0. (2)

The two large spheres are then moved to their new symmetric positions at t = 0. The

force on each of the small spheres suddenly flips in direction, although stays constant in

magnitude. The torque on the torsion balance immediately after repositioning the large
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spheres is ∑
Γ = −κθi + 2dF⊥. (3)

Including any frictional damping, the equation for the subsequent motion of the torsion

balance for t > 0 is

Iθ̈ = −Dθ̇ − κθ + 2dF⊥, (4)

where I = 2md2 is the moment of inertia of the torsion balance and Dθ̇ is a torque due to

frictional damping. The initial conditions at t = 0 are θi = −2dF⊥/κ and θ̇i = 0.

B. Final Deflection Solution

Following the symmetric displacement of the large spheres, the torsion balance undergoes

a damped oscillatory motion and then reaches a final equilibrium position at an angle θf .

This angle can be found from the equilibrium condition for the net torque,

∑
Γ = 2dF⊥ − κθf . (5)

The net angular displacement, ∆θ = θf − θi, can be found from Eq.(2) and Eq.(5) as

∆θ =
4dF⊥

κ
. (6)

We now want to relate the torsion constant κ to the period τ of the oscillatory motion.

Neglecting the small damping term, the equation of motion predicts that the oscillation

period is

τ = 2π

√
I

κ
(7)

where again I is the moment of inertia. By solving Eq.(7) for κ and then substituting into

Eq.(6), the net angular displacement of the torsion balance is

∆θ =
F⊥τ 2

2π2md
. (8)

By combining Eq.(1) with Eq.(8), the gravitational constant can be written in terms of

experimentally accessible parameters as,

G =
2π2b2d

Mτ 2β
∆θ. (9)
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During the angular displacement of the torsion balance, the light beam will move through

an angle ∆φ and a distance ∆S where

∆θ =
∆φ

2
≈ ∆S

2L
. (10)

The factor of 2 arises from the law of reflection at the mirror.

C. Initial Acceleration Solution

Consider the t→ 0+ limit of Eq.(4), which would be the equation of motion for the torsion

balance just after the large spheres have been displaced. In this limit, θ̇ → 0 and θ → θi,

and thus Eq.(4) becomes

Iθ̈(t→ 0+) = −κθi + 2dF⊥. (11)

By substituting the expression for θi from Eq.(2) into Eq.(11), the initial angular acceleration

of the torsion balance is

θ̈(t→ 0+) =
2F⊥

md
. (12)

After substituting Eq.(1) into Eq.(12), the gravitational constant can be related to a second

set of measurable quantities as

G =
b2dθ̈

2Mβ
. (13)

The angular acceleration is related to the constant initial linear acceleration of the position

of the light spot on the screen by θ̈ ≈ S̈/2L.

III. PROCEDURE

The gravitational torsion balance will be aligned and in equilibrium when you come into the

laboratory. It takes about two hours to return to a full equilibrium condition so be careful

not to touch, bump or otherwise disturb the balance. Set up a viewing screen at a distance

of L ∼5m. Align the He-Ne laser light source and note its position on the screen. This is

the initial (Si = 0) position. Observe the position for several minutes to ensure that the

balance is in equilibrium. Carefully move the outer spheres to their diagonally symmetric

positions, being sure not to otherwise disturb the balance. Be specially careful not to let

the bracket which holds the large spheres slam into the stops. Start the stopwatch/timer as
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you move the spheres. Mark the position of the light beam on the screen every ten seconds

for the first two minutes, and every 30 seconds thereafter for a total elapsed time of about

one hour. Wait until the light spot is stationary and carefully record the final equilibrium

position Sf . Then measure L, M, d and b. Note that the small lead balls are located along

the center-line of the case.

IV. DATA ANALYSIS

Use the data for the position of the reflected light beam during the initial two minutes to

find the value of S̈. A plot of S as a function of t2 should be helpful. Carefully consider the

time interval over which S̈ is constant and Eq.(13) remains valid. Use this result to find the

initial value of θ̈. Then find G from Eq.(13). Estimate the average oscillation period from

your data. Use Eq.(9) from the final deflection solution to find a value for G. Compare

your two measurements and their uncertainties. Which one is more accurate? Are their any

systematic errors in the measurements? Compare your measured values to other published

measurements of G.
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