VI Hamiltonian formulation

Equivalent to Lagrange formulation

Used for quantum mechanics
Statistical mechanics more intuitive in most cases.

1) Hamiltonian case of motion

Assume (for what follows):

- Holonomic
- MonofORMIC (\(V = V(q^i) \)) or
- Systems depend on velocities in previously discussed special cases only.

a) Legendre transformation

Lagrangian case of motion:

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0
\]
for \(n \) independent variables \(q_i \), in eqs of motion of second order:

Hamiltonian formulation:
in eqs of motion of first order:
variables: in generalized \(q_i \),
in canonical momenta \(\dot{p}_i \):

\[
p_i = \frac{\partial L}{\partial \dot{q}_i}
\]

\((q, p) \) "canonical variables"

How to switch from \(L(q, \dot{q}; t) \) to \(H(q, p; t) \)?

Legendre transform

Imagine \(f(x, y) \) such that

\[
df = u \, dx + v \, dy
\]

\[
(u = \frac{\partial f}{\partial x}; \ v = \frac{\partial f}{\partial y})
\]

Define \(g = f - ux \)

\[
\frac{dg}{dy} = df - u \, dx - x \, du = \frac{\partial g}{\partial y} - x \, du
\]

with \(u = \frac{\partial g}{\partial y} \), \(x = \frac{\partial g}{\partial u} \)
Thermodynamics

\[\text{d}U = \text{d}Q - \text{d}W = \text{ideal gas} \]

\[= T\text{d}S - P\text{d}V \]

\[\Rightarrow U = U(S,V), \quad T = \frac{\partial U}{\partial S}, \quad P = -\frac{\partial U}{\partial V} \]

Enthalpy: \(H = U + PV = H(S,P) \)

Free energy (free energy): \(F = U - TS = F(T,V) \)

Free energy (free energy): \(G = U - TS + PV = G(T,P) \)

Lagrange's equations:

\[\text{d}L = \frac{\partial L}{\partial q_i} \text{d}q_i + \frac{\partial L}{\partial \dot{q}_i} \text{d}\dot{q}_i + \frac{\partial L}{\partial t} \text{dt} \]

with \(p_i = \frac{\partial L}{\partial \dot{q}_i} \Rightarrow p_i = \frac{\partial L}{\partial \dot{q}_i} \)
\[dL = p_i \, dq_i + p_i \, dq_i + \frac{\partial L}{\partial t} \, dt \]

Hamiltonian:

\[H = \dot{q}_i \, p_i - L = \]

\[dH = \dot{q}_i \, dp_i - p_i \, dq_i - \frac{\partial L}{\partial t} \, dt \]

\[= \frac{\partial H}{\partial q_i} \, dq_i + \frac{\partial H}{\partial p_i} \, dp_i + \frac{\partial H}{\partial t} \, dt \]

\[q_i, p_i \text{ independent} \]

\[\begin{array}{c|c|c}
\hline
\quad & \dot{q}_i & \frac{\partial H}{\partial p_i} \\
\hline
\quad & \frac{\partial H}{\partial q_i} & p_i \\
\hline
\quad & \frac{\partial L}{\partial q_i} & -\frac{\partial L}{\partial t} \\
\hline
\end{array} \]

"canonical equations"

(compare: \(H = \hbar \), but defined in different variables!)

Construction of Hamiltonian

(1) Choose \(\{q_i\} = 0 \quad L = T - V \)

(2) Find conjugate momenta \(p_i = \frac{\partial L}{\partial \dot{q}_i} \)
3.) Legendre transform \(H = g_i \cdot p_i - L \)

1.) Find \(g_i \) as function of \(q, p, t \)

5.) replace \(g_i \) in \(H \).

For some cases, where

\[h = T + V = \text{energy} \]

\[H = T + V \]

Examples:

1.) \(T = \frac{m \cdot v^2}{2} = \frac{m}{2} \left(v^2 + r_1^2 \dot{r}_1^2 + r_2^2 \dot{r}_2^2 \right) \)

\[V = V(\mathbf{r}, \mathbf{\dot{r}}, \mathbf{\ddot{r}}) \]

\[p_r = \frac{\partial V}{\partial \dot{r}_1} = m \dot{r}_1 \]

\[p_\theta = \frac{\partial V}{\partial \dot{r}_2} = m r_1^2 \dot{r}_2 \]

\[p_\phi = \frac{\partial V}{\partial \dot{r}_\phi} = m r_1 r_2 \dot{r}_\phi \]

\[T = \frac{p_r^2}{2m} + \frac{p_\theta^2}{2m r_1^2} + \frac{p_\phi^2}{2m r_2^2} \]

2.) \(T = \frac{m \cdot v^2}{2} - \frac{p_i \cdot r_i}{2m^2} \)

3.) particle with mass \(m \), charge \(q \), \(\mathbf{v} \) in electromagnetic field:

\[L = T - V = \frac{m}{2} \mathbf{v}^2 - q \cdot \mathbf{v} \cdot \mathbf{A}(\mathbf{r}) - q \cdot \mathbf{A}(\mathbf{r}) \cdot \mathbf{v} \]
or \[L = \frac{m}{\alpha} x_i \dot{x}_i - g y + g A_i \phi \] \[\rho_i = \frac{\partial L}{\partial \dot{x}_i} = m \ddot{x}_i + g A_i \] \[\Rightarrow \ddot{x}_i = \frac{\rho_i - g A_i}{m} \] \[= 0 \] \[H = \left(\frac{r - g A}{2m} \right)^2 + g \phi \]

b) Cyclic coordinates \(q_i \): \[\frac{\partial L}{\partial q_i} = 0 \] \[\Rightarrow \dot{p}_i = 0 = -\frac{\partial H}{\partial q_i} \] \[= 0 \] cyclic also in \(H \)!

true:
\[\frac{dH}{dt} = \frac{\partial H}{\partial q_i} \dot{q}_i + \frac{\partial H}{\partial p_i} \dot{p}_i + \frac{\partial H}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial H}{\partial \dot{p}_i} \ddot{p}_i = \frac{\partial H}{\partial \dot{q}_i} \] \[= -\frac{\partial L}{\partial \dot{q}_i} \]

\(L \) independent of \(t \) => \(H \) indip. of \(t \)
\[\Rightarrow H = \text{const} \]
(most of the time: \(H = E = \text{const} \), but counterexample in book!)