
April 17, 2008

SysAdmin Group Presentation

Field-Programmable
Gate Array Development

Igor Senderovich

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 2

Outline

1. Introduction: Computer-Aided Hardware Design

2. FPGA Design Flow

3. General hardware programming issues
i. Hardware programming state of mind

ii. Hardware Description Languages

iii. Component Specification

4. VHDL
i. Example 1: Basic Logic and Synchronization

ii. Example 2: 3-bit register

5. Implementation

6. Deployment

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 3

Computer-Aided Hardware Design

• The key phrase is Computer-Aided
º Computer provides:

• Design aids: programming environment, visualization etc.
• Simulation environment: functionality and performance prediction

º Computer does NOT provide a native test environment

• Comparison
to software
development:

Coding

Compilation
(Interpretation)

Native Testing In-Circuit Testing

Software Hardware

Coding

Synthesis
Behavioral Model

Implementation=?
Device Programming

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 4

FPGA Design Flow

planning of routing and
placement of above-
conceived components

“conceptual” schematic
generates
Register Transfer
Language (RTL) code.

Design
Description

Synthesis

Implementation

Device
Programming

Post-Route
Simulation

Timing Analysis

Behavioral
Simulation

In-Circuit Test

Development Testing

More Detailed FPGA Design Flow:

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 5

Hardware programming state of mind

• No expectations of sequential processing!
º All components are “on” and responding to stimulus; all parts

of the code are working at once.
º Order restored with Chip Enable (CE) pins, gates,

component’s internal counters: quiet until a “Go” signal

• Scope:
º Component’s signals: internal or patched outside for sharing
º Shared signal access: “whoever cares to connect”

constant state of “sharing violation”. Solutions:
• Separate communication lines
• Components writing to same line are enabled one at a time. Pins of

quiet components set to high impedance.

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 6

Hardware Description

• HDL – Hardware Description Language (generic term)
º Verilog - designed to resemble C

º VHDL - language based on Ada
• ‘V’ for VHSIC (Very-High-Speed Integrated Circuits)
• product of a 1980s U.S. Defense project

º Other, less common languages
• ABEL (Adv. Boolean Expression Lang.)
• AHDL (Altera's proprietary language)
• Atom, Bluespec, Hydra, Lava

(Haskell-based)
• CUPL (proprietary: Logical Devices, Inc.)
• HDCaml (based on Objective Caml)
• Hardware Join Java
• HML (based on SML)
• JHDL (based on Java)

• Lola (a pedagogical tool)
• MyHDL (based on Python)
• PALASM (for Prog. Array Logic (PAL)

devices)
• Ruby (hardware description language)
• RHDL (based on the Ruby prog.

language)
• SystemVerilog (superset of Verilog+)
• SystemC (C++ libraries for system-level

modeling)

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 7

Component Specification

• Instantiation – Components added from libraries
much like functions from API dynamic libraries.

º Offers full control of the use of components
º Useful (and sometimes only allowed) for complicated parts

with standard, well-circumscribed behavior
º Works well with visual schematic design/programming

• Inference – Components are inferred from
functionality described in the programming.

º Readable/portable code
º The only approach to simple components (likely majority of

design)

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 8

Ex. 1: Basic Logic and Synchronization

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CLKswitch is
Port (CLK : in STD_LOGIC;

D : in STD_LOGIC;
Q : out STD_LOGIC_VECTOR (3 downto 0));

end CLKswitch;

architecture Behavioral of CLKswitch is
begin

Q(3) <= not CLK or D;
Q(2) <= not CLK and D;

edge_trig : process (CLK, D)
begin

if rising_edge(CLK) then --forces sync
Q(1) <= not CLK or D;
Q(0) <= not CLK and D;

end if;
end process;

end Behavioral;

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

“Sensitivity List”
to aid simulator

“include”
statements

Define “black box”
(external signals)

rising edge-driven
statements

(synchronization!)

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 9

Ex. 1: Basic Logic and Synchronization

sync

async

RTL Schematic:

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 10

Ex. 1: Basic Logic and Synchronization
asynchronous

response

no synchronous
evaluations performed

sync

async

first sync.
evaluation

undefined!

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 11

Ex. 2: 3-bit Register

architecture Behavioral of stateReg is
signal state : STD_LOGIC_VECTOR (2 downto 0);

begin

LatchInput : process (Clk, Rst, En)
begin

if (Rst = '1') then
state <= "000";

else
if (falling_edge(Clk) and En='1') then

state <= D;
else

state <= state;
end if;

end if;
end process LatchInput;

Q <= state;

end Behavioral;

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

Internal
signal declared

“Sensitivity List”
to aid simulator

Reset to avoid
undefined behavior

Explicit request
for storage

(often inferred anyway)

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 12

Ex. 2: 3-bit Register

A Standard Register Component!

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 13

Ex. 2: 3-bit Register

ignoredlatched on falling
clock edge register

zeroed on reset

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 14

Implementation

º A more concrete plan of components, their placement and
routing in the Gate Array is generated

º Constraint and optimization details specified
º Auto-generated maps adjusted
º Timing and power consumption analyzed
º More realistic simulations

• Functionality verified
• Timing tested

Sample Floor Plan

April 17, 2008 Igor Senderovich, “Field-Programmable Gate Array Development” 15

FPGA Configuration Schemes

• FPGA is fed a programming bit stream. Sources:
º In-System: using computer interface: useful in the

prototyping stage
º In the Field (after deployment): E

n
PROM, n = 0,1,2 – on-board

and activated on power cycle*
º More custom solutions possible (e.g. microcontroller or

CPLD-directed programming on startup)

* Non-volatile FPGA’s are available, eliminating the need for programming sources after
the development stage

	Field-Programmable �Gate Array Development
	Outline
	Computer-Aided Hardware Design
	FPGA Design Flow
	Hardware programming state of mind
	Hardware Description
	Component Specification
	Ex. 1: Basic Logic and Synchronization
	Ex. 1: Basic Logic and Synchronization
	Ex. 1: Basic Logic and Synchronization
	Ex. 2: 3-bit Register
	Ex. 2: 3-bit Register
	Ex. 2: 3-bit Register
	Implementation
	FPGA Configuration Schemes

