Observation of CP Violation in Kaon Decays

Igor Senderovich
Outline

1. Theory
 i. Review of discrete symmetries
 ii. Violation of symmetries and the CPT Theorem
 iii. The Kaon System
 a. Mixing and eigenstates of CP
 b. Decay modes and regeneration

2. Experiment: Cronin, Fitch et. al.
 i. Setup
 ii. Analysis
 iii. Results
The discrete transformations discussed here have eigenvalues

$$\hat{O} |\psi\rangle = \lambda |\psi\rangle \quad \lambda = +1,-1$$

where the operator stands in for Charge Conjugation (C), Parity (P), and Time Reversal (T)

What are their eigenstates?
If $[\hat{O},\hat{H}] = 0$, that is if \hat{O} has the same eigenstates as the Hamiltonian, then these energy eigenstates are said to have definite states of symmetry.
CPT Theorem

A local, Lorentz invariant quantum field theory with a Hermitian Hamiltonian must respect CPT symmetry.

- first appeared in the work of Julian Schwinger, then proven more explicitly by Lüders, Pauli and Bell.
- stands on solid ground theoretically and experimentally

Implications: individual violations of permutations of C, P and T must cancel. Thus, violation of CP would require violation of T, which would mean that

- time has a preferred direction on the fundamental scale.
- there is a clue to the matter-antimatter imbalance (the two are otherwise CP-symmetric)
Neutral Kaon Particles: \(K^0 = d\bar{s}; \quad \bar{K}^0 = \bar{d}s \)
- Neutral particle with a distinct (opposite strangeness) antiparticle
- Common decay products (e.g. 2\(\pi\))

Consequence: A neutral Kaon can oscillate into its antiparticle!

Example:

These must not be eigenstates of the full Hamiltonian!
Mixing Formalism:
Evidently, the strong interaction Hamiltonian*:

\[
H_{\text{strong}} = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}
\]

eigenstates: \(K^0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) \(\overline{K}^0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)

acquires off-diagonal “mixing terms” due to the weak interaction:

\[
H = \begin{pmatrix} M & V \\ V & M \end{pmatrix}
\]

eigenstates: \(K_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \) \(K_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)

eigenvalues: \(E_1 = M + V \) \(E_2 = M - V \)

Time evolution introduces oscillation:

\[
K_1 e^{-\frac{i}{\hbar}(M+V)t} + K_2 e^{-\frac{i}{\hbar}(M-V)t} = \sqrt{2} e^{-\frac{i}{\hbar}Mt} \begin{pmatrix} \cos \frac{V}{\hbar}t \\ i \sin \frac{V}{\hbar}t \end{pmatrix}
\]

\(K_1 \) and \(K_2 \) (imaginary) decay rates are added on the diagonal

* Rest frame assumed to avoid extra contributions to the energy.
Neutral Kaons as states of CP Transformation

Problem: Kaons are not good states of CP: \(CP(K^0) = -\bar{K}^0 \)

…but the eigenstates of the new Hamiltonian are:

\[
K_1 = \frac{1}{\sqrt{2}} \left(K^0 - \bar{K}^0 \right) \quad \Rightarrow \quad CP(K_1) = \frac{1}{\sqrt{2}} \left(-\bar{K}^0 + K^0 \right) = K_1 \quad \langle CP \rangle = +1
\]

\[
K_2 = \frac{1}{\sqrt{2}} \left(K^0 + \bar{K}^0 \right) \quad \Rightarrow \quad CP(K_2) = \frac{1}{\sqrt{2}} \left(\bar{K}^0 + K^0 \right) = -K_2 \quad \langle CP \rangle = -1
\]

Success? CP and the Hamiltonian have simultaneous eigenstates – CP must be conserved, i.e. symmetry states maintained:

\[
K_1 \rightarrow 2\pi \quad \langle CP \rangle_{2\pi} = +1
\]

\[
K_2 \rightarrow 3\pi \quad \langle CP \rangle_{3\pi} = -1
\]

Is this true or can we find: \(K_2 \rightarrow 2\pi \quad \langle CP \rangle : -1 \rightarrow +1 \)
The Kaon System

Experimental Perspective

<table>
<thead>
<tr>
<th>τ (s)</th>
<th>Main decay modes</th>
<th>Γ_i / Γ</th>
<th>Experimental use</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>$\pi^+\pi^-$</td>
<td>69.2%</td>
<td>← useful for calibration, conveniently short lifetime</td>
</tr>
<tr>
<td></td>
<td>$\pi^0\pi^0$</td>
<td>30.7%</td>
<td></td>
</tr>
<tr>
<td>K_2</td>
<td>$\pi^+l^-\nu_l$ or conj. (K_{13})</td>
<td>67.6%</td>
<td>interesting potential source of CP violation; can regenerate K_1</td>
</tr>
<tr>
<td></td>
<td>$3\pi^0$</td>
<td>19.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\pi^+\pi^-\pi^0$</td>
<td>12.6%</td>
<td></td>
</tr>
</tbody>
</table>

Regeneration

$$K_2 = \frac{1}{\sqrt{2}} \left(K^0 + \overline{K}^0 \right) \quad \Rightarrow \quad \overline{K}^0 + p \rightarrow \Lambda^0 + \pi^+$$

strong interactions: must conserve strangeness

leave little free energy – unlikely!

K^0 remains, so K_1 is back! (in superposition with K_2)
Insertable tungsten target for regeneration

K_1 decayed away by this point to avoid interactions, regeneration etc.

Experiment by Cronin, Fitch et. al.
2π decay filtering method:

- both particles are captured: invariant mass of K^0 expected
- forward direction ($\theta = 0$) for the vector sum of the two momenta

Not so for other possible (3-body) decays – K_{e3}, $K_{\mu3}$, $K_{\pi3}$: decay products are lost. Result:

- invariant mass is undercounted
- $\theta \neq 0$

Approach to calibration and measurement

Regenerate K_1 and measure θ and m distributions of 2π decay and compare with those of K_2 if such decays are found.
The result of “mass undercounting”: mass spectrum spreads and shifts below the K^0 mass.

Cutting on K^0 mass and looking for a forward peak in the $\cos \theta$ distribution (sign of 2-body decay)…

2π decay invariant mass and angle distributions are the same as those from regenerated K_1

<table>
<thead>
<tr>
<th></th>
<th>inv. mass (MeV)</th>
<th>peak angle (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>498.1±0.4</td>
<td>3.4±0.3</td>
</tr>
<tr>
<td>K_2</td>
<td>499.1±0.8</td>
<td>4.0±0.7</td>
</tr>
</tbody>
</table>
Results

So, having subtracted the background as shown and taken into account relative detection efficiencies, there were found 45 ± 9 CP-violating $\pi^+\pi^-$ decays out of a total of 22700 events. This corresponds to a branching ratio of $0.20 \pm 0.04\%$.

Reported:

Volume 13, Number 4

PHYSICAL REVIEW LETTERS

27 July 1964

EVIDENCE FOR THE 2\(\pi\) DECAY OF THE \(K^0\) MESON

Princeton University, Princeton, New Jersey

(Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the K^0 meson. Several previous experiments have

The analysis program computed the vector momentum of each charged particle observed in the decay and the invariant mass, m^*, assuming
Evidently, the short and long-lived particles (i.e. energy eigenstates having distinct decay rates) previously thought to be eigenstates of CP are in fact:

\[K_S^0 \approx K_1^0 + \varepsilon K_2^0 \]

\[K_L^0 \approx K_2^0 + \varepsilon K_1^0 \]

where \(K_1 \) and \(K_2 \) are the pure eigenstates of CP and \(\varepsilon \) is the degree of violation. Calculated in the analysis of the original experiment:

\[|\varepsilon| = 2.3 \times 10^{-3} \]
The presented results lead to the following conclusions:

- the Weak interaction slightly violates CP symmetry
- by the CPT theorem, it violates T symmetry as well – a preferred direction on the elementary particle scale!
- a small (and not yet satisfactory) degree of CP violation has been verified in the theory of matter-antimatter imbalance.