
radix-2 fast fourier transform

http://www.phys.uconn.edu/˜rozman/Courses/m3511_19s/

Last modified: January 22, 2019

1 Discrete Fourier transform

The discrete, or finite, Fourier transform (DFT) of a (complex) vector x with N elements
(x0,x1, . . . ,xN−1) = {xn} is another vector X with N elements (X0,X1, . . . ,XN−1) = {Xk},

Xk =
N−1∑
n=0

xn e
− 2πi
N kn =

N−1∑
n=0

ωknxn, (1)

where i =
√
−1, k = 0,1, . . . ,N − 1, and we introduce the notation

ω = e−
2πi
N . (2)

The discrete Fourier transform can be expressed with matrix-vector notation:

X = FN x, (3)

where the Fourier matrix F has the elements(
FN

)
kn

=ωkn, k,n = 0,1, . . . ,N − 1. (4)

Page 1 of 6

http://www.phys.uconn.edu/~rozman/Courses/m3511_19s/

MATH 3511 Radix-2 FFT Spring 2019

FN =



ω0 ω0 ω0 . . . ω0

ω0 ω1 ω2 . . . ωN−1

ω0 ω2 ω4 . . . ω2(N−1)

ω0 ω3 ω6 . . . ω3(N−1)

...
...

...
. . .

...

ω0 ωN−1 ω2(N−1) . . . ω(N−1)2


. (5)

In matlab the DFT can be codes, for example, as shown in Listing 1.

1 function X = mynaivedft(x)

2 % MYNAIVEDFT - naive implementation of the discrete Fourier transform

3 np = length(x);

4 omega = exp(-2*pi*1i/np);

5 n = 0:np-1;

6 k = n';

7 F = omega.ˆ(k*n);

8 X = F*x;

9 end

Listing 1: Naive MATLAB implementation of the discrete Fourier transform

Direct application of the definition Eq. (1) shown Listing 1 in requires N multiplications
and N additions for each of the N components of X for a total of 2N 2 floating-point
operations. This does not include the generation of the matrix F.

2 Radix-2 algorithm

Radix-2 algorithm is a member of the family of so called Fast Fourier transform (FFT)
algorithms. It computes separately the DFTs of the even-indexed inputs (x0,x2, . . . ,xN−2)
and of the odd-indexed inputs (x1,x3, . . . ,xN−1), and then combines those two results to
produce the DFT of the whole sequence. This idea can then be performed recursively to
reduce the overall runtime from O(N 2) to O(N logN). Radix-2 algorithm requires that N

Page 2 of 6

MATH 3511 Radix-2 FFT Spring 2019

is a power of two; since the number of sample points N can usually be chosen freely by
the application, this is often not an important restriction.

To derive the algorithm, lets rearrange the DFT of x, Eq. (1), into two parts: a sum over the
even-numbered indices and a sum over the odd-numbered indices:

Xk =
N/2−1∑
m=0

x2me
− 2πi
N (2m)k +

N/2−1∑
m=0

x2m+1e
− 2πi
N (2m+1)k . (6)

One can factor a common multiplier e−
2πi
N k out of the second sum.

Xk =
N/2−1∑
m=0

x2me
− 2πi
N (2m)k + e−

2πi
N k

N/2−1∑
m=0

x2m+1e
− 2πi
N (2m)k . (7)

The two sums in Eq. (7) are the DFT of the even-indexed part and the DFT of odd-indexed
part of xn. Denote the DFT of the even-indexed inputs by Ek and the DFT of the odd-
indexed inputs by Ok and we obtain:

Xk =
N/2−1∑
m=0

x2me
− 2πi

(N/2) mk

︸ ︷︷ ︸
DFT of even−indexed part

+e−
2πi
N k

N/2−1∑
m=0

x2m+1e
− 2πi

(N/2) mk

︸ ︷︷ ︸
DFT of odd−indexed part

= Ek + e−
2πi
N kOk . (8)

As the functions of k Ek and Ok are periodic with the period N/2:

Ek+N
2

= Ek (9)

and
Ok+N

2
=Ok . (10)

Therefore, we can rewrite Eq. (8) as

Xk =

 Ek + e−
2πi
N kOk for 0 ≤ k < N/2,

Ek−N/2 + e−
2πi
N kOk−N/2 for N/2 ≤ k < N,

(11)

where we used the periodicity of Ok and Ek to translate the index k.

Using the following property of the twiddle factor e−2πik/N ,

e
−2πi
N (k+N/2) = e

−2πik
N −πi = e−πie

−2πik
N = −e

−2πik
N

Page 3 of 6

MATH 3511 Radix-2 FFT Spring 2019

we can rewrite Xk as:
Xk = Ek + e−

2πi
N kOk ,

Xk+N
2

= Ek − e−
2πi
N kOk .

This result, expressing the DFT of length N recursively in terms of two DFTs of size N/2,
is the core of the radix-2 fast Fourier transform.

1 function X = myradix2dft(x)

2 % MYRADIX2DFT radix-2 discrete Fourier transform

3 np = length(x); % must be a power of two

4 if np == 1

5 X = x;

6 else

7 xe = x(1:2:end);

8 xo = x(2:2:end);

9 xe = myradix2dft(xe);

10 xo = myradix2dft(xo);

11 omega = exp(-2*pi*1i/np);

12 k = (0:(np/2-1))';

13 w = omega.ˆk;

14 xo = w.*xo;

15 X = [xe+xo; xe-xo];

16 end

17 end

Listing 2: MATLAB implementation of radix-2 discrete Fourier transform

3 The number of floating point operations

The DFT of length N is expressed in terms of two DFTs of length N/2, then four DFTs of
length N/4, then eight DFTs of length N/8, and so on until we reach N DFTs of length
one. An DFT of length one is just the number itself. If N = 2p, the number of steps in the
recursion is p = log2N . There is O(N) work at each step, independent of the step number,
so the total amount of work is O(Np) =O(N log2N).

Page 4 of 6

MATH 3511 Radix-2 FFT Spring 2019

4 Inverse DFT

The Fourier matrix FN has the explicit inverse:(
F−1
N

)
kn

=
1
N
ω−kn, k,n = 0,1, . . . ,N − 1, (12)

or

F−1
N =

1
N



ω0 ω0 ω0 . . . ω0

ω0 ω−1 ω−2 . . . ω−(N−1)

ω0 ω−2 ω−4 . . . ω−2(N−1)

ω0 ω−3 ω−6 . . . ω−3(N−1)

...
...

...
. . .

...

ω0 ω−(N−1) ω−2(N−1) . . . ω−(N−1)2


. (13)

Eq. (1) can be inverted as following:

xk =
1
N

N−1∑
n=0

Xnω
−kn =

1
N

N−1∑
n=0

Xn e
2πi
N kn. (14)

To prove that indeed,
FN F−1

N = F−1
N FN = I, (15)

where I is the identity matrix, notice that

1 +ω+ω2 +ω3 + . . .+ωN−1 = 0, (16)

since the sum on the left of Eq. (16) is an N-terms geometric progression with the start
value ω0 = 1 and the common ratio ω. The value of the sum is

1−ωN

1−ω
= 0 (17)

since

ωN =
(
e−

2πi
N

)N
= e−2πi = 1, (18)

and thus the numerator in Eq. (17) is zero whereas the denominator is not.

Similarly, we can show that

1 +ω2 +ω4 +ω6 + . . .+ω2(N−1) = 0, (19)

Page 5 of 6

MATH 3511 Radix-2 FFT Spring 2019

1 +ω3 +ω6 +ω9 + . . .+ω3(N−1) = 0, (20)

and in general

1 +ωk +ω2k +ω3k + . . .+ω(N−1)k = 0, k = 1, . . . ,N − 1 and k = −N + 1, . . . ,−1. (21)

However, when k = 0 the sum in Eq. (21)

1 +ωk +ω2k +ω3k + . . .+ω(N−1)k = 1 + 1 + 1 + . . .+ 1 =N. (22)

Summarizing Eqs. (21), (22):

N−1∑
l=0

ωl k =N δk0 =
{

0, k = 1, . . . ,N − 1 and k = −N + 1, . . . ,−1
N, k = 0,

(23)

where δmn is the Kronecker symbol.

Finally,

(
FN F−1

N

)
kp

=
N−1∑
l=0

(FN)kl
(
F−1
N

)
lp

=
1
N

N−1∑
l=0

ωklω−lp =
1
N

N−1∑
l=0

ωl(k−p) = δkp. (24)

Page 6 of 6

	Discrete Fourier transform
	Radix-2 algorithm
	The number of floating point operations
	Inverse DFT

