1 Oscillator with nonlinear friction

Let’s consider the following second order non-linear differential equation

\[
\frac{d^2 x}{dt^2} + \varepsilon \left(\frac{dx}{dt} \right)^3 + x = 0, \quad \varepsilon > 0
\] \hspace{1cm} (1)

with the initial conditions

\[
x(0) = 1, \quad \dot{x}(0) = 0.
\] \hspace{1cm} (2)

The equation describes a non-linear oscillator with the “friction” force that is proportional to the third power of the velocity. The parameter \(\varepsilon \) is a positive parameter that describes the rate of the energy loss in the system. Equation (1) has no exact analytic solutions, therefore below we compare our analytics with the results of numerical calculations.
1.1 Numerical integration

To solve Eq. (1) numerically, we introduce a new dependent variable, \(y = \dot{x} \) and rewrite Eq. (1) as a system of two first order differential equations for two unknown \(x(t) \) and \(y(t) \),

\[
\begin{cases}
\frac{dx}{dt} = y, \\
\frac{dy}{dt} = -\epsilon y^3 - x,
\end{cases}
\]

A typical result of the numerical integration of Eqs. (3) is presented in Fig. 1.

Figure 1: Typical solution of Eq. (1) for small values of \(\epsilon \); \(\epsilon = 0.2 \) (solid line). The approximation Eq. (35) is also shown (dashed line).

1.2 Regular perturbation theory for nonlinear oscillator

\[\ddot{x} + x = -\epsilon x^3. \]

A perturbative solution of this equation is obtained by expanding \(x(t) \) as a power series in \(\epsilon \):

\[x = x_0 + \epsilon x_1 + \epsilon^2 x_2 + \ldots, \]
where \(x_0(0) = 1, \dot{x}_0(0) = 0, \) and \(x_n(0) = 0, \dot{x}_n(0) = 0 \) for \(n \geq 1 \). Substituting Eq. (5) into Eq. (4) and equating coefficients of like powers of \(\varepsilon \) gives a sequence of linear differential equations of which all but the first are inhomogeneous:

\[
\begin{align*}
\ddot{x}_0 + x_0 &= 0, \\
\ddot{x}_1 + x_1 &= -x_0^3, \\
&\quad \ldots \\
\ddot{x}_n + x_n &= -x_{n-1}^3, \\
&\quad \ldots
\end{align*}
\]

The solution of Eq. (6) which satisfies \(x_0(0) = 1, \dot{x}_0(0) = 0 \) is

\[x_0(t) = \cos(t). \]

To solve Eq. (11), recall that

\[\sin^3 t = \frac{3}{4} \sin(t) - \frac{1}{4} \sin(3t). \]

\[\ddot{x}_1 + x_1 = -x_0^3 = \sin^3(t), \quad x_1(0) = 0, \dot{x}_1(0) = 0. \]

\[x_1(t) = \frac{9}{32} \sin(t) + \frac{1}{32} \sin(3t) - \frac{3}{8} t \cos(t) \]

The amplitude of oscillation of the solution Eq. (12) grows unbounded as \(t \to \infty \). The term \(t \cos(t) \), whose amplitude grows with \(t \), is said to be a secular term. The secular term has appeared because \(\sin^3(t) \) on the right of Eq. (11) contains a component, \(\sim \sin(t) \), whose frequency equals the natural frequency of the unperturbed oscillator, i.e. because the inhomogeneity \(\sim \sin(t) \) is itself a solution of the homogeneous equation associated with Eq. (11): \(\ddot{x}_1 + x_1 = 0 \). In general, secular terms always appear whenever the inhomogeneous term is itself a solution of the associated homogeneous constant-coefficient differential equation. A secular term always grows more rapidly than the corresponding solution of the homogeneous equation by at least a factor of \(t \).

However, the correct solution of Eq. (4), \(x(t) \), remains bounded for all \(t \). Indeed, let’s multiply Eq. (4) by \(\dot{x} \).

\[\dddot{x} + \dot{x} = -\varepsilon x^4. \]

Rearranging terms in the left hand side, we obtain:

\[\dddot{x} + \dot{x} = \frac{1}{2} \frac{d}{dt} \left(\frac{dx}{dt} \right)^2 + \frac{1}{2} \frac{d}{dt} x^2 = \frac{d}{dt} \left[\frac{1}{2} \left(\frac{dx}{dt} \right)^2 + \frac{1}{2} x^2 \right] = \frac{dE}{dt}, \]
where
\[
E \equiv \frac{1}{2} \left(\frac{dx}{dt} \right)^2 + \frac{1}{2} x^2 = \frac{1}{2} \dot{x}^2 + \frac{1}{2} x^2
\] (15)
is the mechanical energy of the oscillator. The energy Eq. (15) is always non-negative. For the initial condition Eq. (2), \(E(0) = \frac{1}{2} \).

On the other hand the right hand side of Eq. (13) is always non-positive. Therefore,
\[
\frac{d}{dt} E \leq 0,
\] (16)
i.e.
\[
E(t) \leq E(0)
\] (17)
which means that that neither \(x(t) \) nor \(\dot{x} \) can grow unbounded, in contradiction with the result Eq. (12).

1.3 The method of averaging

To obtain an approximate analytic solution of Eq. (1), we use a powerful method called the method of averaging. It is applicable to equations of the following general form:
\[
\frac{d^2 x}{dt^2} + x = \varepsilon F\left(x, \frac{dx}{dt} \right),
\] (18)
where in our case
\[
F\left(x, \frac{dx}{dt} \right) = -\left(\frac{dx}{dt} \right)^3.
\] (19)

We seek a solution to Eq. (18) in the form:
\[
x = a(t) \cos(t + \psi(t)),
\] (20)
\[
\frac{dx}{dt} = -a(t) \sin(t + \psi(t)).
\] (21)
The motivation for this ansatz is that when \(\varepsilon \) is zero, Eq. (18) has its solution of the form Eq. (20) with \(a \) and \(\psi \) constants. For small values of \(\varepsilon \) we expect the same form of the solution to be approximately valid, but now \(a \) and \(\psi \) are expected to be slowly varying functions of \(t \).

Differentiating Eq. (20) and requiring Eq. (21) to hold, we obtain the following relation:
\[
\dot{a} \cos(t + \psi(t)) - a \dot{\psi} \sin(t + \psi(t)) = 0.
\] (22)
where we introduced the notation:

\[
\dot{a} \equiv \frac{da}{dt}, \quad \dot{\psi} \equiv \frac{d\psi}{dt}.
\] (23)

Differentiation of Eq. (21) and substitution the result into Eq. (18) gives

\[-\dot{a} \sin(t + \psi) - a \dot{\psi} \cos(t + \psi) = \varepsilon a^3 \sin^3(t + \psi).\] (24)

Solving Eqs. (22) and (24) for \(\dot{a}\) and \(\dot{\psi}\), we obtain the following system of two differential equations:

\[
\frac{da}{dt} = -\varepsilon a^3 \sin^4(t + \psi) \quad (25)
\]

\[
\frac{d\psi}{dt} = -\varepsilon a^2 \sin^3(t + \psi) \cos(t + \psi). \quad (26)
\]

So far our treatment has been exact.

Now we introduce the following approximation: since \(\varepsilon\) is small, \(\frac{da}{dt}\) and \(\frac{d\psi}{dt}\) are also small. Hence \(a(t)\) and \(\psi(t)\) are slowly varying functions of \(t\). Thus over one cycle of oscillations the quantities \(a(t)\) and \(\psi(t)\) on the right hand sides of Eqs. (25) and (26) can be treated as nearly constant, and thus these right hand sides may be replaced by their averages:

\[
\frac{1}{2\pi} \int_0^{2\pi} d\phi \ldots
\] (27)

Eqs. (25) and (26) become

\[
\frac{da}{dt} = -\varepsilon \frac{1}{2\pi} \int_0^{2\pi} d\phi a^3 \sin^4(\phi) \quad (28)
\]

\[
\frac{d\psi}{dt} = -\varepsilon \frac{1}{2\pi} \int_0^{2\pi} d\phi a^2 \sin^3(\phi) \cos(\phi) \quad (29)
\]

The right hand side of Eq. (29) is zero. The averaging in Eq. (28) can be done using the following trigonometric identities:

\[
\sin^2(\phi) = \frac{1}{2}(1 - \cos(2\phi)),
\]

\[
\frac{1}{2\pi} \int_0^{2\pi} d\phi \cos^2(n\phi) = \frac{1}{2\pi} \int_0^{2\pi} d\phi \sin^2(n\phi) = \frac{1}{2}, \quad n = 1, 2, \ldots
\]
\[\frac{1}{2\pi} \int_{0}^{2\pi} d\phi \cos(n\phi) = \frac{1}{2\pi} \int_{0}^{2\pi} d\phi \sin(n\phi) = 0, \quad n = 1, 2, \ldots \]

\[\frac{1}{2\pi} \int_{0}^{2\pi} d\phi \sin^4(\phi) = \frac{1}{2\pi} \int_{0}^{2\pi} d\phi \left(\frac{1}{2} (1 - \cos(2\phi)) \right)^2 = \]

\[= \frac{1}{4} \frac{1}{2\pi} \int_{0}^{2\pi} d\phi \left(1 - 2 \cos(2\phi) + \cos^2(2\phi) \right) = \]

\[= \frac{1}{4} \left(1 + \frac{1}{2} \right) = \frac{3}{8} \quad (30) \]

The averaged equations of motion are as following:

\[\frac{da}{dt} = -\varepsilon \frac{3}{8} a^3 \quad (31) \]
\[\frac{d\psi}{dt} = 0 \quad (32) \]

The solution of Eq. (32) is

\[\psi = \text{const.} \quad (33) \]

We can chose the constant to be 0.

Eq. (31) can be solved by separating the variables:

\[\frac{da}{a^3} = -\frac{3}{8} \varepsilon dt \quad \rightarrow \quad \frac{1}{a^2(t)} = \frac{3}{4} \varepsilon t + \frac{1}{a^2(0)} \quad \rightarrow \quad a(t) = \frac{1}{\sqrt{\frac{3}{4} \varepsilon t + \frac{1}{a^2(0)}}}, \quad (34) \]

where \(a(0) \) is the amplitude of oscillations at \(t = 0 \). Finally,

\[x(t) = \frac{\cos(t)}{\sqrt{\frac{3}{4} \varepsilon t + \frac{1}{a^2(0)}}} \quad (35) \]

2 Van der Pol oscillator

The second order non-linear autonomous differential equation

\[\frac{d^2x}{dt^2} + \varepsilon (x^2 - 1) \frac{dx}{dt} + x = 0, \quad \varepsilon > 0 \quad (36) \]
is called van der Pol equation. The parameter ε is positive and indicates the nonlinearity and the strength of the damping. The equation models a non-conservative system in which energy is added to and subtracted from the system, resulting in a periodic motion called a limit cycle. The sign of the “coefficient” in the damping term in Eq. (36), $(x^2 - 1)$ changes, depending whether $|x|$ is larger or smaller than one, describing the inflow and outflow of the energy.

The equation was originally proposed in the late 1920-th to describe stable oscillations in electrical circuits employing vacuum tubes.

Van der Pol oscillator is the example of a system that exhibits the so called limit cycle. A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is in general unstable.

Stable limit cycles model systems, e.g. the beating of a heart, that exhibit self-sustained oscillations. These systems oscillate even in the absence of external periodic forcing. There is a standard oscillation of some preferred period, waveform, and amplitude. If the system is perturbed slightly, it returns to the standard cycle.

Limit cycles are inherently nonlinear phenomena. They can’t occur in linear systems. Of course, a linear system, such as a linear differential equation, can have closed orbits – periodic solutions, but they won’t be isolated. If $x(t)$ is a periodic solution, then so
is $\alpha x(t)$ for any constant $\alpha \neq 0$. Hence $x(t)$ is surrounded by a ‘family’ of closed orbits. Consequently, the amplitude of a linear oscillation is set entirely by its initial conditions. Any slight disturbance to the amplitude will persist forever. In contrast, limit cycle oscillations are determined by the structure of the system itself.

Limit cycles are only possible in systems with dissipation. System that conserve energy do not have isolated closed trajectories . . .

2.1 Numerical integration

Let’s write Eq. (36) as a first order system of differential equations,

$$\begin{cases}
\frac{dx}{dt} = y, \\
\frac{dy}{dt} = -\varepsilon \left(x^2 - 1\right) \frac{dx}{dt} - x,
\end{cases} \tag{37}$$

The results of numerical integration of Eqs. (37) are presented in Figs. 4–5.

Numerical integration of Eq. (37) shows that every initial condition (except $x = 0$, $\dot{x} = 0$) approaches a unique periodic motion. The nature of this limit cycle is dependent on the value of ε. For small values of ε the motion is nearly harmonic.

Numerical integration shows that the limit cycle is a closed curve enclosing the origin in the x-y phase plane. From the fact that Eqs. (37) are invariant under the transformation $x \to -x$, $y \to -y$, we may conclude that the curve representing the limit cycle is point symmetric about the origin.

2.2 Averaging

In order to obtain information regarding the approach to the limit cycle, we use the method of averaging. The method is applicable to equations of the following general form:

$$\frac{d^2x}{dt^2} + x = -\varepsilon F\left(x, \frac{dx}{dt}\right), \tag{38}$$

where in our case

$$F\left(x, \frac{dx}{dt}\right) = \left(x^2 - 1\right) \frac{dx}{dt}. \tag{39}$$
Figure 4: Typical solution of van der Pol equation for small values of ε; top graph – $x(t)$, bottom graph – $\dot{x}(t)$; $\varepsilon = 0.1$ (solid line). The approximations Eq. (71), (72) shown as dashed line.

We seek a solution to Eq. (38) in the form:

$$x = a(t)\cos(t + \psi(t)),$$

(40)
Figure 5: Typical phase space trajectory of van der Pol equation for small values of ε.

\[
\frac{dx}{dt} = -a(t) \sin(t + \psi(t)).
\] (41)

Our motivation for this ansatz is, as in the example before, that when ε is zero, Eq. (38) has its solution of the form Eq. (40) with a and ψ constants. For small values of ε we expect the same form of the solution to be approximately valid, but now a and ψ are expected to be slowly varying functions of t. Differentiating Eq. (40) and requiring Eq. (41) to hold, we obtain:

\[
\frac{d}{dt} \cos(t + \psi(t)) - a \frac{d}{dt} \sin(t + \psi(t)) = 0.
\] (42)

Differentiating Eq. (41) and substituting the result into Eq. (38) gives

\[
-\frac{da}{dt} \sin(t + \psi) - a \frac{d\psi}{dt} \cos(t + \psi) = -\varepsilon F(a(t) \cos(t + \psi), -a(t) \sin(t + \psi)).
\] (43)

Solving Eqs. (42) and (43) for $\frac{da}{dt}$ and $\frac{d\psi}{dt}$, we obtain:

\[
\frac{da}{dt} = \varepsilon F(a(t) \cos(t + \psi), -a(t) \sin(t + \psi)) \sin(t + \psi)
\] (44)

\[
\frac{d\psi}{dt} = \frac{\varepsilon}{a} F(a \cos(t + \psi), -a \sin(t + \psi) \cos(t + \psi),
\] (45)

where

\[
F(\ldots) = -a \left(a^2 \cos^2(t + \psi) - 1\right) \sin(t + \psi).
\] (46)
\[
\frac{da}{dt} = -\varepsilon a \left(a^2 \cos^2 (t + \psi) - 1 \right) \sin^2 (t + \psi) \quad (47)
\]
\[
\frac{d\psi}{dt} = -\varepsilon \left(a^2 \cos^2 (t + \psi) - 1 \right) \sin (t + \psi) \cos (t + \psi) \quad (48)
\]

So far our treatment has been exact.

Now we introduce the following approximation: since \(\varepsilon \) is small, \(\frac{da}{dt} \) and \(\frac{d\psi}{dt} \) are also small. Hence \(a(t) \) and \(\psi(t) \) are slowly varying functions of \(t \). Thus over one cycle of oscillations the quantities \(a(t) \) and \(\psi(t) \) on the right hand sides of Eqs. (47) and (48) can be treated as nearly constant, and thus these right hand sides may be replaced by their averages:

\[
\ldots \equiv \langle \ldots \rangle \equiv \frac{1}{2\pi} \int_0^{2\pi} \ldots \, d\phi
\]

Eqs. (47) and (48) become

\[
\frac{da}{dt} = -\varepsilon a^3 \cos^2 (\phi) \sin^2 (\phi) + \varepsilon a \sin^2 (\phi) \quad (50)
\]
\[
\frac{d\psi}{dt} = -\varepsilon a^2 \cos^3 (\phi) \sin (\phi) + \varepsilon \cos (\phi) \sin (\phi) \quad (51)
\]

As shown in the Appendix,

\[
\cos^3 (\phi) \sin (\phi) \equiv \frac{1}{2\pi} I_{3,1} = 0,
\]
\[
\cos (\phi) \sin (\phi) \equiv \frac{1}{2\pi} I_{1,1} = 0,
\]

thus the right hand side of Eq. (51) is zero. Therefore,

\[
\frac{d\psi}{dt} = 0, \quad (54)
\]

i.e. \(\psi = C \), where \(C \) is an integration constant. We can chose that

\[
\psi = 0. \quad (55)
\]

The averaged terms in Eq. (47) are as following:

\[
\cos^2 (\phi) \sin^2 (\phi) \equiv \frac{1}{2\pi} I_{2,2} = \frac{1}{8} \quad (56)
\]
\[
\sin^2(\phi) = \frac{1}{2\pi} I_{2,0} = \frac{1}{2},
\]
where Eq. (116) and (117) have been used.

Thus, the averaged Eq. (50) is

\[
\frac{da}{dt} = \frac{\varepsilon}{8} a (4 - a^2).
\]

Eq. (58) can be solved separating variables:

\[
\frac{da}{a(2 - a)(2 + a)} = \frac{\varepsilon}{8} \, dt.
\]

Decomposing the left hand side into partial fractions,

\[
\frac{1}{a(2 - a)(2 + a)} = \frac{1}{4a} - \frac{1}{8(2 - a)} - \frac{1}{8(2 + a)},
\]
we obtain

\[
2 \frac{da}{a} + \frac{da}{2 - a} - \frac{da}{2 + a} = \varepsilon \, dt,
\]

\[
2 \frac{da}{a} - \frac{d(2 - a)}{2 - a} - \frac{d(2 + a)}{2 + a} = \varepsilon \, dt,
\]

\[
d \log\left(\frac{a^2}{(a+2)|2-a|}\right) - d \log|2-a| - d \log(2 + a) = \varepsilon \, dt.
\]

Integrating both sides

\[
\log\left(\frac{a^2}{(a+2)|2-a|}\right) = \varepsilon(t - t_0).
\]

We can choose an integration constant \(t_0\) to be 0. Exponentiating,

\[
\frac{a^2}{(a+2)|2-a|} = e^{\varepsilon t},
\]

which is a transcendental equation for \(a(t)\).

Since we are primary interested in the limit cycle solution of the van der Pol equation, we do not need the complete solution of Eq. (65) but only its limit as \(t \to \infty\).

Inverting Eq. (65), we get

\[
\frac{(a + 2)|2 - a|}{a^2} = e^{-\varepsilon t} \to 0 \text{ as } t \to \infty,
\]

which is possible if \(a(\infty) = 2\).
To find the rate of approach to the limit cycle, we substitute the solution in the form
\[a(t) = 2 - \delta(t) \] (67)
into Eq. (66) and keep only the term linear in \(\delta \). We assume that the initial conditions are such that \(a < 2 \), so that \(\delta(t) > 0 \).

\[
\frac{(a + 2)|2 - a|}{a^2} = \frac{(4 + \delta(t))\delta(t)}{4 + 2\delta(t) + \delta(t)^2} \approx \frac{4\delta(t)}{4 + 2\delta(t)} = \frac{\delta(t)}{1 + \frac{1}{2}\delta(t)} \approx \delta(t) \left(1 - \frac{1}{2}\delta(t)\right) \approx \delta(t). \] (68)

We obtain that
\[
\delta(t) = e^{-\varepsilon t}. \] (69)
Thus,
\[
a(t) \approx 2 - e^{-\varepsilon t} \text{ as } t \to \infty. \] (70)

Finally, for \(t \geq \varepsilon^{-1} \),
\[
x(t) = a(t)\cos(t + \psi(t)) = (2 - e^{-\varepsilon t})\cos t, \] (71)
\[
\dot{x}(t) = -a(t)\sin(t + \psi(t)) = -(2 - e^{-\varepsilon t})\sin t \] (72)
are the parametric equations of the limit cycle in the phase plane.

3 Oscillator with the slowly changing frequency

\[
\frac{d^2x}{dt^2} + x = -\varepsilon F\left(x, \frac{dx}{dt}, \varepsilon t\right), \] (73)
where the new dependence is highlighted in bold.

\[
\frac{d^2x}{dt^2} + \omega^2(\varepsilon t)x = 0, \] (74)
where \(\omega(\varepsilon t) \neq 0 \). (75)
\[
\tau = f(t) \] (76)
\[
\frac{dx}{dt} = \frac{dx}{d\tau} \frac{d\tau}{dt} = \frac{df}{d\tau} \frac{dx}{d\tau}. \] (77)
\[
\frac{d^2 x}{dt^2} = \frac{d}{dt} \left(\frac{dx}{d\tau} \right) = \frac{d}{dt} \left(\frac{df}{dt} \frac{dx}{d\tau} \right) = \frac{d^2 f}{dt^2} \frac{dx}{d\tau} + \frac{df}{dt} \frac{d}{d\tau} \left(\frac{dx}{d\tau} \right) = \frac{d^2 f}{dt^2} \frac{dx}{d\tau} + \frac{df}{d\tau} \frac{d^2 x}{d\tau^2}
\]
(78)

Substituting Eq. (78) into Eq. (74) and introducing the notations

\[
\dot{x} = \frac{dx}{d\tau}, \quad \ddot{x} = \frac{d^2 x}{d\tau^2},
\]
(79)

\[
\left(\frac{df}{dt} \right)^2 \ddot{x} + \frac{d^2 f}{dt^2} \dot{x} + \omega^2 (\varepsilon t) x = 0.
\]
(80)

\[
\left(\frac{df}{dt} \right)^2 = \omega^2 (\varepsilon t) \rightarrow \frac{df}{dt} = \omega (\varepsilon t),
\]
(81)

\[
\tau = \int^t \omega (\varepsilon u) du, \quad d\tau = \omega (\varepsilon t) dt
\]
(82)

\[
\frac{d^2 f}{dt^2} = \frac{d\omega (\varepsilon t)}{dt} = \varepsilon \omega' (T),
\]
(83)

where

\[
T = \varepsilon t.
\]
(84)

\[
\frac{d^2 x}{d\tau^2} + \varepsilon \frac{\omega' (\varepsilon t)}{\omega^2 (\varepsilon t)} \frac{dx}{d\tau} + x = 0.
\]
(85)

Eq. (85) is in the form Eq. (73). Using the method of averaging we obtain the following equations for \(a(t)\) and \(\psi(t)\):

\[
\frac{da}{d\tau} = -\varepsilon \frac{\omega' (\varepsilon t)}{\omega^2 (\varepsilon t)} a \sin^2 (\tau + \psi),
\]
(86)

\[
\frac{d\psi}{d\tau} = -\varepsilon \frac{\omega' (\varepsilon t)}{\omega^2 (\varepsilon t)} a \sin (\tau + \psi) \cos (\tau + \psi).
\]
(87)

Averaging Eq. (86), (87) we obtain:

\[
\frac{da}{d\tau} = -\frac{\varepsilon}{2} \frac{\omega' (\varepsilon t)}{\omega^2 (\varepsilon t)} a,
\]
(88)

\[
\frac{d\psi}{d\tau} = 0.
\]
(89)
Eq. (89) tells us that $\psi = \text{const}$, and we can chose $\psi = 0$.

Eq. (88) can be solved separating variables

$$\frac{da}{a} = -\frac{\varepsilon}{2} \frac{\omega'(\varepsilon t)}{\omega^2(\varepsilon t)} d\tau = -\frac{\varepsilon}{2} \frac{\omega'(\varepsilon t)}{\omega^2(\varepsilon t)} \omega(\varepsilon t) dt = -\frac{1}{2} \frac{\omega'(\varepsilon t)}{\omega(\varepsilon t)} d(\varepsilon t).$$

(91)

$$d \log(a) = -\frac{1}{2} d \log(\omega(\varepsilon t)),$$

(92)

$$\log(a) = \log \left(\frac{1}{\sqrt{\omega(\varepsilon t)}} \right) + C',$$

(93)

$$a = \frac{C}{\sqrt{\omega(\varepsilon t)}}$$

(94)

\begin{align*}
 x(t) &= a(t) \cos(\tau) = \frac{C}{\sqrt{\omega(\varepsilon t)}} \cos \left(\int_0^t \omega(\varepsilon t') dt' \right). \\
 \dot{x}(t) &= -C \sqrt{\omega(\varepsilon t)}' \sin \left(\int_0^t \omega(\varepsilon t') dt' \right). \\
 E(t) &= \frac{1}{2} \dot{x}^2 + \frac{1}{2} \omega(\varepsilon t)^2 x^2 = \frac{C^2}{2} \omega, \\
 \frac{E(t)}{\omega(\varepsilon t)} &= \text{const}.
\end{align*}

(95, 96, 97, 98)

4 Problems

Problem 1. Find (a) the time dependence of the amplitude and (b) the frequency of the Duffing oscillator:

$$\ddot{x} + x + \epsilon x^3 = 0,$$

(99)

where ϵ is a small parameter ($\epsilon \ll 1$); $x(0) = 1, \dot{x}(0) = 0$. Compare your analytic approximation with the numerical solution of the differential equation.
Figure 6: Typical solution of the Duffing equation Eq. (99), $\varepsilon = 0.2$ (solid line). The approximation obtained by the method of averaging is also shown (dashed line).

Problem 2. Find the time dependence of the amplitude of an oscillator with “dry” friction:

$$\ddot{x} + \gamma \text{sign}(\dot{x}) + x = 0,$$

(100)

where γ is a small parameter ($\gamma \ll 1$); $x(0) = 1$, $\dot{x}(0) = 0$,

$$\text{sign}(\alpha) = \begin{cases}
1, & \alpha > 0, \\
0, & \alpha = 0, \\
-1, & \alpha < 0.
\end{cases}$$

Determine the time until the full stop.

Compare your analytic approximation with the numerical solution of the differential equation.

Figure 7: Typical solution of the dry friction oscillator Eq. (100) for small values of γ; $\gamma = 0.03$ (solid line). The approximation obtained by the method of averaging is also shown (dashed line).

Problem 3. Find the solution of the following nonlinear differential equation:

$$\ddot{x} + \varepsilon x^5 + x = 0, \quad x(0) = x_0, \quad \dot{x}(0) = 0,$$

(101)

where ε is a small positive parameter. Compare your analytic approximation with the numerical solution of the differential equation.
Figure 8: Typical solution of the nonlinear friction oscillator Eq. (101) for small values of ϵ; $\gamma = 0.03$ (solid line). The approximation obtained by the method of averaging is also shown (dashed line).

Appendix A. Integrals for the method of averaging

The method of averaging requires the evaluation of integrals of the form

$$I_{p,q} = \int_0^{2\pi} \cos^p x \sin^q x \, dx$$

where p and q are positive integers.

First, notice that the integration in Eq. (102) is over the period of the integrand, thus

$$\int_0^{2\pi+u} \cos^p x \sin^q x \, dx = \int_u^{2\pi+u} \cos^p x \sin^q x \, dx$$

for arbitrary u.

$I_{p,q}$ is zero if at least one of p or q is odd. Indeed, consider separately the three possible cases:

1. If p is even and q is odd, i.e. if $p = 2m$ and $q = 2n + 1$, then

$$I_{2m,2n+1} = \int_0^{2\pi} \cos^{2m}(x) \sin^{2n+1}(x) \, dx = \int_{-\pi}^{\pi} \cos^{2m}(x) \sin^{2n+1}(x) \, dx = 0$$

since the integrand is an odd function.

2. If both p and q are odd, i.e. $p = 2m + 1$ and $q = 2n + 1$, then

$$I_{2m+1,2n+1} = \int_0^{2\pi} \cos^{2m+1}(x) \sin^{2n+1}(x) \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos^{2m}(x) \sin^{2n}(x) \sin(2x) \, dx = 0$$
since the integrand is again an odd function; here we used the identity \(\cos(x)\sin(x) = \frac{1}{2}\sin(2x) \).

3. If \(p \) is odd and \(q \) is even, i.e. if \(p = 2m + 1 \) and \(q = 2n \), then, using the identities
\[
\sin(x) = \cos\left(x - \frac{\pi}{2}\right) \quad \text{and} \quad \cos(x) = -\sin\left(x - \frac{\pi}{2}\right),
\]

\[
I_{2m+1,2n} = \int_0^{2\pi} \cos^{2m+1}(x)\sin^{2n}(x)\,dx = -\int_0^{2\pi} \sin^{2m+1}\left(x - \frac{\pi}{2}\right)\cos^{2n}\left(x - \frac{\pi}{2}\right)\,dx
\]

\[
= -\frac{2\pi}{2} \int_{-\pi}^{\pi} \sin^{2m+1}(u)\cos^{2n}(u)\,du = -\int_{-\pi}^{\pi} \sin^{2m+1}(u)\cos^{2n}(u)\,du = 0 \quad (106)
\]
since the last integral is from an odd function.

To evaluate \(I_{pq} \) when both \(p \) and \(q \) are even, let’s proceed as following.

\[
I_{2m,2n} = \int_0^{2\pi} \left(\cos^2(x)\right)^m\left(\sin^2(x)\right)^n\,dx = 2\int_0^{\pi} \left(\cos^2(x)\right)^m\left(1 - \cos^2(x)\right)^n\,dx
\]

\[
= 2\int_0^{\pi/2} \left(\cos^2(x)\right)^m\left(1 - \cos^2(x)\right)^n\,dx + 2\int_{\pi/2}^{\pi} \left(\cos^2(x)\right)^m\left(1 - \cos^2(x)\right)^n\,dx. \quad (107)
\]

Let’s introduce the new integration variable,

\[
u = \cos^2 x, \quad 0 \leq u \leq 1, \quad du = -2\cos x \sin x \,dx. \quad (108)
\]

In the first integral in Eq. (108), \(0 \leq x \leq \frac{\pi}{2} \), thus both \(\cos(x) \) and \(\sin(x) \) are positive, therefore \(\cos(x) = u^{1/2} \) and \(\sin(x) = (1 - u)^{1/2} \). So,

\[
du = -2u^{1/2}(1 - u)^{1/2} \,dx, \quad (109)
\]
i.e.

\[
dx = -\frac{du}{2u^{1/2}(1 - u)^{1/2}}. \quad (110)
\]
In the second integral in Eq. (108), $\frac{\pi}{2} \leq x \leq \pi$, thus $\cos(x)$ is negative and $\sin(x)$ is positive, therefore $\cos(x) = -u^{\frac{1}{2}}$ and $\sin(x) = (1-u)^{\frac{1}{2}}$. So,

$$\frac{du}{dx} = 2u^{\frac{1}{2}}(1-u)^{\frac{1}{2}}.$$ \hspace{1cm} (111)

i.e.

$$\frac{dx}{du} = \frac{2u^{\frac{1}{2}}}{(1-u)^{\frac{1}{2}}}.$$ \hspace{1cm} (112)

Substituting Eqs. (111)–(112) into Eq. (107), we obtain

$$I_{2m,2n} = -\int_0^1 u^{m-\frac{1}{2}}(1-u)^{n-\frac{1}{2}} du + \int_0^1 u^{m-\frac{1}{2}}(1-u)^{n-\frac{1}{2}} du = 2 \int_0^1 u^{m+\frac{1}{2}-1}(1-u)^{n+\frac{1}{2}-1} du.$$ \hspace{1cm} (113)

The last integral is $\text{B}(m+\frac{1}{2},n+\frac{1}{2})$, therefore

$$I_{2m,2n} = 2\text{B}(m+\frac{1}{2},n+\frac{1}{2}) = \frac{2\Gamma(m+\frac{1}{2})\Gamma(m+\frac{1}{2})}{\Gamma(m+n+1)}.$$ \hspace{1cm} (114)

In particular, $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and $\Gamma(1) = 1$, thus

$$I_{0,0} = \frac{2\Gamma^2\left(\frac{1}{2}\right)}{\Gamma(1)} = 2\pi.$$ \hspace{1cm} (115)

This trivial by itself result (obviously $I_{0,0} = \int_0^{2\pi} dx = 2\pi$) confirms the correctness of Eq. (114).

Furthermore, $\Gamma\left(1+\frac{1}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{1}{2}\sqrt{\pi}$, $\Gamma(2) = 1$, $\Gamma(3) = 2\Gamma(2) = 2$, thus

$$I_{2,0} = \frac{2\Gamma\left(1+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(2)} = \Gamma^2\left(\frac{1}{2}\right) = \pi$$ \hspace{1cm} (116)

and

$$I_{2,0} = \frac{2\Gamma^2\left(1+\frac{1}{2}\right)}{\Gamma(3)} = \frac{\pi}{4}.$$ \hspace{1cm} (117)

Finally, $\Gamma\left(2+\frac{1}{2}\right) = \frac{3}{2}\Gamma\left(\frac{1}{2}\right) = \frac{3}{2}\sqrt{\pi}$, and

$$I_{4,0} = \frac{2\Gamma\left(2+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(3)} = \frac{3\pi}{4}.$$ \hspace{1cm} (118)
References
