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The method of steepest descents is a technique for finding the asymptotic behavior of integrals of
the form

I(λ) =

∫

C

h(t) eλρ(t) dt (1)

as λ→∞, where C is an integration contour in the complex-t plane and h(t) and ρ(t) are analytic
functions of t. The idea of the method is to use the analyticity of the integrand to justify deforming
the contour C to a new contour C ′ on which ρ(t) has a constant imaginary part. Once this has been
done, I(λ) may be evaluated asymptotically as λ → ∞ using Laplace’s method. Indeed, on the
contour C we may write ρ(t) = φ(t) + iψ, where ψ is a real constant and φ(t) is a real function.
Thus, I(λ) takes the form

I(λ) = eiλψ
∫

C

h(t) eλφ(t) dt. (2)

Although t is complex, Eq. (2) can be treated by Laplace’s method as λ→∞ because φ(t) is real.

Example 1. Find the leading terms of the asymptotics of the following integral for λ→∞:

I(λ) =

1∫

0

cos(λx) log x dx. (3)

Let’s consider the integral

J(λ) =

1∫

0

eiλz log z dz. (4)

I(λ) = Re J(λ). (5)

To approximate J(λ) we deform the integration contour OP, which runs from 0 to 1 along the real x
axis, to one which consists of three line segments: OQ, which runs up the imaginary y axis from 0
to iR; QS, which runs parallel to the real x axis from iR to 1 + iR; and SP, which runs down from
1 + iR to 1 along a straight line parallel to the imaginary y axis (see Fig. 1). By Cauchy’s theorem,

J(λ) =

∫

OQSP

eiλz log z dz. (6)

1

http://www.phys.uconn.edu/phys2400/


Physics 2400 Methods of steepest descents Spring 2015

Figure 1: By Cauchy’s theorem, the integral of analytic function
over the contour OP is equal to the integral over the contour
OQSP.
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Next we let R →∞. In this limit the contribution from QS approaches 0 due to the exponential
factor e−λR in the integrand. In the integral along OQ we set z = is, and in the integral along SP
we set z = 1 + is, where s is real in both integrals. This gives

I(λ) = Re

∞∫

0

e−λs log(is) d(is)− Re

∞∫

0

e−λs+iλ log(1 + is) d(is) (7)

The sign of the second integral on the right is negative because SP is traversed downward.

In the first integral in Eq. (7) which we evaluate exactly,

log(is) ≡ log
(
s ei

π
2

)
= log s+ i

π

2
, (8)

thus

Re

∞∫

0

e−λs log(is) d(is) =

∞∫

0

e−λs Re
(
i log s− π

2

)
ds = −π

2

∞∫

0

e−λs ds = − π

2λ
. (9)

In the second integral in Eq. (7),

Re

∞∫

0

e−λs+iλ log(1 + is) d(is) = Re eiλ
∞∫

0

e−λs [i log(1 + is)] ds, (10)
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only the small values of s contribute to the integral due to the factor e−λs in the integrand. Therefore,

log(1 + is) ≈ is. (11)

Re eiλ
∞∫

0

e−λs [i log(1 + is)] ds ∼ −Re
(
eiλ
) ∞∫

0

e−λss ds = −cosλ

λ2

∞∫

0

e−λs(λs) d(λs)x

= −cosλ

λ2

∞∫

0

e−u u du

= −cosλ

λ2
. (12)

Combining Eq. (9) and Eq. (12),

I(λ) ∼ − π

2λ
+

cosλ

λ2
. (13)

Figure 2: Asymptotics Eq. (13)
(solid line) compared to numer-
ically evaluated Eq. (3) (dashed
line) for 2 ≤ λ ≤ 20.
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Example 2. Find the leading terms of the asymptotics of the following integral for λ→∞:

I(λ) =

1∫

0

cos

(
λ

(
x+

1

2

)2
)

1√
x

dx. (14)

Let’s consider the integral

J(λ) =

1∫

0

eiλ(z+
1
2)

2 1√
z

dz, (15)
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I(λ) = Re J(λ). (16)

To approximate J(λ) we deform the integration contour OP, which runs from 0 to 1 along the real x
axis, to one which consists of three segments (see Fig. 3): (a) a steepest-descent contour C1 passing
through z = 0; (b) a steepest-descent contour C3 passing through z = 1; (c) a contour C2 which
runs parallel to the real x axis at y = R connecting C1 and C3.

Figure 3: By Cauchy’s theorem, the integral
of analytic function over the contour OP is
equal to the integral over the contour OQRP.
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We let R→∞. In this limit the contribution from C2 approaches 0 due to the exponential factor
e−λR

2 in the integrand.

ρ(z) = i

(
z +

1

2

)2

= i

(
(x+ iy) +

1

2

)2

= i

(
(x+

1

2
)2 − y2

)
− 2 y (x+

1

2
) (17)

Next, we find a steepest-descent contour C1 passing through point O, z = 0, along which Imρ(z) is
constant. At z = 0, the value of Imρ(z) is 1

4
. Therefore, the constant-phase contour passing through

x = 0, y = 0 is given by (
x+

1

2

)2

− y2 =
1

4
, (18)

or

x =

√
y2 +

1

4
− 1

2
, 0 ≤ y <∞. (19)

To evaluate the contribution to I(λ) from the integral on C1 let’s change the integration variable
from z to s where s is defined by

s = −Re ρ(z) = 2 y (x+
1

2
) = 2 y

√
y2 +

1

4
. (20)
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Observe that s is real and satisfies 0 ≤ s <∞ along C1.

ρ(z) = i

(
z +

1

2

)2

=
i

4
− s, (21)

z =

√
1

4
+ is− 1

2
, (22)

dz =
i

2

ds√
1
4

+ is
. (23)

J1 =
ie

iλ
4

2

∞∫

0

e−λsds√√
1
4

+ is− 1
2

√
1
4

+ is

. (24)

Equation (24) is a Laplace type integral, therefore for λ→∞ the main contribution comes from
the small values of s. √

1

4
+ is ≈ 1

2
, (25)

√√
1

4
+ is− 1

2
=

√
1

2

(√
1 + 4is− 1

)
≈
√
is = s

1
2 ei

π
4 . (26)

J1 ∼ e
iλ
4 ei

π
4

∞∫

0

e−λss−
1
2 ds =

1√
λ
ei(

λ
4
+π

4 )
∞∫

0

e−λs(λs)−
1
2 d(λs)

=
1√
λ
ei(

λ
4
+π

4 )
∞∫

0

e−uu−
1
2 d =

1√
λ
ei(

λ
4
+π

4 ) Γ

(
1

2

)

=

√
π

λ
ei(

λ
4
+π

4 ). (27)

Next, we find a steepest-descent contour C3 passing through point P , z = 1, along which Imρ(z) is
constant. At z = 1, the value of Imρ(z) is 9

4
. Therefore, the constant-phase contour passing through

x = 1, y = 0 is given by (
x+

1

2

)2

− y2 =
9

4
, (28)

or

x =

√
y2 +

9

4
− 1

2
, 0 ≤ y <∞. (29)

To evaluate the contribution to I(λ) from the integral on C3 let’s change the integration variable
from z to s where s is defined by

s = −Re ρ(z) = 2 y (x+
1

2
) = 2 y

√
y2 +

9

4
. (30)
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Observe that s is real and satisfies 0 ≤ s <∞ along C1.

ρ(z) = i

(
z +

1

2

)2

=
9i

4
− s, (31)

z =

√
9

4
+ is− 1

2
, (32)

dz =
i

2

ds√
9
4

+ is
. (33)

J3 = −ie
9iλ
4

2

∞∫

0

e−λsds√√
9
4

+ is− 1
2

√
9
4

+ is

. (34)

The sign of the second integral on the right is negative because C3 is traversed downward.

Equation (34) is a Laplace type integral, therefore for λ→∞ the main contribution comes from
the small values of s. √

9

4
+ is ≈ 3

2
, (35)

√√
9

4
+ is− 1

2
≈ 1. (36)

J3 ∼ −
1

3
e

9iλ
4 ei

π
2

∞∫

0

e−λsds = − 1

3λ
ei(

9λ
4
+π

2 )
∞∫

0

e−λsd(λs)

= − 1

3λ
ei(

9λ
4
+π

2 ). (37)

Figure 4: Asymptotics Eq. (38)
(solid line) compared to numeri-
cally evaluated Eq. (14) (dashed
line) for 10 ≤ λ ≤ 30.
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Combining Eq. (27) and Eq. (37),

I(λ) = Re

(√
π

λ
ei(

λ
4
+π

4 ) − 1

3λ
ei(

9λ
4
+π

2 )
)

=

√
π

λ
cos

(
λ

4
+
π

4

)
− 1

3λ
cos

(
9λ

4
+
π

2

)
. (38)
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