Method of steepest descents

PHYS2400, Department of Physics, University of Connecticut

http://www.phys.uconn.edu/phys2400/

Last modified: April 12, 2015

The method of steepest descents is a technique for finding the asymptotic behavior of integrals of the form

$$I(\lambda) = \int_C h(t) e^{\lambda \rho(t)} dt$$
 (1)

as $\lambda \to \infty$, where C is an integration contour in the complex-t plane and h(t) and $\rho(t)$ are analytic functions of t. The idea of the method is to use the analyticity of the integrand to justify deforming the contour C to a new contour C' on which $\rho(t)$ has a constant imaginary part. Once this has been done, $I(\lambda)$ may be evaluated asymptotically as $\lambda \to \infty$ using Laplace's method. Indeed, on the contour C we may write $\rho(t) = \phi(t) + i\psi$, where ψ is a real constant and $\phi(t)$ is a real function. Thus, $I(\lambda)$ takes the form

$$I(\lambda) = e^{i\lambda\psi} \int_C h(t) e^{\lambda\phi(t)} dt.$$
 (2)

Although t is complex, Eq. (2) can be treated by Laplace's method as $\lambda \to \infty$ because $\phi(t)$ is real.

Example 1. Find the leading terms of the asymptotics of the following integral for $\lambda \to \infty$:

$$I(\lambda) = \int_{0}^{1} \cos(\lambda x) \log x \, dx. \tag{3}$$

Let's consider the integral

$$J(\lambda) = \int_{0}^{1} e^{i\lambda z} \log z \, \mathrm{d}z. \tag{4}$$

$$I(\lambda) = \operatorname{Re} J(\lambda). \tag{5}$$

To approximate $J(\lambda)$ we deform the integration contour OP, which runs from 0 to 1 along the real x axis, to one which consists of three line segments: OQ, which runs up the imaginary y axis from 0 to iR; QS, which runs parallel to the real x axis from iR to 1 + iR; and SP, which runs down from 1 + iR to 1 along a straight line parallel to the imaginary y axis (see Fig. 1). By Cauchy's theorem,

$$J(\lambda) = \int_{OQSP} e^{i\lambda z} \log z \, dz.$$
 (6)

Figure 1: By Cauchy's theorem, the integral of analytic function over the contour OP is equal to the integral over the contour OQSP.

Next we let $R \to \infty$. In this limit the contribution from QS approaches 0 due to the exponential factor $e^{-\lambda R}$ in the integrand. In the integral along OQ we set z=is, and in the integral along SP we set z=1+is, where s is real in both integrals. This gives

$$I(\lambda) = \operatorname{Re} \int_{0}^{\infty} e^{-\lambda s} \log(is) \operatorname{d}(is) - \operatorname{Re} \int_{0}^{\infty} e^{-\lambda s + i\lambda} \log(1 + is) \operatorname{d}(is)$$
 (7)

The sign of the second integral on the right is negative because SP is traversed downward.

In the first integral in Eq. (7) which we evaluate exactly,

$$\log(is) \equiv \log\left(s \, e^{i\frac{\pi}{2}}\right) = \log s + i\frac{\pi}{2},\tag{8}$$

thus

$$\operatorname{Re} \int_{0}^{\infty} e^{-\lambda s} \log(is) \, \mathrm{d}(is) = \int_{0}^{\infty} e^{-\lambda s} \operatorname{Re} \left(i \log s - \frac{\pi}{2} \right) \, \mathrm{d}s = -\frac{\pi}{2} \int_{0}^{\infty} e^{-\lambda s} \, \mathrm{d}s = -\frac{\pi}{2\lambda}. \tag{9}$$

In the second integral in Eq. (7),

$$\operatorname{Re} \int_{0}^{\infty} e^{-\lambda s + i\lambda} \log(1 + is) \, \mathrm{d}(is) = \operatorname{Re} e^{i\lambda} \int_{0}^{\infty} e^{-\lambda s} \left[i \log(1 + is) \right] \, \mathrm{d}s, \tag{10}$$

only the small values of s contribute to the integral due to the factor $e^{-\lambda s}$ in the integrand. Therefore,

$$\log(1+is) \approx is. \tag{11}$$

$$\operatorname{Re} e^{i\lambda} \int_{0}^{\infty} e^{-\lambda s} \left[i \log(1+is) \right] ds \sim -\operatorname{Re} \left(e^{i\lambda} \right) \int_{0}^{\infty} e^{-\lambda s} s \, ds = -\frac{\cos \lambda}{\lambda^{2}} \int_{0}^{\infty} e^{-\lambda s} (\lambda s) \, d(\lambda s) x$$

$$= -\frac{\cos \lambda}{\lambda^{2}} \int_{0}^{\infty} e^{-u} u \, du$$

$$= -\frac{\cos \lambda}{\lambda^{2}}. \tag{12}$$

Combining Eq. (9) and Eq. (12),

$$I(\lambda) \sim \left[-\frac{\pi}{2\lambda} + \frac{\cos \lambda}{\lambda^2} \right].$$
 (13)

Figure 2: Asymptotics Eq. (13) (solid line) compared to numerically evaluated Eq. (3) (dashed line) for $2 \le \lambda \le 20$.

Example 2. Find the leading terms of the asymptotics of the following integral for $\lambda \to \infty$:

$$I(\lambda) = \int_{0}^{1} \cos\left(\lambda \left(x + \frac{1}{2}\right)^{2}\right) \frac{1}{\sqrt{x}} dx.$$
 (14)

Let's consider the integral

$$J(\lambda) = \int_{0}^{1} e^{i\lambda\left(z + \frac{1}{2}\right)^2} \frac{1}{\sqrt{z}} dz,$$
(15)

$$I(\lambda) = \operatorname{Re} J(\lambda). \tag{16}$$

To approximate $J(\lambda)$ we deform the integration contour OP, which runs from 0 to 1 along the real x axis, to one which consists of three segments (see Fig. 3): (a) a steepest-descent contour C_1 passing through z=0; (b) a steepest-descent contour C_3 passing through z=1; (c) a contour C_2 which runs parallel to the real x axis at y=R connecting C_1 and C_3 .

Figure 3: By Cauchy's theorem, the integral of analytic function over the contour OP is equal to the integral over the contour OQRP.

We let $R \to \infty$. In this limit the contribution from C_2 approaches 0 due to the exponential factor $e^{-\lambda R^2}$ in the integrand.

$$\rho(z) = i\left(z + \frac{1}{2}\right)^2 = i\left((x + iy) + \frac{1}{2}\right)^2 = i\left((x + \frac{1}{2})^2 - y^2\right) - 2y\left(x + \frac{1}{2}\right)$$
(17)

Next, we find a steepest-descent contour C_1 passing through point O, z=0, along which $\mathrm{Im}\rho(z)$ is constant. At z=0, the value of $\mathrm{Im}\rho(z)$ is $\frac{1}{4}$. Therefore, the constant-phase contour passing through x=0,y=0 is given by

$$\left(x + \frac{1}{2}\right)^2 - y^2 = \frac{1}{4},\tag{18}$$

or

$$x = \sqrt{y^2 + \frac{1}{4} - \frac{1}{2}}, \quad 0 \le y < \infty.$$
 (19)

To evaluate the contribution to $I(\lambda)$ from the integral on C_1 let's change the integration variable from z to s where s is defined by

$$s = -\operatorname{Re} \rho(z) = 2y\left(x + \frac{1}{2}\right) = 2y\sqrt{y^2 + \frac{1}{4}}.$$
 (20)

Observe that s is real and satisfies $0 \le s < \infty$ along C_1 .

$$\rho(z) = i\left(z + \frac{1}{2}\right)^2 = \frac{i}{4} - s,\tag{21}$$

$$z = \sqrt{\frac{1}{4} + is} - \frac{1}{2},\tag{22}$$

$$dz = \frac{i}{2} \frac{ds}{\sqrt{\frac{1}{4} + is}}.$$
 (23)

$$J_1 = \frac{ie^{\frac{i\lambda}{4}}}{2} \int_0^\infty \frac{e^{-\lambda s} ds}{\sqrt{\sqrt{\frac{1}{4} + is} - \frac{1}{2}\sqrt{\frac{1}{4} + is}}}.$$
 (24)

Equation (24) is a Laplace type integral, therefore for $\lambda \to \infty$ the main contribution comes from the small values of s.

$$\sqrt{\frac{1}{4} + is} \approx \frac{1}{2},\tag{25}$$

$$\sqrt{\sqrt{\frac{1}{4} + is} - \frac{1}{2}} = \sqrt{\frac{1}{2} \left(\sqrt{1 + 4is} - 1\right)} \approx \sqrt{is} = s^{\frac{1}{2}} e^{i\frac{\pi}{4}}.$$
 (26)

$$J_{1} \sim e^{\frac{i\lambda}{4}} e^{i\frac{\pi}{4}} \int_{0}^{\infty} e^{-\lambda s} s^{-\frac{1}{2}} ds = \frac{1}{\sqrt{\lambda}} e^{i\left(\frac{\lambda}{4} + \frac{\pi}{4}\right)} \int_{0}^{\infty} e^{-\lambda s} (\lambda s)^{-\frac{1}{2}} d(\lambda s)$$

$$= \frac{1}{\sqrt{\lambda}} e^{i\left(\frac{\lambda}{4} + \frac{\pi}{4}\right)} \int_{0}^{\infty} e^{-u} u^{-\frac{1}{2}} d = \frac{1}{\sqrt{\lambda}} e^{i\left(\frac{\lambda}{4} + \frac{\pi}{4}\right)} \Gamma\left(\frac{1}{2}\right)$$

$$= \sqrt{\frac{\pi}{\lambda}} e^{i\left(\frac{\lambda}{4} + \frac{\pi}{4}\right)}.$$
(27)

Next, we find a steepest-descent contour C_3 passing through point P, z = 1, along which $\mathrm{Im} \rho(z)$ is constant. At z = 1, the value of $\mathrm{Im} \rho(z)$ is $\frac{9}{4}$. Therefore, the constant-phase contour passing through x = 1, y = 0 is given by

$$\left(x + \frac{1}{2}\right)^2 - y^2 = \frac{9}{4},\tag{28}$$

or

$$x = \sqrt{y^2 + \frac{9}{4}} - \frac{1}{2}, \quad 0 \le y < \infty.$$
 (29)

To evaluate the contribution to $I(\lambda)$ from the integral on C_3 let's change the integration variable from z to s where s is defined by

$$s = -\operatorname{Re}\rho(z) = 2y\left(x + \frac{1}{2}\right) = 2y\sqrt{y^2 + \frac{9}{4}}.$$
(30)

Observe that s is real and satisfies $0 \le s < \infty$ along C_1 .

$$\rho(z) = i\left(z + \frac{1}{2}\right)^2 = \frac{9i}{4} - s,\tag{31}$$

$$z = \sqrt{\frac{9}{4} + is} - \frac{1}{2},\tag{32}$$

$$dz = \frac{i}{2} \frac{ds}{\sqrt{\frac{9}{4} + is}}.$$
 (33)

$$J_3 = -\frac{ie^{\frac{9i\lambda}{4}}}{2} \int_0^\infty \frac{e^{-\lambda s} ds}{\sqrt{\sqrt{\frac{9}{4} + is} - \frac{1}{2}} \sqrt{\frac{9}{4} + is}}.$$
 (34)

The sign of the second integral on the right is negative because C_3 is traversed downward.

Equation (34) is a Laplace type integral, therefore for $\lambda \to \infty$ the main contribution comes from the small values of s.

$$\sqrt{\frac{9}{4} + is} \approx \frac{3}{2},\tag{35}$$

$$\sqrt{\sqrt{\frac{9}{4} + is - \frac{1}{2}}} \approx 1. \tag{36}$$

$$J_{3} \sim -\frac{1}{3}e^{\frac{9i\lambda}{4}}e^{i\frac{\pi}{2}}\int_{0}^{\infty}e^{-\lambda s}ds = -\frac{1}{3\lambda}e^{i\left(\frac{9\lambda}{4} + \frac{\pi}{2}\right)}\int_{0}^{\infty}e^{-\lambda s}d(\lambda s)$$
$$= -\frac{1}{3\lambda}e^{i\left(\frac{9\lambda}{4} + \frac{\pi}{2}\right)}.$$
 (37)

Figure 4: Asymptotics Eq. (38) (solid line) compared to numerically evaluated Eq. (14) (dashed line) for $10 \le \lambda \le 30$.

Combining Eq. (27) and Eq. (37),

$$I(\lambda) = \operatorname{Re}\left(\sqrt{\frac{\pi}{\lambda}}e^{i\left(\frac{\lambda}{4} + \frac{\pi}{4}\right)} - \frac{1}{3\lambda}e^{i\left(\frac{9\lambda}{4} + \frac{\pi}{2}\right)}\right) = \sqrt{\frac{\pi}{\lambda}}\cos\left(\frac{\lambda}{4} + \frac{\pi}{4}\right) - \frac{1}{3\lambda}\cos\left(\frac{9\lambda}{4} + \frac{\pi}{2}\right). \tag{38}$$

References

- [1] Lorella M. Jones. *An introduction to mathematical methods of physics*. Benjamin Cummings, 1979.
- [2] Carl M. Bender and Steven A. Orszag. *Advanced Mathematical Methods for Scientists and Engineers*. Springer Verlag, 1999.