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There is an immediate generalization of the Laplace integrals

b
/ Ft)emWdt (1)

which we obtain by allowing the function ¢(¢) in Eq. (1) to be complex. We may assume that f ()
is real; if it were complex, f(¢) could be decomposed into a sum of its real and imaginary parts.
However, allowing ¢(t) to be complex poses nontrivial problems. We consider the special case in
which ¢(t) is pure imaginary: ¢(t) = i1p(t) where ¢ (t) is real. The resulting integral

b
I(z) = / f)eOat 2)

with f(t), ¥(t), a, b, x all real is called a generalized Fourier integral. When ¢(t) = ¢, I(x) is an
ordinary Fourier integral.

The method of stationary phase gives the leading asymptotic behavior of generalized Fourier
integrals having stationary points, /" = 0. This method is similar to Laplace’s method in that the
leading contribution to /(x) comes from a small interval surrounding the stationary points of ).

Example 1. Find the leading term of the asymptotics of the following integral for A — co:

I(\) = / cos (Asinh*(z)) V1 + z2dz. 3)

Since only small |z|, such that |z| ~ % < 1 are important,

sinhx ~ x, “4)
cos (Asinh*(z)) ~ cos (Az*) = Re e 5)
V1422 ~1. (6)
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Figure 1: The graph of the oscil-
lating factor, cos (Asinh®(z)) in

cos (sinhQ(.Z))
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I(\) ~ Re /4 e dz ~ Re /Ooei)‘rzdx. (7)

New integration variable,

2
1
=\ — x:u— — = —  dox = —du. 8
A VY VG ®)
17 .
[()\) ~ Reﬁ / QZUZ du = \/? Re (67'1) = % (9)
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I\ = f cos ()\ sinhg(z)) V1+22de
1.00 ‘ - ‘ :

0.90
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Example 2. Find the leading term of the asymptotics of the Bessel function .Jy(z) for x — oc:
1

Jo(x) = = / cos (z cos ) df (10)
7r

Bessel function Jy(x) is a solution of the following second order linear differential equation:
2y +y +ay=0. (11)
Let’s show first that Eq. (10) is indeed a solution of Eq. (11).

jus

d 1 :
Ejo(x) = —;/sm (x cos ) cos 6 db, (12)
o) = 1/2 (2 cos ) cos? 0 df (13)
12 0(®) = —— [ cos(zcosf) cos :
d? v [ )
x @Jo(x)—l—(]o(x) = = (1 — cos®8) cos (zcosf) df (14)
v [ .
= — [ sin®@ cos(x cosf) df (15)
T
e
= ——/81116 cos (x cos @) d(z cos0) (16)
7r
L
= ——/sm@d(sm(ajcos@)) (17)
™
- B
= ——sinf sin (z cosf) +—/sm(xcosé’) cosfdf (18)
T x T
d
__d 1
da:JO(x)’ (19)

which is indeed in agreement with Eq. (11).

Let’s rewrite integral Eq. (10) in the exponential form:

2
1 - cos
Jo(z) = =Re / eireosbag, (20)
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w/2
JoN) =L | cos(Acos(z)) dz
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Figure 3: Asymptotics Eq. (??) 0.40 r
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The stationary point of the phase factor is at # = 0. Only small § contribute to the integral.
Therefore.

92
cos&zl—;. (21)
3 o0
1 . . 702 1 /2 , o
Jo(z) ~ ;Re e / e T df) ~ — ;Re e’ e_z2e2d< 59> (22)
_g —00

U2 Re (e ymemit) = |25 _7
= - 5Re(e Ve ') = xcos(x 4) (23)
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