
Computational Methods
for the

Physical Sciences

Course material for PHYS2200 class

Storrs, October 20, 2016

http://www.phys.uconn.edu/phys2200/

Contents

i

CONTENTS CONTENTS

ii

Part I

Programming tools

Chapter 1

Version Control with Git

Wolfman and Dracula have been hired by Universal Missions (a space services spinoff from
Euphoric State University) to investigate if it is possible to send their next planetary lander
to Mars. They want to be able to work on the plans at the same time, but they have run into
problems doing this in the past. If they take turns, each one will spend a lot of time waiting
for the other to finish, but if they work on their own copies and email changes back and
forth things will be lost, overwritten, or duplicated.

A colleague suggests using version control to manage their work. Version control is better
than mailing files back and forth:

• Nothing that is committed to version control is ever lost. Since all old versions of files
are saved, it’s always possible to go back in time to see exactly who wrote what on a
particular day, or what version of a program was used to generate a particular set of
results.

• As we have this record of who made what changes when, we know who to ask if we
have questions later on, and, if needed it, revert to a previous version, much like the
“undo” feature in an editor.

• When several people collaborate in the same project, it’s possible to accidentally
overlook or overwrite someone’s changes: the version control system automatically
notifies users whenever there’s a conflict between one person’s work and another’s.

Teams are not the only ones to benefit from version control: lone researchers can benefit
immensely. Keeping a record of what was changed, when, and why is extremely useful for
all researchers if they ever need to come back to the project later on (e.g., a year later, when
memory has faded).

3

CHAPTER 1. VERSION CONTROL WITH GIT

Version control is the lab notebook of the digital world: it’s what professionals use to keep
track of what they’ve done and to collaborate with other people. Every large software
development project relies on it, and most programmers use it for their small jobs as well.
And it isn’t just for software: books, papers, small data sets, and anything that changes over
time or needs to be shared can and should be stored in a version control system.

In this notes we use Git from the Unix Shell. Some previous experience with the shell is
expected.

4

CHAPTER 1. VERSION CONTROL WITH GIT 1.1. BASICS

1.1 Basics

In this section we learn (a) the benefits of an automated version control system; (b) the basics
of how Git works.

We’ll start by exploring how version control can be used to keep track of what one person
did and when. Even if you aren’t collaborating with other people, automated version control
is much better than having multiple nearly-identical versions of the same document.

Version control systems start with a base version of the document and then save just the
changes you made at each step of the way. You can think of it as a tape: if you rewind the
tape and start at the base document, then you can play back each change and end up with
your latest version.

Figure 1.1: Changes are saved sequentially

Once you think of changes as separate from the document itself, you can then think about
“playing back” different sets of changes onto the base document and getting different
versions of the document. For example, two users can make independent sets of changes
based on the same document (see Fig. ??).

If there aren’t conflicts, you can even try to play two sets of changes onto the same base
document (see Fig. ??).

A version control system is a tool that keeps track of these changes for us and helps us
version and merge our files. It allows you to decide which changes make up the next version,
called a commit, and keeps useful metadata about them. The complete history of commits
for a particular project and their metadata make up a repository. Repositories can be kept
in sync across different computers facilitating collaboration among different people.

Automated version control systems are nothing new. Early systems have been around since
the 1980s. However modern systems, such as Git are distributed, meaning that they do not
need a centralized server to host the repository. The modern systems also include powerful

5

1.1. BASICS CHAPTER 1. VERSION CONTROL WITH GIT

Figure 1.2: Different versions can be
saved.

Figure 1.3: Multiple versions can be
merged.

merging tools that make it possible for multiple authors to work within the same files
concurrently.

6

CHAPTER 1. VERSION CONTROL WITH GIT 1.2. SETTING UP GIT

1.2 Setting Up Git

In this section we (a) configure git the first time it is used on a computer, and (b) understand
the meaning of the --global configuration flag.

When we use Git on a new computer for the first time, we need to configure a few things.
Below are a few examples of configurations we will set as we get started with Git:

• our name and email address,

• to colorize our output,

• what our preferred text editor is,

• and that we want to use these settings globally (i.e. for every project)

On a command line, Git commands are written as git verb, where verb is what we actually
want to do. So here is how sets up his new laptop:� �
$ git config --global user.name "Jonathan the Husky"

$ git config --global user.email "jonathan.husky@uconn.edu"

$ git config --global color.ui "auto"

$ git config --global core.editor "gedit -s -w"� �
(Please use your own name and email address instead of J’s.)

In the last command he has set his favorite text editor, following this table:

Editor Configuration command
nano git config --global core.editor "nano -w"

gedit git config --global core.editor "gedit -s -w"

emacs git config --global core.editor "emacs"

vim git config --global core.editor "vim"

The four commands we just ran above only need to be run once: the flag --global tells Git
to use the settings for every project, in your user account, on this computer. If the optional
flag --global is omitted, the settings are applied the the current project only.

You can check your settings at any time:� �
$ git config --list� �
You can change your configuration as many times as you want: just use the same commands
to choose another editor or update your email address.

7

1.3. CREATING A REPOSITORY CHAPTER 1. VERSION CONTROL WITH GIT

1.3 Creating a Repository

Once Git is configured, we can start using it. Let’s create a directory for our work and then
move into that directory:� �
$ mkdir planets

$ cd planets� �
Then we tell Git to make planets a repository — a place where Git can store versions of
our files:� �
$ git init� �
If we use ls to show the directory’s contents, it appears that nothing has changed:� �
$ ls� �
But if we add the -a flag to show everything, we can see that Git has created a hidden
directory within planets called .git:� �
$ ls -a

. .. .git� �
Git stores information about the project in this special sub-directory. If we ever delete it,
we will lose the project’s history.

We can check that everything is set up correctly by asking Git to tell us the status of our
project:� �
$ git status

On branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)� �

8

CHAPTER 1. VERSION CONTROL WITH GIT 1.4. TRACKING CHANGES

1.4 Tracking Changes

In this section we (a) go through the modify-add-commit cycle for a single file; (b) explain
where information is stored at each stage of Git commit workflow.

Let’s create a file called mars.txt that contains some notes about the Red Planet’s suitability
as a base. (We’ll use nano to edit the file; you can use whatever editor you like. In particular,
this does not have to be the core.editor you set globally earlier.)� �
$ nano mars.txt� �
Type the text below into the mars.txt file:

Cold and dry, but everything is my favorite color

mars.txt now contains a single line, which we can see by running:� �
$ ls

mars.txt� �� �
$ cat mars.txt

Cold and dry, but everything is my favorite color� �
If we check the status of our project again, Git tells us that it’s noticed the new file:� �
$ git status

On branch master

Initial commit

Untracked files:

(use "git add <file>..." to include in what will be committed)

mars.txt

nothing added to commit but untracked files present� �
The “untracked files” message means that there’s a file in the directory that Git isn’t keeping
track of. We can tell Git to track a file using git add:� �
$ git add mars.txt� �

9

1.4. TRACKING CHANGES CHAPTER 1. VERSION CONTROL WITH GIT

and then check that the right thing happened:� �
$ git status

On branch master

Initial commit

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: mars.txt� �
Git now knows that it’s supposed to keep track of mars.txt, but it hasn’t recorded these
changes as a commit yet. To get it to do that, we need to run one more command:� �
$ git commit -m "Start notes on Mars as a base"

[master (root-commit) 61f01fe] Start notes on Mars as a base

1 file changed, 1 insertion(+)

create mode 100644 mars.txt� �
When we run git commit, Git takes everything we have told it to save by using git add

and stores a copy permanently inside the special .git directory. This permanent copy
is called a commit (or revision) and its short identifier is 61f01fe (Your commit will have
another identifier.)

We use the -m flag (for “message”) to record a short, descriptive, and specific comment that
will help us remember later on what we did and why. If we just run git commit without
the -m option, Git will launch the editor we configured as core.editor so that we can write
a longer message.

Good commit messages start with a brief (<50 characters) summary of changes made in the
commit. If you want to go into more detail, add a blank line between the summary line and
your additional notes.

If we run git status now:� �
$ git status

On branch master

nothing to commit, working directory clean� �
it tells us everything is up to date. If we want to know what we’ve done recently, we can ask
Git to show us the project’s history using git log:

10

CHAPTER 1. VERSION CONTROL WITH GIT 1.4. TRACKING CHANGES

� �
$ git log

commit f22b25e3233b4645dabd0d81e651fe074bd8e73b

Author: Vlad Dracula <vlad@tran.sylvan.ia>

Date: Thu Aug 22 09:51:46 2013 -0400

Start notes on Mars as a base� �
git log lists all commits made to a repository in reverse chronological order. The listing
for each commit includes the commit’s full identifier (which starts with the same characters
as the short identifier printed by the git commit command earlier), the commit’s author,
when it was created, and the log message Git was given when the commit was created.

1.4.1 Where Are My Changes?

If we run ls at this point, we will still see just one file called mars.txt. That’s because Git
saves information about files’ history in the special .git directory mentioned earlier so that
our filesystem doesn’t become cluttered (and so that we can’t accidentally edit or delete an
old version).

Now suppose Dracula adds more information to the file. (Again, we’ll edit with nano and
then cat the file to show its contents; you may use a different editor, and don’t need to cat.)� �
$ nano mars.txt

$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman� �
When we run git status now, it tells us that a file it already knows about has been
modified:

11

1.4. TRACKING CHANGES CHAPTER 1. VERSION CONTROL WITH GIT

� �
$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

modified: mars.txt

no changes added to commit (use "git add" and/or "git commit -a")� �
The last line is the key phrase: “no changes added to commit”. We have changed this file,
but we haven’t told Git we will want to save those changes (which we do with git add)
nor have we saved them (which we do with git commit). So let’s do that now. It is good
practice to always review our changes before saving them. We do this using git diff. This
shows us the differences between the current state of the file and the most recently saved
version:� �
$ git diff

diff --git a/mars.txt b/mars.txt

index df0654a..315bf3a 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1 +1,2 @@

Cold and dry, but everything is my favorite color

+The two moons may be a problem for Wolfman� �
The output is cryptic because it is actually a series of commands for tools like editors and
patch telling them how to reconstruct one file given the other. If we break it down into
pieces:

1. The first line tells us that Git is producing output similar to the Unix diff command
comparing the old and new versions of the file.

2. The second line tells exactly which versions of the file Git is comparing; df0654a and
315bf3a are unique computer-generated labels for those versions.

3. The third and fourth lines once again show the name of the file being changed.

4. The remaining lines are the most interesting, they show us the actual differences and
the lines on which they occur. In particular, the + markers in the first column show

12

CHAPTER 1. VERSION CONTROL WITH GIT 1.4. TRACKING CHANGES

where we have added lines.

After reviewing our change, it’s time to commit it:� �
$ git commit -m "Add concerns about effects of Mars on Wolfman"

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

modified: mars.txt

no changes added to commit (use "git add" and/or "git commit -a")� �
Whoops: Git won’t commit because we didn’t use git add first. Let’s fix that:� �
$ git add mars.txt

$ git commit -m "Add concerns about effects of Mars on Wolfman"

[master 34961b1] Add concerns about effects of Mars on Wolfman

1 file changed, 1 insertion(+)� �
Git insists that we add files to the set we want to commit before actually committing
anything because we may not want to commit everything at once. For example, suppose
we’re adding a few citations to our supervisor’s work to our thesis. We might want to commit
those additions, and the corresponding addition to the bibliography, but not commit the
work we’re doing on the conclusion (which we haven’t finished yet).

To allow for this, Git has a special staging area where it keeps track of things that have been
added to the current change set but not yet committed.

1.4.2 Staging area

If you think of Git as taking snapshots of changes over the life of a project, git add specifies
what will go in a snapshot (putting things in the staging area), and git commit then actually
takes the snapshot, and makes a permanent record of it (as a commit). If you don’t have
anything staged when you type git commit, Git will prompt you to use git commit -a

or git commit --all, which is kind of like gathering everyone for the picture! However,
it’s almost always better to explicitly add things to the staging area, because you might

13

1.4. TRACKING CHANGES CHAPTER 1. VERSION CONTROL WITH GIT

commit changes you forgot you made. (Going back to snapshots, you might get the extra
with incomplete makeup walking on the stage for the snapshot because you used -a!) Try
to stage things manually, or you might find yourself searching for “git undo commit” more
than you would like!

.git

git add git commit

staging area
repository

Figure 1.4: The Git Staging Area

Let’s watch as our changes to a file move from our editor to the staging area and into
long-term storage. First, we’ll add another line to the file:� �
$ nano mars.txt

$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity� �� �
$ git diff

diff --git a/mars.txt b/mars.txt

index 315bf3a..b36abfd 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1,2 +1,3 @@

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

+But the Mummy will appreciate the lack of humidity� �
So far, so good: we’ve added one line to the end of the file (shown with a + in the first
column). Now let’s put that change in the staging area and see what git diff reports:

14

CHAPTER 1. VERSION CONTROL WITH GIT 1.4. TRACKING CHANGES

� �
$ git add mars.txt

$ git diff� �
There is no output: as far as Git can tell, there’s no difference between what it’s been asked
to save permanently and what’s currently in the directory. However, if we do this:� �
$ git diff --staged

diff --git a/mars.txt b/mars.txt

index 315bf3a..b36abfd 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1,2 +1,3 @@

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

+But the Mummy will appreciate the lack of humidity� �
it shows us the difference between the last committed change and what’s in the staging area.
Let’s save our changes:� �
$ git commit -m "Discuss concerns about Mars’ climate for Mummy"

[master 005937f] Discuss concerns about Mars’ climate for Mummy

1 file changed, 1 insertion(+)� �
check our status:� �
$ git status

On branch master

nothing to commit, working directory clean� �
and look at the history of what we’ve done so far:

15

1.4. TRACKING CHANGES CHAPTER 1. VERSION CONTROL WITH GIT

� �
$ git log

commit 005937fbe2a98fb83f0ade869025dc2636b4dad5

Author: Vlad Dracula <vlad@tran.sylvan.ia>

Date: Thu Aug 22 10:14:07 2013 -0400

Discuss concerns about Mars’ climate for Mummy

commit 34961b159c27df3b475cfe4415d94a6d1fcd064d

Author: Vlad Dracula <vlad@tran.sylvan.ia>

Date: Thu Aug 22 10:07:21 2013 -0400

Add concerns about effects of Mars’ moons on Wolfman

commit f22b25e3233b4645dabd0d81e651fe074bd8e73b

Author: Vlad Dracula <vlad@tran.sylvan.ia>

Date: Thu Aug 22 09:51:46 2013 -0400

Start notes on Mars as a base� �
To recap, when we want to add changes to our repository, we first need to add the changed
files to the staging area (git add) and then commit the staged changes to the repository
(git commit):

16

CHAPTER 1. VERSION CONTROL WITH GIT 1.4. TRACKING CHANGES

.git

FILE1.txt

FILE2.txt

git commit

staging area

repository

git add FILE2.txt

git add FILE1.txt

Figure 1.5: The Git Commit Workflow

1.4.3 Questions

Choosing a commit message: Which of the following commit messages would be most
appropriate for the last commit made to mars.txt?

1. “Changes”

2. “Added line ‘But the Mummy will appreciate the lack of humidity’ to mars.txt”

3. “Discuss effects of Mars’ climate on the Mummy”

Committing Changes to Git: Which command(s) below would save the changes of myfile.txt
to my local Git repository?

1. $ git commit -m "my recent changes"

2. $ git init myfile.txt

$ git commit -m "my recent changes"

3. $ git add myfile.txt

$ git commit -m "my recent changes"

4. $ git commit -m myfile.txt "my recent changes"

17

1.5. EXPLORING HISTORY CHAPTER 1. VERSION CONTROL WITH GIT

1.5 Exploring History

In this section we learn how to (a) identify and use Git commit numbers; (b) compare various
versions of tracked files; (c) restore old versions of files.

If we want to see what we changed at different steps, we can use git diff again, but with
the notation HEAD~1, HEAD~2, and so on, to refer to old commits:� �
$ git diff HEAD~1 mars.txt

diff --git a/mars.txt b/mars.txt

index 315bf3a..b36abfd 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1,2 +1,3 @@

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

+But the Mummy will appreciate the lack of humidity� �� �
$ git diff HEAD~2 mars.txt

diff --git a/mars.txt b/mars.txt

index df0654a..b36abfd 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1 +1,3 @@

Cold and dry, but everything is my favorite color

+The two moons may be a problem for Wolfman

+But the Mummy will appreciate the lack of humidity� �
In this way, we can build up a chain of commits. The most recent end of the chain is referred
to as HEAD; we can refer to previous commits using the ~ notation, so HEAD~1 (pronounced
“head minus one”) means “the previous commit”, while HEAD~123 goes back 123 commits
from where we are now.

We can also refer to commits using those long strings of digits and letters that git log

displays. These are unique IDs for the changes, and “unique” really does mean unique:
every change to any set of files on any computer has a unique 40-character identifier. Our
first commit was given the ID f22b25e3233b4645dabd0d81e651fe074bd8e73b, so let’s try
this:

18

CHAPTER 1. VERSION CONTROL WITH GIT 1.5. EXPLORING HISTORY

� �
$ git diff f22b25e3233b4645dabd0d81e651fe074bd8e73b mars.txt

diff --git a/mars.txt b/mars.txt

index df0654a..b36abfd 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1 +1,3 @@

Cold and dry, but everything is my favorite color

+The two moons may be a problem for Wolfman

+But the Mummy will appreciate the lack of humidity� �
That’s the right answer, but typing out random 40-character strings is annoying, so Git lets
us use just the first few characters:

� �
$ git diff f22b25e mars.txt

diff --git a/mars.txt b/mars.txt

index df0654a..b36abfd 100644

--- a/mars.txt

+++ b/mars.txt

@@ -1 +1,3 @@

Cold and dry, but everything is my favorite color

+The two moons may be a problem for Wolfman

+But the Mummy will appreciate the lack of humidity� �

All right! So we can save changes to files and see what we’ve changed—now how can we
restore older versions of things? Let’s suppose we accidentally overwrite our file:

� �
$ nano mars.txt

$ cat mars.txt

We will need to manufacture our own oxygen� �

git status now tells us that the file has been changed, but those changes haven’t been
staged:

19

1.5. EXPLORING HISTORY CHAPTER 1. VERSION CONTROL WITH GIT

� �
$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

modified: mars.txt

no changes added to commit (use "git add" and/or "git commit -a")� �
We can put things back the way they were by using git checkout:� �
$ git checkout HEAD mars.txt

$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity� �
As you might guess from its name, git checkout checks out (i.e., restores) an old version of
a file. In this case, we’re telling Git that we want to recover the version of the file recorded
in HEAD, which is the last saved commit. If we want to go back even further, we can use a
commit identifier instead:� �
$ git checkout f22b25e mars.txt� �
1.5.1 Don’t lose your HEAD

Above we used� �
$ git checkout f22b25e mars.txt� �
to revert mars.txt to its state after the commit f22b25e. If you forget mars.txt in that
command, git will tell you that “You are in ‘detached HEAD’ state.” In this state, you
shouldn’t make any changes. You can fix this by reattaching your head using git checkout

master

It’s important to remember that we must use the commit number that identifies the state
of the repository before the change we’re trying to undo. A common mistake is to use the

20

CHAPTER 1. VERSION CONTROL WITH GIT 1.5. EXPLORING HISTORY

number of the commit in which we made the change we’re trying to get rid of. In the
example below, we want to retrieve the state from before the most recent commit (HEAD~1),
which is commit f22b25e:

.git

FILE1.txt

FILE2.txt

HEAD

HEAD~1

HEAD~2
892134f

f22b25e

3a54f76

git checkout HEAD~1
or

git checkout f22b25e

repository

Figure 1.6: Git Checkout

1.5.2 Simplifying the Common Case

If you read the output of git status carefully, you’ll see that it includes this hint:

(use "git checkout – <file>..." to discard changes in working directory)

As it says, git checkout without a version identifier restores files to the state saved in
HEAD. The double dash -- is needed to separate the names of the files being recovered from
the command itself: without it, Git would try to use the name of the file as the commit
identifier.

The fact that files can be reverted one by one tends to change the way people organize
their work. If everything is in one large document, it’s hard (but not impossible) to undo
changes to the introduction without also undoing changes made later to the conclusion.
If the introduction and conclusion are stored in separate files, on the other hand, moving
backward and forward in time becomes much easier.

21

1.5. EXPLORING HISTORY CHAPTER 1. VERSION CONTROL WITH GIT

1.5.3 Questions

Recovering Older Versions of a File: Jennifer has made changes to the Python script that
she has been working on for weeks, and the modifications she made this morning
“broke” the script and it no longer runs. She has spent ~ 1hr trying to fix it, with no
luck. . .

Luckily, she has been keeping track of her project’s versions using Git! Which com-
mands below will let her recover the last committed version of her Python script
called data_cruncher.py?

1. $ git checkout HEAD

2. $ git checkout HEAD data_cruncher.py

3. $ git checkout HEAD~1 data_cruncher.py

4. $ git checkout <unique ID of last commit> data_cruncher.py

5. Both 2 & 4

Understanding Workflow and History: What is the output of cat venus.txt at the end of
this set of commands?� �
$ cd planets

$ nano venus.txt #input the following text:

Venus is beautiful and full of love

$ git add venus.txt

$ nano venus.txt #add the following text:

Venus is too hot to be suitable as a base

$ git commit -m "comments on Venus as an unsuitable base"

$ git checkout HEAD venus.txt

$ cat venus.txt #this will print the contents of venus.txt

#to the screen� �
1. Venus is too hot to be suitable as a base

2. Venus is beautiful and full of love

3. Venus is beautiful and full of love

Venus is too hot to be suitable as a base

4. Error because you have changed venus.txt without committing the changes.

22

CHAPTER 1. VERSION CONTROL WITH GIT 1.6. IGNORING THINGS

1.6 Ignoring Things

In this section we learn how to (a) configure Git to ignore specific files; (b) explain why
ignoring files can be useful.

What if we have files that we do not want Git to track for us, like backup files created by
our editor or intermediate files created during data analysis. Let’s create a few dummy files:� �
$ mkdir results

$ touch a.dat b.dat c.dat results/a.out results/b.out� �
and see what Git says:� �
$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

a.dat

b.dat

c.dat

results/

nothing added to commit but untracked files present (use "git

add" to track)� �
Putting these files under version control would be a waste of disk space. What’s worse,
having them all listed could distract us from changes that actually matter, so let’s tell Git to
ignore them.

We do this by creating a file in the root directory of our project called .gitignore:� �
$ nano .gitignore

$ cat .gitignore

*.dat

results/� �
These patterns tell Git to ignore any file whose name ends in .dat and everything in the
results directory. (If any of these files were already being tracked, Git would continue to
track them.)

Once we have created this file, the output of git status is much cleaner:

23

1.6. IGNORING THINGS CHAPTER 1. VERSION CONTROL WITH GIT

� �
$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

.gitignore

nothing added to commit but untracked files present (use "git

add" to track)� �

The only thing Git notices now is the newly-created .gitignore file. You might think we
wouldn’t want to track it, but everyone we’re sharing our repository with will probably
want to ignore the same things that we’re ignoring. Let’s add and commit .gitignore:

� �
$ git add .gitignore

$ git commit -m "Add the ignore file"

$ git status

On branch master

nothing to commit, working directory clean� �

As a bonus, using .gitignore helps us avoid accidentally adding to the repository files
that we don’t want to track:

� �
$ git add a.dat

The following paths are ignored by one of your .gitignore files:

a.dat

Use -f if you really want to add them.

fatal: no files added� �

If we really want to override our ignore settings, we can use git add -f to force Git to add
something. We can also always see the status of ignored files if we want:

24

CHAPTER 1. VERSION CONTROL WITH GIT 1.6. IGNORING THINGS

� �
$ git status --ignored

On branch master

Ignored files:

(use "git add -f <file>..." to include in what will be committed)

a.dat

b.dat

c.dat

results/

nothing to commit, working directory clean� �

1.6.1 Questions

Ignoring nested files: Given a directory structure that looks like:� �
results/data

results/plots� �
How would you ignore only results/plots and not results/data?

Including specific files: How would you ignore all .data files in your root directory
except for final.data? Hint: Find out what ! (the exclamation point operator) does.

Ignoring files deep in a directory: Given a directory structure that looks like:� �
results/data/position/gps/useless.data

results/plots� �
What’s the shortest .gitignore rule you could write to ignore all .data files in
result/data/position/gps Hint: What does appending ** to a rule accomplish?

The order of rules: Given a .gitignore file with the following contents:� �
*.data

!*.data� �
What will be the result?

25

1.6. IGNORING THINGS CHAPTER 1. VERSION CONTROL WITH GIT

Log-files: You wrote a script that creates many intermediate log-files of the form log_01,
log_02, log_03, etc. You want to keep them but you do not want to track them through
git.

1. Write one .gitignore entry that excludes files of the form log_01, log_02, etc.

2. Test your “ignore pattern” by creating some dummy files of the form log_01, etc.

3. You find that the file log_01 is very important after all, add it to the tracked files
without changing the .gitignore again.

4. Discuss with your neighbor what other types of files could reside in your directory
that you do not want to track and thus would exclude via .gitignore.

26

CHAPTER 1. VERSION CONTROL WITH GIT 1.7. REMOTE REPOSITORIES

1.7 Remote repositories

In this section we (a) explain what remote repositories are and why they are useful, and (b)
learn how to push to or pull from a remote repository.

Version control really comes into its own when we begin to collaborate with other people.
We already have most of the machinery we need to do this; the only thing missing is to copy
changes from one repository to another.

Systems like Git allow us to move work between any two repositories. In practice, though,
it’s easiest to use one copy as a central hub, and to keep it online rather than on someone’s
laptop. Hosting services like GitHub, GitLab or BitBucket are available to hold those master
copies; we’ll explore the pros and cons of this in this lesson.

1.7.1 GitHub

Let’s start by sharing the changes we’ve made to our current project with the world. Log
in to GitHub, then click on the icon in the top right corner to create a new repository (see
Fig. ??).

Figure 1.7: Creating a Repository on GitHub (Step 1)

Name your repository “planets” and then click “Create Repository” (see Fig. ??).

As soon as the repository is created, GitHub displays a page with a URL and some informa-
tion on how to configure your local repository (Fig. ??).

Our local repository still contains our earlier work on mars.txt, but the remote repository
on GitHub doesn’t contain any files yet.

The next step is to connect the two repositories. We do this by making the GitHub repository
a remote for the local repository. The home page of the repository on GitHub includes the
string we need to identify it (Fig. ??).

27

http://github.com
http://gitlab.com/
http://bitbucket.org

1.7. REMOTE REPOSITORIES CHAPTER 1. VERSION CONTROL WITH GIT

Figure 1.8: Creating a Repository on GitHub (Step 2)

28

CHAPTER 1. VERSION CONTROL WITH GIT 1.7. REMOTE REPOSITORIES

Figure 1.9: Creating a Repository on GitHub (Step 3)

Figure 1.10: Where to Find Repository URL on GitHub

29

1.7. REMOTE REPOSITORIES CHAPTER 1. VERSION CONTROL WITH GIT

Copy that URL from the browser, go into the local planets repository, and run this com-
mand:� �
$ git remote add origin https://github.com/vlad/planets.git� �
Make sure to use the URL for your repository; the only difference should be your username
instead of vlad.

We can check that the command has worked by running git remote -v:� �
$ git remote -v

origin https://github.com/vlad/planets.git (push)

origin https://github.com/vlad/planets.git (fetch)� �
The name origin is a local nickname for your remote repository; we could use something
else if we wanted to, but origin is by far the most common choice.

Once the nickname origin is set up, this command will push the changes from our local
repository to the repository on GitHub:� �
$ git push origin master

Counting objects: 9, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (9/9), 821 bytes, done.

Total 9 (delta 2), reused 0 (delta 0)

To https://github.com/vlad/planets

* [new branch] master -> master

Branch master set up to track remote branch master from origin.� �
We can pull changes from the remote repository to the local one as well:� �
$ git pull origin master

From https://github.com/vlad/planets

* branch master -> FETCH_HEAD

Already up-to-date.� �
Pulling has no effect in this case because the two repositories are already synchronized. If
someone else had pushed some changes to the repository on GitHub, though, this command
would download them to our local repository.

30

CHAPTER 1. VERSION CONTROL WITH GIT 1.7. REMOTE REPOSITORIES

1.7.2 GitLab

To create a new project, sign in to GitLab. Go to your Dashboard and click on "new project"
on the right side of your screen (see Fig. ??).

Figure 1.11: GitLab dashboard

On the next screen (see Fig. ??) fill out the required information: the name of your project
(you can’t add spaces but you can use hyphens or underscores), your project’s description, a
visibility level. Click on "create project"

Follow the command line instructions on the next screen (see Fig. ??) to create a new
repository from scratch or import an existing local git repository.

31

1.7. REMOTE REPOSITORIES CHAPTER 1. VERSION CONTROL WITH GIT

Figure 1.12: GitLab create new project, Step 2.

32

CHAPTER 1. VERSION CONTROL WITH GIT 1.7. REMOTE REPOSITORIES

Figure 1.13: GitLab create new project, Step 3.

33

1.7. REMOTE REPOSITORIES CHAPTER 1. VERSION CONTROL WITH GIT

1.7.3 Storing credentials for remote repositories

If you’re cloning Git repositories using HTTPS, you can use a credential helper to tell Git to
remember your username and password.

The point of this helper is to reduce the number of times you must type your username or
password. For example:� �
$ git config credential.helper store

$ git push http://example.com/repo.git� �
Username: <type your username> Password: <type your password>

[several days later]� �
$ git push http://example.com/repo.git� �
[your credentials are used automatically]

1.7.4 Questions

GitHub GUI: Browse to your planets repository on GitHub. Under the Code tab, find and
click on the text that says “XX commits” (where “XX” is some number). Hover over,
and click on, the three buttons to the right of each commit. What information can
you gather/explore from these buttons? How would you get that same information in
the shell?

GitHub Timestamp: Create a remote repository on GitHub. Push the contents of your
local repository to the remote. Make changes to your local repository and push these
changes. Go to the repo you just created on Github and check the timestamps of the
files. How does GitHub record times, and why?

Push vs. commit: In this lesson, we introduced the “git push” command. How is “git push”
different from “git commit”?

Fixing up remote settings: It happens quite often in practice that you made a typo in the
remote URL. This exercice is about how to fix this kind of issues. First start by adding
a remote with an invalid URL:� �
$ git remote add broken https://github.com/this/url/isinvalid� �
Do you get an error when adding the remote? Can you think of a command that
would make it obvious that your remote URL was not valid? Can you figure out how

34

reference.html#timestamp

CHAPTER 1. VERSION CONTROL WITH GIT 1.7. REMOTE REPOSITORIES

to fix the URL (tip: use git remote -h)? Don’t forget to clean up and remove this
remote once you are done with this exercise.

35

1.8. COLLABORATING CHAPTER 1. VERSION CONTROL WITH GIT

1.8 Collaborating

In this section we learn how to (a) clone a remote repository, and (b) collaborate pushing to a
common repository.

For the next step, get into pairs. One person will be the “Owner” (this is the person
whose Github repository will be used to start the exercise) and the other person will be the
“Collaborator” (this is the person who will be cloning the Owner’s repository and making
changes to it).

1.8.1 Practicing by yourself

If you’re working through this lesson on your own, you can carry on by opening a second
terminal window, and switching to another directory (e.g. /tmp). This window will repre-
sent your partner, working on another computer. You won’t need to give anyone access on
GitHub, because both ‘partners’ are you.

The Owner needs to give the Collaborator access. On GitHub, click the settings button on
the right, then select Collaborators, and enter your partner’s username.

Figure 1.14: Adding collaborators on GitHub

The Collaborator needs to work on this project locally. He or she should cd to another
directory (so ls doesn’t show a planets folder), and then make a copy of the Owner’s
repository:� �
$ git clone https://github.com/vlad/planets.git� �
Replace ‘vlad’ with the Owner’s username.

git clone creates a fresh local copy of a remote repository.

36

CHAPTER 1. VERSION CONTROL WITH GIT 1.8. COLLABORATING

.git
origin https://github.com/vlad/planets.git

~/vlad/planets

git add git commit

staging area
repository

.git

https://github.com/vlad/planets.git

repository

git clone

.git
origin https://github.com/vlad/planets.git

~/wolfman/planets

git add git commit

staging area
repository

Figure 1.15: After Creating Clone of Repository

37

1.8. COLLABORATING CHAPTER 1. VERSION CONTROL WITH GIT

The Collaborator can now make a change in his or her copy of the repository:

� �
$ cd planets

$ nano pluto.txt

$ cat pluto.txt

It is so a planet!� �
� �
$ git add pluto.txt

$ git commit -m "Some notes about Pluto"

1 file changed, 1 insertion(+)

create mode 100644 pluto.txt� �

Then push the change to GitHub:

� �
$ git push origin master

Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 306 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/vlad/planets.git

9272da5..29aba7c master -> master� �

Note that we didn’t have to create a remote called origin: Git does this automatically, using
that name, when we clone a repository. (This is why origin was a sensible choice earlier
when we were setting up remotes by hand.)

We can now download changes into the original repository on our machine:

38

CHAPTER 1. VERSION CONTROL WITH GIT 1.8. COLLABORATING

� �
$ git pull origin master

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 3 (delta 0)

Unpacking objects: 100% (3/3), done.

From https://github.com/vlad/planets

* branch master -> FETCH_HEAD

Updating 9272da5..29aba7c

Fast-forward

pluto.txt | 1 +

1 file changed, 1 insertion(+)

create mode 100644 pluto.txt� �
1.8.2 Questions

Review changes. The Owner push commits to the repository without giving any informa-
tion to the Collaborator. How can the Collaborator find out what has changed with
command line? And on GitHub?

39

1.9. CONFLICTS CHAPTER 1. VERSION CONTROL WITH GIT

1.9 Conflicts

This section (a) explains what conflicts are and when they can occur, and resolve conflicts
resulting from a merge.

As soon as people can work in parallel, it’s likely someone’s going to step on someone else’s
toes. This will even happen with a single person: if we are working on a piece of software
on both our laptop and a server in the lab, we could make different changes to each copy.
Version control helps us manage these conflicts by giving us tools to resolve overlapping
changes.

To see how we can resolve conflicts, we must first create one. The file mars.txt currently
looks like this in both partners’ copies of our planets repository:� �
$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity� �
Let’s add a line to one partner’s copy only:� �
$ nano mars.txt

$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity

This line added to Wolfman’s copy� �
and then push the change to GitHub:� �
$ git add mars.txt

$ git commit -m "Adding a line in our home copy"

[master 5ae9631] Adding a line in our home copy

1 file changed, 1 insertion(+)� �
40

CHAPTER 1. VERSION CONTROL WITH GIT 1.9. CONFLICTS

� �
$ git push origin master

Counting objects: 5, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 352 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To https://github.com/vlad/planets

29aba7c..dabb4c8 master -> master� �
Now let’s have the other partner make a different change to their copy without updating
from GitHub:

� �
$ nano mars.txt

$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity

We added a different line in the other copy� �

We can commit the change locally:

� �
$ git add mars.txt

$ git commit -m "Adding a line in my copy"

[master 07ebc69] Adding a line in my copy

1 file changed, 1 insertion(+)� �

but Git won’t let us push it to GitHub:

41

1.9. CONFLICTS CHAPTER 1. VERSION CONTROL WITH GIT

� �
$ git push origin master

To https://github.com/vlad/planets.git

! [rejected] master -> master (non-fast-forward)

error: failed to push some refs to

’https://github.com/vlad/planets.git’

hint: Updates were rejected because the tip of your current

branch is behind

hint: its remote counterpart. Merge the remote changes (e.g. ’git

pull’)

hint: before pushing again.

hint: See the ’Note about fast-forwards’ in ’git push --help’ for

details.� �

Figure 1.16: The conflicting changes

Git detects that the changes made in one copy overlap with those made in the other and
stops us from trampling on our previous work. What we have to do is pull the changes
from GitHub, merge them into the copy we’re currently working in, and then push that.
Let’s start by pulling:

42

reference.html#merge

CHAPTER 1. VERSION CONTROL WITH GIT 1.9. CONFLICTS

� �
$ git pull origin master

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 1), reused 3 (delta 1)

Unpacking objects: 100% (3/3), done.

From https://github.com/vlad/planets

* branch master -> FETCH_HEAD

Auto-merging mars.txt

CONFLICT (content): Merge conflict in mars.txt

Automatic merge failed; fix conflicts and then commit the result.� �
git pull tells us there’s a conflict, and marks that conflict in the affected file:� �
$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity

<<<<<<< HEAD

We added a different line in the other copy

=======

This line added to Wolfman’s copy

>>>>>>> dabb4c8c450e8475aee9b14b4383acc99f42af1d� �
Our change—the one in HEAD—is preceded by <<<<<<<. Git has then inserted ======= as a
separator between the conflicting changes and marked the end of the content downloaded
from GitHub with >>>>>>>. (The string of letters and digits after that marker identifies the
commit we’ve just downloaded.)

It is now up to us to edit this file to remove these markers and reconcile the changes. We
can do anything we want: keep the change made in the local repository, keep the change
made in the remote repository, write something new to replace both, or get rid of the change
entirely. Let’s replace both so that the file looks like this:� �
$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity

We removed the conflict on this line� �
43

1.9. CONFLICTS CHAPTER 1. VERSION CONTROL WITH GIT

To finish merging, we add mars.txt to the changes being made by the merge and then
commit:

� �
$ git add mars.txt

$ git status

On branch master

All conflicts fixed but you are still merging.

(use "git commit" to conclude merge)

Changes to be committed:

modified: mars.txt� �
� �
$ git commit -m "Merging changes from GitHub"

[master 2abf2b1] Merging changes from GitHub� �

Now we can push our changes to GitHub:

� �
$ git push origin master

Counting objects: 10, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 697 bytes, done.

Total 6 (delta 2), reused 0 (delta 0)

To https://github.com/vlad/planets.git

dabb4c8..2abf2b1 master -> master� �

Git keeps track of what we’ve merged with what, so we don’t have to fix things by hand
again when the collaborator who made the first change pulls again:

44

CHAPTER 1. VERSION CONTROL WITH GIT 1.9. CONFLICTS

� �
$ git pull origin master

remote: Counting objects: 10, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 6 (delta 2), reused 6 (delta 2)

Unpacking objects: 100% (6/6), done.

From https://github.com/vlad/planets

* branch master -> FETCH_HEAD

Updating dabb4c8..2abf2b1

Fast-forward

mars.txt | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)� �
We get the merged file:� �
$ cat mars.txt

Cold and dry, but everything is my favorite color

The two moons may be a problem for Wolfman

But the Mummy will appreciate the lack of humidity

We removed the conflict on this line� �
We don’t need to merge again because Git knows someone has already done that.

Version control’s ability to merge conflicting changes is another reason users tend to divide
their programs and papers into multiple files instead of storing everything in one large file.
There’s another benefit too: whenever there are repeated conflicts in a particular file, the
version control system is essentially trying to tell its users that they ought to clarify who’s
responsible for what, or find a way to divide the work up differently.

1.9.1 Questions

Solving Conflicts that You Create: Clone the repository created by your instructor. Add
a new file to it, and modify an existing file (your instructor will tell you which one).
When asked by your instructor, pull her changes from the repository to create a
conflict, then resolve it.

Conflicts on Non-textual files: What does Git do when there is a conflict in an image or
some other non-textual file that is stored in version control?

A typical work session: You sit down at your computer to work on a shared project that is
tracked in a remote Git repository. During your work session, you take the following

45

1.9. CONFLICTS CHAPTER 1. VERSION CONTROL WITH GIT

actions, but not in this order:

• Make changes by appending the number 100 to a text file numbers.txt

• Update remote repository to match the local repository

• Celebrate your success

• Update local repository to match the remote repository

• Stage changes to be committed

• Commit changes to the local repository

In what order should you perform these actions to minimize the chances of conflicts?

46

Chapter 2

Automation with Make

2.1 Introduction. Zipf’s Law

In this section we explain (a) what Make is for, and (b) how Make differs from shell scripts.

Let’s imagine that we’re interested in testing Zipf’s Law. Zipf’s law states that given a corpus
of natural language texts, the frequency of any word is inversely proportional to its rank in
the frequency table. Thus the most frequent word will occur approximately twice as often
as the second most frequent word, three times as often as the third most frequent word, etc.

We’ve compiled our raw data that we want to analyze - the books in public domain under
U.S. copyright law that are collected by Project Gutenberg - and have prepared several
scripts that together make up our analysis pipeline.

Our directory has the scripts and data files we we will be working with:� �
$ tree --noreport --charset=ascii zipf

|-- gutenberg

| |-- austen-emma.txt

| |-- austen-persuasion.txt

| |-- austen-sense.txt

... ...

|-- merged.gp

‘-- wordcount.jl� �
The first step is to count the frequency of each word in a book.

47

https://www.gutenberg.org/

2.1. INTRODUCTION. ZIPF’S LAW CHAPTER 2. AUTOMATION WITH MAKE

� �
$ julia wordcount.jl count emma.dat gutenberg/austen-emma.txt� �
Let’s take a quick peek at the result.� �
$ head -5 emma.dat� �
This shows us the top 5 lines in the output file:� �

to 5242 3.2363

the 5204 3.2128

and 4897 3.0233

of 4293 2.6504

i 3192 1.9707� �
We can see that the file consists of one row per word. Each row shows the word itself, the
number of occurrences of that word, and the number of occurrences as a percentage of the
total number of words in the text file.

We can do the same thing for a different book:� �
$ julia wordcount.jl count persuasion.dat \

gutenberg/austen-persuasion.txt

$ head -5 persuasion.dat

the 3329 3.9573

to 2808 3.3380

and 2801 3.3296

of 2570 3.0551

a 1595 1.8960� �
Let’s visualize the results.� �
$ julia wordcount.jl merge austen.res emma.dat persuasion.dat

$ gnuplot -c merged.gp pdf austen� �
The graph prodiced bay the last command is shown in Fig. ??.

As we see, the general distribution tendency is not too far off from Zipf’s law.

Together these scripts implement a common workflow:

1. Read a data file.

2. Perform an analysis on this data file.

48

CHAPTER 2. AUTOMATION WITH MAKE 2.1. INTRODUCTION. ZIPF’S LAW

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

w
o
rd

 f
re

q
u
e
n
cy

 (
in

 %
)

word position

Figure 2.1: Word frequency distribution in Jane Austen novels.

3. Write the analysis results to a new file.

4. Plot a graph of the analysis results.

5. Save the graph as an image, so we can put it in a paper.

6. Make a summary table of the analyses

Running wordcount.py and plotcount.py at the shell prompt, as we have been doing, is
fine for one or two files. If, however, we had 5 or 10 or 20 text files, or if the number of
steps in the pipeline were to expand, this could turn into a lot of work. Plus, no one wants
to sit and wait for a command to finish, even just for 30 seconds.

The most common solution to the tedium of data processing is to write a shell script that
runs the whole pipeline from start to finish.

Using your text editor of choice, add the following to a new file named run_pipeline.sh.

49

2.1. INTRODUCTION. ZIPF’S LAW CHAPTER 2. AUTOMATION WITH MAKE

� �
USAGE: bash run_pipeline.sh

Zipf’s law tests

$ julia wordcount.jl count emma.dat gutenberg/austen-emma.txt

$ julia wordcount.jl count persuasion.dat \

gutenberg/austen-persuasion.txt

Generate summary table

$ julia wordcount.jl merge austen.res austen-emma.dat \

austen-persuasion.dat

Plot the results

$ gnuplot -c merged.gp pdf austen� �
Runs the script and check that the output is the same as before:� �
$ sh run_pipeline.sh� �
This shell script solves several problems in computational reproducibility:

1. It explicitly documents our pipeline, making communication with colleagues (and
our future selves) more efficient.

2. It allows us to type a single command, sh run_pipeline.sh, to reproduce the full
analysis.

3. It prevents us from repeating typos or mistakes. You might not get it right the first
time, but once you fix something it’ll stay fixed.

Despite these benefits it has a few shortcomings.

Let’s suppose that we adjusted the axis labels in our graph. Now we want to recreate our
figures. We could just sh run_pipeline.sh again. That would work, but it could also be
a big pain if counting words takes more than a few seconds. The word counting routine
hasn’t changed; we shouldn’t need to recreate those files.

Alternatively, we could manually rerun the plotting for each word-count file.

With this approach, however, we don’t get many of the benefits of having a shell script in
the first place.

Another popular option is to comment out a subset of the lines in run_pipeline.sh:

Then, we would run our modified shell script using sh run_pipeline.sh.

50

CHAPTER 2. AUTOMATION WITH MAKE 2.1. INTRODUCTION. ZIPF’S LAW

But commenting out these lines, and subsequently uncommenting them, can be a hassle
and source of errors in complicated pipelines.

What we really want is an executable description of our pipeline that allows software to do
the tricky part for us: figuring out what steps need to be rerun.

Make was developed by Stuart Feldman in 1977 as a Bell Labs summer intern, and remains
in widespread use today. Make can execute the commands needed to run our analysis and
plot our results. Like shell scripts it allows us to execute complex sequences of commands
via a single shell command. Unlike shell scripts it explicitly records the dependencies
between files - what files are needed to create what other files - and so can determine
when to recreate our data files or image files, if our text files change. Make can be used for
any commands that follow the general pattern of processing files to create new files, for
example:

• Run analysis scripts on raw data files to get data files that summarise the raw data
(e.g. creating files with word counts from book text).

• Run visualisation scripts on data files to produce plots (e.g. creating images of word
counts).

• Parse and combine text files and plots to create papers.

• Compile source code into executable programs or libraries.

Researchers are also finding Make of use in implementing reproducible research workflows,
automating data analysis and visualisation and combining plots with text to produce reports
and papers for publication.

51

2.2. MAKEFILES CHAPTER 2. AUTOMATION WITH MAKE

2.2 Makefiles

In this section we (a) learn about the key parts of a Makefile: rules, targets, dependencies
and actions, (b) write a simple Makefile, (c) run Make from the shell, (d) explain when and
why to mark targets as .PHONY, (e) explain constraints on dependencies.

Create a file, called Makefile, with the following content:� �
Count words.

blake-poems.dat : gutenberg/blake-poems.txt

julia wordcount.jl count blake-poems.dat \

gutenberg/blake-poems.txt� �
This is a file executed by Make. Note how it resembles one of the lines from our shell script.

Let us go through each line in turn:

• # denotes a comment. Any text from # to the end of the line is ignored by Make.

• blake-poems.dat is a target, a file to be created, or built.

• gutenberg/blake-poems.txt is a dependency, a file that is needed to build or update
the target. Targets can have zero or more dependencies.

• A colon, :, separates targets from dependencies.

• julia wordcount.jl count blake-poems.dat gutenberg/blake-poems.txt is an
action, a command to run to build or update the target using the dependencies. Targets
can have zero or more actions. These actions form a recipe to build the target from its
dependencies and can be considered to be a shell script.

• Actions are indented using the TAB character, not 8 spaces.

• Together, the target, dependencies, and actions form a rule.

Our rule above describes how to build the target blake-poems.dat using the action julia

wordcount.jl and the dependency gutenberg/blake-poems.txt.

Information that was implicit in our shell script - that we are generating a file called
blake-poems.dat and that creating this file requires gutenberg/blake-poems.txt - is
now made explicit by Make’s syntax.

Let’s first sure we start from scratch and delete the .dat and .pdf files we created earlier:� �
$ rm *.dat *.pdf� �

52

CHAPTER 2. AUTOMATION WITH MAKE 2.2. MAKEFILES

By default, Make looks for a Makefile, called Makefile, and we can run Make as follows:� �
$ make� �
By default, Make prints out the actions it executes:� �
julia wordcount.jl count blake-poems.dat gutenberg/blake-poems.txt� �
If we see,� �
Makefile:3: *** missing separator. Stop.� �
then we have used a space instead of a TAB characters to indent one of our actions.

Let’s see if we got what we expected.� �
head -5 blake-poems.dat� �
The first 5 lines of isles.dat should look exactly like before.

We don’t have to call our Makefile Makefile. However, if we call it something else we need
to tell Make where to find it. This we can do using -f flag. For example, if our Makefile is
named MyOtherMakefile:� �
$ make -f MyOtherMakefile� �
When we re-run our Makefile, Make now informs us that:� �
make: ‘blake-poems.dat’ is up to date.� �
This is because our target, isles.dat, has now been created, and Make will not create it
again. To see how this works, let’s pretend to update one of the text files. Rather than
opening the file in an editor, we can use the shell touch command to update its timestamp
(which would happen if we did edit the file):� �
$ touch gutenberg/blake-poems.txt� �
If we compare the timestamps of gutenberg/blake-poems.txt and blake-poems.dat,� �
$ ls -l gutenberg/blake-poems.txt blake-poems.dat� �
then we see that blake-poems.dat, the target, is now older than gutenberg/blake-poems.txt,
its dependency:

53

2.2. MAKEFILES CHAPTER 2. AUTOMATION WITH MAKE

� �
-rw-r--r-- 1 mjj mjj 323972 Jun 12 10:35 gutenberg/blake-poems

.txt

-rw-r--r-- 1 mjj mjj 182273 Jun 12 09:58 blake-poems.dat� �
If we run Make again,� �
$ make� �
then it recreates blake-poems.dat:� �
julia wordcount.jl count blake-poems.dat gutenberg/blake-poems.txt� �
When it is asked to build a target, Make checks the ‘last modification time’ of both the
target and its dependencies. If any dependency has been updated since the target, then the
actions are re-run to update the target. Using this approach, Make knows to only rebuild
the files that, either directly or indirectly, depend on the file that changed. This is called an
incremental build.

2.2.1 Makefiles as documentation

By explicitly recording the inputs to and outputs from steps in our analysis and the
dependencies between files, Makefiles act as a type of documentation, reducing the number
of things we have to remember.

Let’s add another rule to the end of Makefile:� �
abyss.dat : gutenberg/bryant-stories.txt

julia wordcount.jl count bryant-stories.dat gutenberg/

bryant-stories.txt� �
If we run Make,� �
$ make� �
then we get:� �
make: ‘blake-poems.dat’ is up to date.� �
Nothing happens because Make attempts to build the first target it finds in the Makefile, the
default target, which is blake-poems.dat which is already up-to-date. We need to explicitly
tell Make we want to build abyss.dat:

54

CHAPTER 2. AUTOMATION WITH MAKE 2.2. MAKEFILES

� �
$ make bryant-stories.dat� �
Now, we get:� �
julia wordcount.jl count bryant-stories.dat gutenberg/bryant-

stories.txt� �
We may want to remove all our data files so we can explicitly recreate them all. We can
introduce a new target, and associated rule, to do this. We will call it clean, as this is a
common name for rules that delete auto-generated files, like our .dat files:� �
clean :

rm -f *.dat� �
This is an example of a rule that has no dependencies. clean has no dependencies on any
.dat file as it makes no sense to create these just to remove them. We just want to remove
the data files whether or not they exist. If we run Make and specify this target,� �
$ make clean� �
then we get:� �
rm -f *.dat� �
There is no actual thing built called clean. Rather, it is a short-hand that we can use to
execute a useful sequence of actions. Such targets, though very useful, can lead to problems.
For example, let us recreate our data files, create a directory called clean, then run Make:� �
$ make blake-poems.dat bryant-stories.dat

$ mkdir clean

$ make clean� �
We get:� �
make: ‘clean’ is up to date.� �
Make finds a file (or directory) called clean and, as its clean rule has no dependencies,
assumes that clean has been built and is up-to-date and so does not execute the rule’s
actions. As we are using clean as a short-hand, we need to tell Make to always execute this
rule if we run make clean, by telling Make that this is a phony target, that it does not build
anything. This we do by marking the target as .PHONY:

55

2.2. MAKEFILES CHAPTER 2. AUTOMATION WITH MAKE

� �
.PHONY : clean

clean :

rm -f *.dat� �
If we run Make,� �
$ make clean� �
then we get:� �
rm -f *.dat� �
We can add a similar command to create all the data files. We can put this at the top of our
Makefile so that it is the default target, which is executed by default if no target is given to
the make command:� �
.PHONY : dats

dats : blake-poems.dat bryant-stories.dat� �
This is an example of a rule that has dependencies that are targets of other rules. When
Make runs, it will check to see if the dependencies exist and, if not, will see if rules are
available that will create these. If such rules exist it will invoke these first, otherwise Make
will raise an error.

This rule is also an example of a rule that has no actions. It is used purely to trigger the
build of its dependencies, if needed.

If we run,� �
$ make dats� �
then Make creates the data files:� �
julia wordcount.jl count blake-poems.dat gutenberg/blake-poems.txt

julia wordcount.jl count bryant-stories.dat gutenberg/bryant-

stories.txt� �
If we run dats again,� �
$ make dats� �
then Make sees that the data files exist:

56

CHAPTER 2. AUTOMATION WITH MAKE 2.2. MAKEFILES

� �
make: Nothing to be done for ‘dats’.� �
Our Makefile now looks like this:� �
Count words.

.PHONY : dats

dats : blake-poems.dat bryant-stories.dat

blake-poems.dat : gutenberg/blake-poems.txt

julia wordcount.jl count blake-poems.dat gutenberg/blake-

poems.txt

bryant-stories.dat : gutenberg/bryant-stories.txt

julia wordcount.jl count bryant-stories.dat gutenberg/

bryant-stories.txt

.PHONY : clean

clean :

rm -f *.dat� �
The following figure shows a graph of the dependencies embodied within our Makefile,
involved in building the dats target:

blake-poems.dat

dats

bryant-stories.dat

gutenberg/blake-poems.txtgutenberg/bryant-stories.txt

Figure 2.2: Dependencies represented within the Makefile

57

2.2. MAKEFILES CHAPTER 2. AUTOMATION WITH MAKE

2.2.2 Questions

• Write a new rule for last.dat, created from gutenberg/last.txt.

• Update the dats rule with this target.

• Write a new rule for merge, which creates the summary table. The rule needs to:

• – Depend upon each of the three .dat files.

– Invoke the action julia wordcount.jl merge results.txt bryant-stories.dat

isles.dat last.dat.

Put this rule at the top of the Makefile so that it is the default target.

• Update clean so that it removes results.txt.

The following figure shows the dependencies embodied within our Makefile, involved in
building the results.txt target:

Figure 2.3: results.txt dependencies represented within the Makefile

58

CHAPTER 2. AUTOMATION WITH MAKE 2.3. AUTOMATIC VARIABLES

2.3 Automatic variables

In this section we learn to (a) use Make automatic variables to remove duplication in a
Makefile, (b) use $@ to refer to the target of the current rule, (c) use $ˆ to refer to the
dependencies of the current rule, (d) use $< to refer to the first dependency of the current
rule, and (e) explain why bash wild-cards in dependencies can cause problems.

After the exercise at the end of the previous section, our Makefile look like this:� �
Generate summary table.

results.txt : isles.dat abyss.dat last.dat

python zipf_test.py abyss.dat isles.dat last.dat > results

.txt

Count words.

.PHONY : dats

dats : isles.dat abyss.dat last.dat

isles.dat : books/isles.txt

python wordcount.py books/isles.txt isles.dat

abyss.dat : books/abyss.txt

python wordcount.py books/abyss.txt abyss.dat

last.dat : books/last.txt

python wordcount.py books/last.txt last.dat

.PHONY : clean

clean :

rm -f *.dat

rm -f results.txt� �
Our Makefile has a lot of duplication. For example, the names of text files and data files
are repeated in many places throughout the Makefile. Makefiles are a form of code and, in
any code, repeated code can lead to problems e.g. we rename a data file in one part of the
Makefile but forget to rename it elsewhere.

59

2.3. AUTOMATIC VARIABLES CHAPTER 2. AUTOMATION WITH MAKE

2.3.1 D.R.Y. (Don’t Repeat Yourself)

In many programming languages, the bulk of the language features are there to allow the
programmer to describe long-winded computational routines as short, expressive, beautiful
code. Features like user-defined variables and functions are useful in part because they
mean we don’t have to write out (or think about) all of the details over and over again.
This good habit of writing things out only once is known as the “Don’t Repeat Yourself”
principle or D.R.Y.

Let us set about removing some of the repetition from our Makefile.

In our results.txt rule we duplicate the data file names and the name of the results file
name:� �
results.txt : isles.dat abyss.dat last.dat

python zipf_test.py abyss.dat isles.dat last.dat>results.txt� �
Looking at the results file name first, we can replace it in the action with $@:� �
results.txt : isles.dat abyss.dat last.dat

python zipf_test.py abyss.dat isles.dat last.dat > $@� �
$@ is a Make automatic variable which means "the target of the current rule". When Make is
run it will replace this variable with the target name.

We can replace the dependencies in the action with $ˆ:� �
results.txt : isles.dat abyss.dat last.dat

python zipf_test.py $^ > $@� �
$ˆ is another automatic variable which means ‘all the dependencies of the current rule’.
Again, when Make is run it will replace this variable with the dependencies.

Let’s update our text files and re-run our rule:� �
$ touch books/*.txt

$ make results.txt� �
We get:� �
python wordcount.py books/isles.txt isles.dat

python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/last.txt last.dat

python zipf_test.py isles.dat abyss.dat last.dat > results.txt� �
60

CHAPTER 2. AUTOMATION WITH MAKE 2.3. AUTOMATIC VARIABLES

We can use the bash wild-card in our dependency list:� �
results.txt : *.dat

python zipf_test.py $^ > $@� �
Let’s update our text files and re-run our rule:� �
$ touch books/*.txt

$ make results.txt� �
We get the same as above.

Now let’s delete the data files and re-run our rule:� �
$ make clean

$ make results.txt� �
We get:� �
make: *** No rule to make target ‘*.dat’, needed by ‘results.txt’.

Stop.� �
As there are no files that match the pattern *.dat the name *.dat is used as a file name
itself, and there is no file matching that, nor any rule so we get an error. We need to
explicitly rebuild the .dat files first:� �
$ make dats

$ make results.txt� �
2.3.2 Questions

Update dependencies. What will happen if you now execute:� �
$ touch *.dat

$ make results.txt� �
1. nothing

2. all files recreated

3. only .dat files recreated

4. only results.txt recreated

61

2.3. AUTOMATIC VARIABLES CHAPTER 2. AUTOMATION WITH MAKE

Rewrite .dat rules to use automatic variables. As we saw, $ˆ means ‘all the dependencies
of the current rule’. This works well for results.txt as its action treats all the
dependencies the same - as the input for the zipf_test.py script.

However, for some rules, we may want to treat the first dependency differently. For
example, our rules for .dat use their first (and only) dependency specifically as the
input file to wordcount.py. If we add additional dependencies (as we will soon do)
then we don’t want these being passed as input files to wordcount.py as it expects
only one input file to be named when it is invoked.

Make provides an automatic variable for this, $< which means ‘the first dependency
of the current rule’.

Rewrite each .dat rule to use the automatic variables $@ (‘the target of the current
rule’) and $< (‘the first dependency of the current rule’).

62

CHAPTER 2. AUTOMATION WITH MAKE2.4. DEPENDENCIES ON DATA AND CODE

2.4 Dependencies on data and code

In this section we consider the case when (a) output files depend not only upon input files
but on the scripts or code that created the output files, and (b) recognise and avoid false
dependencies.

Our Makefile now looks like this:� �
Generate summary table.

results.txt : *.dat

python zipf_test.py $^ > $@

Count words.

.PHONY : dats

dats : isles.dat abyss.dat last.dat

isles.dat : books/isles.txt

python wordcount.py $< $@

abyss.dat : books/abyss.txt

python wordcount.py $< $@

last.dat : books/last.txt

python wordcount.py $< $@

.PHONY : clean

clean :

rm -f *.dat

rm -f results.txt� �
Our data files are a product not only of our text files but the script, wordcount.py, that
processes the text files and creates the data files. A change to wordcount.py (e.g. to add
a new column of summary data or remove an existing one) results in changes to the .dat

files it outputs. So, let’s pretend to edit wordcount.py, using touch, and re-run Make:� �
$ make dats

$ touch wordcount.py

$ make dats� �
Nothing happens! Though we’ve updated wordcount.py our data files are not updated
because our rules for creating .dat files don’t record any dependencies on wordcount.py.

63

2.4. DEPENDENCIES ON DATA AND CODECHAPTER 2. AUTOMATION WITH MAKE

We need to add wordcount.py as a dependency of each of our data files also:� �
isles.dat : books/isles.txt wordcount.py

python wordcount.py $< $@

abyss.dat : books/abyss.txt wordcount.py

python wordcount.py $< $@

last.dat : books/last.txt wordcount.py

python wordcount.py $< $@� �
If we pretend to edit wordcount.py and re-run Make,� �
$ touch wordcount.py

$ make dats� �
then we get:� �
python wordcount.py books/isles.txt isles.dat

python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/last.txt last.dat� �
The following figure shows the dependencies embodied within our Makefile, involved in
building the results.txt target, after adding wordcount.py as a dependency to the .dat

files:

Figure 2.4: results.txt dependencies after adding wordcount.py as a dependency

Intuitively, we should also add wordcount.py as dependency for results.txt, as the final
table should be rebuilt as we remake the .dat files. However, it turns out we don’t have to!
Let’s see what happens to results.txt when we update wordcount.py:

64

CHAPTER 2. AUTOMATION WITH MAKE2.4. DEPENDENCIES ON DATA AND CODE

� �
$ touch wordcount.py

$ make results.txt� �
then we get:� �
python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/isles.txt isles.dat

python wordcount.py books/last.txt last.dat

python zipf_test.py abyss.dat isles.dat last.dat > results.txt� �
The whole pipeline is triggered, even the creation of the results.txt file! To understand
this, note that according to the dependency figure, results.txt depends on the .dat files.
The update of wordcount.py triggers an update of the *.dat files. Thus, make sees that
the dependencies (the .dat files) are newer than the target file (results.txt) and thus it
recreates results.txt. This is an example of the power of make: updating a subset of the
files in the pipeline triggers rerunning the appropriate downstream steps.

2.4.1 Questions

Updating one input file What will happen if you now execute:� �
$ touch books/last.txt

$ make results.txt� �
1. only last.dat is recreated

2. all .dat files are recreated

3. only last.dat and results.txt are recreated

4. all .dat and results.txt are recreated

Wordcount as dependency of results.txt. What would happen if you actually added wordcount.py

as dependency of results.txt, and why?

We still have to add the zipf-test.py script as dependency to results.txt. Given
the answer to the challenge above, we cannot use $ˆ for the rule. We’ll go back to
using *.dat:� �
results.txt : *.dat zip_test.py

python zipf_test.py *.dat > $@� �
65

2.5. PATTERN RULES CHAPTER 2. AUTOMATION WITH MAKE

2.5 Pattern rules

In this section we (a) write Make pattern rules, (b) use the Make wild-card % in targets and
dependencies, and (c) use the Make special variable $* in actions.

Our Makefile still has repeated content. The rules for each .dat file are identical apart from
the text and data file names. We can replace these rules with a single pattern rule which can
be used to build any .dat file from a .txt file in books/:� �
%.dat : books/%.txt wordcount.py

python wordcount.py $< $*.dat� �
% is a Make wild-card. $* is a special variable which gets replaced by the stem with which
the rule matched.

This rule can be interpreted as:

In order to build a file named [something].dat (the target) find a file named books/[that

same something].txt (the dependency) and run wordcount.py [the dependency] [the

target].

If we re-run Make,� �
$ make clean

$ make dats� �
then we get:� �
python wordcount.py books/isles.txt isles.dat

python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/last.txt last.dat� �
The Make % wild-card can only be used in a target and in its dependencies. It cannot be
used in actions. In actions, you may however use $*, which will be replaced by the stem
with which the rule matched.

Our Makefile is now much shorter and cleaner:

66

CHAPTER 2. AUTOMATION WITH MAKE 2.5. PATTERN RULES

� �
Generate summary table.

results.txt : *.dat zipf_test.py python

zipf_test.py *.dat > $@

Count words.

.PHONY : dats

dats : isles.dat abyss.dat last.dat

% .dat : books/%.txt wordcount.py

python wordcount.py $< $*.dat

.PHONY : clean

clean :

rm -f *.dat

rm -f results.txt� �

67

2.6. VARIABLES CHAPTER 2. AUTOMATION WITH MAKE

2.6 Variables

(a) Use variables in a Makefile. (b) Assign values to variables. (c) Reference variables.

Despite our efforts, our Makefile still has repeated content, namely the name of our script,
wordcount.py. If we renamed our script we’d have to update our Makefile in multiple
places.

We can introduce a Make variable (called a macro in some versions of Make) to hold our
script name:� �
COUNT_SRC=wordcount.py� �
This is a variable assignment - COUNT_SRC is assigned the value wordcount.py.

wordcount.py is our script and it is invoked by passing it to python. We can introduce
another variable to represent this execution:� �
COUNT_EXE=python $(COUNT_SRC)� �
$(...) tells Make to replace a variable with its value when Make is run. This is a variable
reference. At any place where we want to use the value of a variable we have to write it, or
reference it, in this way.

Here we reference the variable COUNT_SRC. This tells Make to replace the variable COUNT_SRC
with its value wordcount.py. When Make is run it will assign to COUNT_EXE the value
python wordcount.py.

Defining the variable COUNT_EXE in this way allows us to easily change how our script is
run (if, for example, we changed the language used to implement our script from Python to
R).

2.6.1 Use variables

Update Makefile so that the %.dat rule references the variables COUNT_SRC and COUNT_EXE.
Then do the same for the zipf-test.py script and the results.txt rule, using ZIPF_SRC

and ZIPF_EXE as variable names

68

CHAPTER 2. AUTOMATION WITH MAKE 2.7. FUNCTIONS

2.7 Functions

In this section we (a) use Make’s wildcard function to get lists of files matching a pattern,
and (b) use Make’s patsubst function to rewrite file names.

At this point, we have the following Makefile:� �
Count words script.

COUNT_SRC=wordcount.py

COUNT_EXE=python $(COUNT_SRC)

Test Zipf’s rule

ZIPF_SRC=zipf_test.py

ZIPF_EXE=python $(ZIPF_SRC)

Generate summary table.

results.txt : *.dat $(ZIPF_SRC)

$(ZIPF_EXE) *.dat > $@

Count words.

.PHONY : dats

dats : isles.dat abyss.dat last.dat

%.dat : books/%.txt $(COUNT_SRC)

$(COUNT_EXE) $< $*.dat

.PHONY : clean

clean :

rm -f *.dat

rm -f results.txt� �
Make has many functions which can be used to write more complex rules. One example is
wildcard. wildcard gets a list of files matching some pattern, which we can then save in
a variable. So, for example, we can get a list of all our text files (files ending in .txt) and
save these in a variable by adding this at the beginning of our makefile:� �
TXT_FILES=$(wildcard books/*.txt)� �
We can add .PHONY target and rule to show the variable’s value:

69

2.7. FUNCTIONS CHAPTER 2. AUTOMATION WITH MAKE

� �
.PHONY : variables

variables:

@echo TXT_FILES: $(TXT_FILES)� �
Make prints actions as it executes them. Using @ at the start of an action tells Make not
to print this action. So, by using @echo instead of echo, we can see the result of echo (the
variable’s value being printed) but not the echo command itself.

If we run Make:� �
$ make variables� �
We get:� �
TXT_FILES: books/abyss.txt books/isles.txt books/last.txt books/

sierra.txt� �
Note how sierra.txt is now included too.

The following figure shows the dependencies embodied within our Makefile, involved in
building the results.txt target, once we have introduced our function:

Figure 2.5: results.txt dependencies after introducing a function

patsubst (‘pattern substitution’) takes a pattern, a replacement string and a list of names
in that order; each name in the list that matches the pattern is replaced by the replacement
string. Again, we can save the result in a variable. So, for example, we can rewrite our list
of text files into a list of data files (files ending in .dat) and save these in a variable:� �
DAT_FILES=$(patsubst books/%.txt, %.dat, $(TXT_FILES))� �
We can extend variables to show the value of DAT_FILES too:

70

CHAPTER 2. AUTOMATION WITH MAKE 2.7. FUNCTIONS

� �
.PHONY : variables

variables:

@echo TXT_FILES: $(TXT_FILES)

@echo DAT_FILES: $(DAT_FILES)� �
If we run Make,� �
$ make variables� �
then we get:� �
TXT_FILES: books/abyss.txt books/isles.txt books/last.txt books/

sierra.txt

DAT_FILES: abyss.dat isles.dat last.dat sierra.dat

\end{verbatim}

Now, \texttt{sierra.txt} is processed too.

With these we can rewrite \texttt{clean} and \texttt{dats}:

\begin{lstlisting}[style=makefile]

.PHONY : dats

dats : $(DAT_FILES)

.PHONY : clean

clean :

rm -f $(DAT_FILES)

rm -f results.txt� �
Let’s check:� �
$ make clean

$ make dats� �
We get:� �
python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/isles.txt isles.dat

python wordcount.py books/last.txt last.dat

python wordcount.py books/sierra.txt sierra.dat� �
71

2.7. FUNCTIONS CHAPTER 2. AUTOMATION WITH MAKE

We can also rewrite results.txt:� �
results.txt : $(DAT_FILES) $(ZIPF_SRC)

$(ZIPF_EXE) *.dat > $@� �
If we re-run Make:� �
$ make clean

$ make results.txt� �
We get:� �
python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/isles.txt isles.dat

python wordcount.py books/last.txt last.dat

python wordcount.py books/sierra.txt sierra.dat

python zipf_test.py *.dat > results.txt� �
We see that the problem we had when using the bash wild-card, *.dat, which required
us to run make dats before make results.txt has now disappeared, since our functions
allow us to create .dat file names from those .txt file names in books/.

Let’s check the results.txt file:� �
$ cat results.txt

Book First Second Ratio

abyss 4044 2807 1.44

isles 3822 2460 1.55

last 12244 5566 2.20

sierra 4242 2469 1.72� �
So the range of the ratios of occurrences of the two most frequent words in our books
is indeed around 2, as predicted by Zipf’s law: most frequently-occurring word occurs
approximately twice as often as the second most frequent word

Here is our final Makefile:

72

CHAPTER 2. AUTOMATION WITH MAKE 2.7. FUNCTIONS

� �
Count words script.

COUNT_SRC=wordcount.py

COUNT_EXE=python $(COUNT_SRC)

Test Zipf’s rule

ZIPF_SRC=zipf_test.py

ZIPF_EXE=python $(ZIPF_SRC)

TXT_FILES=$(wildcard books/*.txt)

DAT_FILES=$(patsubst books/%.txt, %.dat, $(TXT_FILES))

Generate summary table.

results.txt : $(DAT_FILES) $(ZIPF_SRC)

$(ZIPF_EXE) *.dat > $@

Count words.

.PHONY : dats

dats : $(DAT_FILES)

%.dat : books/%.txt $(COUNT_SRC)

$(COUNT_EXE) $< $*.dat

.PHONY : clean

clean :

rm -f $(DAT_FILES)

rm -f results.txt

.PHONY : variables

variables:

@echo TXT_FILES: $(TXT_FILES)

@echo DAT_FILES: $(DAT_FILES)� �

73

2.8. SELF-DOCUMENTING MAKEFILES CHAPTER 2. AUTOMATION WITH MAKE

2.8 Self-documenting Makefiles

In this section we learn about writing self-documenting Makefiles with built-in help.

Many linux commands, and programs that people have written that can be run from within
shell, support a --help flag to display more information on how to use the commands or
programs. In this spirit, it can be useful, both for ourselves and for others, to provide a
help target in our Makefiles. This can provide a summary of the names of the key targets
and what they do, so we don’t need to look at the Makefile itself unless we want to. For our
Makefile, running a help target might print:� �
$ make help

results.txt : Generate Zipf summary table.

dats : Count words in text files.

clean : Remove auto-generated files.� �
So, how would we implement this? We could write a rule like:� �
.PHONY : help

help :

@echo "results.txt : Generate Zipf summary table."

@echo "dats : Count words in text files."

@echo "clean : Remove auto-generated files."� �
But every time we add or remove a rule, or change the description of a rule, we would have
to update this rule too. It would be better if we could keep the descriptions of the rules by
the rules themselves and extract these descriptions automatically.

The linux can help us here. It provides a command called sed which stands for ‘stream
editor’. sed reads in some text, does some filtering, and writes out the filtered text.

So, we could write comments for our rules, and mark then up in a way which sed can detect.
Since Make uses # for comments, we can use ## for comments that describe what a rule
does and that we want sed to detect. For example:

74

CHAPTER 2. AUTOMATION WITH MAKE 2.8. SELF-DOCUMENTING MAKEFILES

� �
results.txt : Generate Zipf summary table.

results.txt : $(DAT_FILES) $(ZIPF_SRC)

$(ZIPF_EXE) *.dat > $@

dats : Count words in text files.

.PHONY : dats

dats : $(DAT_FILES)

%.dat : books/%.txt $(COUNT_SRC)

$(COUNT_EXE) $< $*.dat

clean : Remove auto-generated files.

.PHONY : clean

clean :

rm -f $(DAT_FILES)

rm -f results.txt

print : Print variables.

.PHONY : variables

variables:

@echo TXT_FILES: $(TXT_FILES)

@echo DAT_FILES: $(DAT_FILES)� �
We use ## so we can distinguish between comments that we want sed to automatically filter,
and other comments that may describe what other rules do, or that describe variables.

We can then write a help target that applies sed to our Makefile:� �
.PHONY : help

help : Makefile

@sed -n ’s/^##//p’ $<� �
This rule depends upon the Makefile itself. It runs sed on the first dependency of the rule,
which is our Makefile, and tells sed to get all the lines that begin with ##, which sed then
prints for us.

If we now run� �
$ make help� �
we get:

75

2.8. SELF-DOCUMENTING MAKEFILES CHAPTER 2. AUTOMATION WITH MAKE

� �
results.txt : Generate Zipf summary table.

dats : Count words in text files.

clean : Remove auto-generated files.

print : Print variables.� �
If we add, change or remove a target or rule, we now only need to remember to add, update
or remove a comment next to the rule. So long as we respect our convention of using ## for
such comments, then our help rule will take care of detecting these comments and printing
them for us.

76

Chapter 3

The Unix Shell

3.1 Introduction

In this section we (a) explain how the shell relates to the keyboard, the screen, the operating
system, and users’ programs, and (b) explain when and why command-line interfaces should
be used instead of graphical interfaces.

The Unix shell has been around longer than most of its users have been alive. It has
survived so long because it’s a power tool that allows people to do complex things with
just a few keystrokes. More importantly, it helps them automate repetitive tasks so they
aren’t typing the same things (or clicking the same buttons) over and over again. Use of the
shell is fundamental to using a wide range of other powerful tools and computing resources
(including “high-performance computing”). These lessons will start you on a path towards
using these resources effectively.

3.1.1 Prerequisites

This lesson guides you through the basics of file systems and the shell. If you have stored
files on a computer at all and recognize the word “file” and either “directory” or “folder”
(two common words for the same thing), you’re ready for this lesson.

You need to download some files to follow this lesson:

1. Download shell-novice-data.zip and move the file to your Desktop.

2. Unzip/extract the file (ask your instructor if you need help with this step). You should
end up with a new folder called data-shell on your Desktop.

77

http://swcarpentry.github.io/shell-novice/shell-novice-data.zip

3.1. INTRODUCTION CHAPTER 3. THE UNIX SHELL

3. Open a terminal and type:� �
$ cd� �

3.1.2 Introducing the Shell

At a high level, computers do four things:

• run programs

• store data

• communicate with each other

• interact with us

They can do the last of these in many different ways, including direct brain-computer links
and speech interfaces. Since these are still in their infancy, most of us use windows, icons,
mice, and pointers. These technologies didn’t become widespread until the 1980s.

From the 1950s to the 1980s, most people used line printers to get their results from
computers. Those devices only allowed output of the letters, numbers, and punctuation
found on a standard keyboard, so programming languages and interfaces had to be designed
around that constraint.

This kind of interface is called a command-line interface, or CLI, to distinguish it from
a graphical user interface, or GUI, which most people now use. The heart of a CLI is a
read-evaluate-print loop, or REPL: when the user types a command and then presses the
Enter key, the computer reads it, executes it, and prints its output. The user then types
another command, and so on until the user logs off.

This description makes it sound as though the user sends commands directly to the com-
puter, and the computer sends output directly to the user. In fact, there is usually a program
in between called a command shell. What the user types goes into the shell, which then
figures out what commands to run and orders the computer to execute them. Note, the
shell is called the shell because it encloses the operating system in order to hide some of its
complexity and make it simpler to interact with.

A shell is a program like any other. What’s special about it is that its job is to run other
programs rather than to do calculations itself. The most popular Unix shell is Bash, the
Bourne Again SHell (so-called because it’s derived from a shell written by Stephen Bourne).
Bash is the default shell on most modern implementations of Unix and in most packages
that provide Unix-like tools for Windows.

78

CHAPTER 3. THE UNIX SHELL 3.1. INTRODUCTION

Using Bash or any other shell sometimes feels more like programming than like using
a mouse. Commands are terse (often only a couple of characters long), their names are
frequently cryptic, and their output is lines of text rather than something visual like a graph.
On the other hand, the shell allows us to combine existing tools in powerful ways with
only a few keystrokes and to set up pipelines to handle large volumes of data automatically
thus improving productivity and reproducibility. In addition, the command line is often
the easiest way to interact with remote machines and supercomputers. Familiarity with
the shell is near essential to run a variety of specialized tools and resources including
high-performance computing systems. As clusters and cloud computing systems become
more popular for scientific data crunching, being able to interact with them is becoming
a necessary skill. We can build on the command-line skills covered here to tackle a wide
range of scientific questions and computational challenges.

3.1.3 Nelle’s Pipeline: Starting Point

Nelle Nemo, a marine biologist, has just returned from a six-month survey of the North
Pacific Gyre, where she has been sampling gelatinous marine life. She has 300 samples in
all, and now needs to:

1. Run each sample through an assay machine1 that will measure the relative abundance
of 300 different proteins. The machine’s output for a single sample is a file with one
line for each protein.

2. Calculate statistics for each of the proteins separately using a program called goostat.

3. Compare the statistics for each protein with corresponding statistics for each other
protein using a program called goodiff.

4. Write up results. Her supervisor would really like her to do this by the end of the
month so that her paper can appear in an upcoming special issue of Aquatic Goo
Letters.

It takes about half an hour for the assay machine to process each sample. The good news is
that it only takes two minutes to set each one up. Since her lab has eight assay machines
that she can use in parallel, this step will “only” take about two weeks.

The bad news is that if she has to run goostat and goodiff by hand, she’ll have to enter
filenames and click “OK” 45,150 times (300 runs of goostat, plus 300*299/2 (half of 300

1Per Wikipedia, an assay is an analytic procedure in laboratory medicine, pharmacology, environmental
biology and molecular biology for qualitatively assessing or quantitatively measuring the presence or amount
or the functional activity of a target entity.

79

3.1. INTRODUCTION CHAPTER 3. THE UNIX SHELL

times 299) runs of goodiff). At 30 seconds each, that will take more than two weeks. Not
only would she miss her paper deadline, the chances of her typing all of those commands
right are practically zero.

The next few lessons will explore what she should do instead. More specifically, they
explain how she can use a command shell to automate the repetitive steps in her processing
pipeline so that her computer can work 24 hours a day while she writes her paper. As
a bonus, once she has put a processing pipeline together, she will be able to use it again
whenever she collects more data.

80

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

3.2 Files and Directories

In this section we (a) learn the similarities and differences between a file and a directory,
(b) translate an absolute path into a relative path and vice versa, (c) construct absolute and
relative paths that identify specific files and directories, (d) explain the steps in the shell’s
read-run-print cycle, (e) identify the actual command, flags, and filenames in a command-line
call, (f) demonstrate the use of tab completion, and explain its advantages.

The part of the operating system responsible for managing files and directories is called the
file system. It organizes our data into files, which hold information, and directories (also
called “folders”), which hold files or other directories.

Several commands are frequently used to create, inspect, rename, and delete files and
directories. To start exploring them, let’s open a shell window:

3.2.1 Preparation Magic

If you type the command: PS1='$ ' into your shell, your window should look like our
example in this lesson. This isn’t necessary to follow along (in fact, your prompt may have
other helpful information you want to know about). This is up to you.� �
$� �
The dollar sign is a prompt, which shows us that the shell is waiting for input; your shell
may use a different character as a prompt and may add information before the prompt.
When typing commands, either from these lessons or from other sources, do not type the
prompt, only the commands that follow it.

Type the command whoami, then press the Enter key (sometimes marked Return) to send
the command to the shell. The command’s output is the ID of the current user, i.e., it shows
us who the shell thinks we are:� �
$ whoami

nelle� �
More specifically, when we type whoami the shell:

1. finds a program called whoami,

2. runs that program,

3. displays that program’s output, then

81

3.2. FILES AND DIRECTORIES CHAPTER 3. THE UNIX SHELL

4. displays a new prompt to tell us that it’s ready for more commands.

3.2.2 Username Variation

In this lesson, we have used the username nelle (associated with our hypothetical scientist
Nelle) in example input and output throughout. However, when you type this lesson’s
commands on your computer, you should see and use something different, namely, the
username associated with the user account on your computer. This username will be the
output from whoami. In what follows, nelle should always be replaced by that username.

Next, let’s find out where we are by running a command called pwd (which stands for “print
working directory”). At any moment, our current working directory is our current default
directory, i.e., the directory that the computer assumes we want to run commands in unless
we explicitly specify something else. Here, the computer’s response is /home/nelle, which
is Nelle’s home directory:� �
$ pwd

/home/nelle� �
3.2.3 Home Directory Variation

The home directory path will look different on different operating systems. On Linux it
may look like /home/nelle, and on Windows it will be similar to C:\Users\nelle. (Note
that it may look slightly different for different versions of Windows.)

To understand what a “home directory” is, let’s have a look at how the file system as a whole
is organized. For the sake of example, we’ll be illustrating the filesystem on our scientist
Nelle’s computer. After this illustration, you’ll be learning commands to explore your own
filesystem, which will be constructed in a similar way, but not be exactly identical.

On Nelle’s computer, the filesystem looks like this:

At the top is the root directory that holds everything else. We refer to it using a slash
character / on its own; this is the leading slash in /home/nelle.

Inside that directory are several other directories: bin (which is where some built-in
programs are stored), data (for miscellaneous data files), Users (where users’ personal
directories are located), tmp (for temporary files that don’t need to be stored long-term),
and so on.

82

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

/

bin tmp

usr home

root

Figure 3.1: The File System

83

3.2. FILES AND DIRECTORIES CHAPTER 3. THE UNIX SHELL

We know that our current working directory /home/nelle is stored inside /home because
/home is the first part of its name. Similarly, we know that /home is stored inside the root
directory / because its name begins with /.

3.2.4 Slashes

Notice that there are two meanings for the / character. When it appears at the front of a file
or directory name, it refers to the root directory. When it appears inside a name, it’s just a
separator.

Underneath /home, we find one directory for each user with an account on Nelle’s machine,
her colleagues the Mummy and Wolfman.

The Mummy’s files are stored in /home/imhotep, Wolfman’s in /home/larry, and Nelle’s
in /home/nelle. Because Nelle is the user in our examples here, this is why we get
/home/nelle as our home directory. Typically, when you open a new command prompt
you will be in your home directory to start.

Now let’s learn the command that will let us see the contents of our own filesystem. We can
see what’s in our home directory by running ls, which stands for “listing”:� �
$ ls

Applications Documents Library Music Public

Desktop Downloads Movies Pictures� �
(Again, your results may be slightly different depending on your operating system and how
you have customized your filesystem.)

ls prints the names of the files and directories in the current directory in alphabetical order,
arranged neatly into columns. We can make its output more comprehensible by using the
flag -F, which tells ls to add a trailing / to the names of directories:� �
$ ls -F

Applications/ Documents/ Library/ Music/ Public/

Desktop/ Downloads/ Movies/ Pictures/� �
Here, we can see that our home directory contains mostly sub-directories. Any names in
your output that don’t have trailing slashes, are plain old files. And note that there is a
space between ls and -F: without it, the shell thinks we’re trying to run a command called
ls-F, which doesn’t exist.

84

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

/

bin tmp

usr home

nelleimhotep

larry

Figure 3.2: Home Directories

85

3.2. FILES AND DIRECTORIES CHAPTER 3. THE UNIX SHELL

We can also use ls to see the contents of a different directory. Let’s take a look at our
Desktop directory by running ls -F Desktop, i.e., the command ls with the arguments
-F and Desktop. The second argument — the one without a leading dash — tells ls that we
want a listing of something other than our current working directory:� �
$ ls -F Desktop

data-shell/� �
Your output should be a list of all the files and sub-directories on your Desktop, including
the data-shell directory you downloaded at the start of the lesson. Take a look at your
Desktop to confirm that your output is accurate.

As you may now see, using a bash shell is strongly dependent on the idea that your files
are organized in an hierarchical file system. Organizing things hierarchically in this way
helps us keep track of our work: it’s possible to put hundreds of files in our home directory,
just as it’s possible to pile hundreds of printed papers on our desk, but it’s a self-defeating
strategy.

Now that we know the data-shell directory is located on our Desktop, we can do two
things.

First, we can look at its contents, using the same strategy as before, passing a directory
name to ls:� �
$ ls -F Desktop/data-shell

creatures/ molecules/ notes.txt solar.pdf

data/ north-pacific-gyre/ pizza.cfg writing/� �
Second, we can actually change our location to a different directory, so we are no longer
located in our home directory.

The command to change locations is cd followed by a directory name to change our working
directory. cd stands for “change directory”, which is a bit misleading: the command doesn’t
change the directory, it changes the shell’s idea of what directory we are in.

Let’s say we want to move to the data directory we saw above. We can use the following
series of commands to get there:� �
$ cd Desktop

$ cd data-shell

$ cd data

86

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

These commands will move us from our home directory onto our Desktop, then into the
data-shell directory, then into the data directory. cd doesn’t print anything, but if we run
pwd after it, we can see that we are now in /home/nelle/Desktop/data-shell/data. If we
run lswithout arguments now, it lists the contents of /home/nelle/Desktop/data-shell/data,
because that’s where we now are:� �
$ pwd

/home/nelle/Desktop/data-shell/data� �� �
$ ls -F

amino-acids.txt elements/ pdb/ salmon.txt

animals.txt morse.txt planets.txt sunspot.txt� �
We now know how to go down the directory tree: how do we go up? We might try the
following:� �
$ cd data-shell

-bash: cd: data-shell: No such file or directory� �
But we get an error! Why is this?

With our methods so far, cd can only see sub-directories inside your current directory.
There are different ways to see directories above your current location; we’ll start with the
simplest.

There is a shortcut in the shell to move up one directory level that looks like this:� �
$ cd ..� �
.. is a special directory name meaning “the directory containing this one”, or more
succinctly, the parent of the current directory. Sure enough, if we run pwd after running cd

.., we’re back in /home/nelle/Desktop/data-shell:� �
$ pwd

/home/nelle/Desktop/data-shell� �
The special directory .. doesn’t usually show up when we run ls. If we want to display it,
we can give ls the -a flag:� �
$ ls -F -a

87

3.2. FILES AND DIRECTORIES CHAPTER 3. THE UNIX SHELL

./ creatures/ notes.txt

../ data/ pizza.cfg

.bash_profile molecules/ solar.pdf

Desktop/ north-pacific-gyre/ writing/� �
-a stands for “show all”; it forces ls to show us file and directory names that begin with
., such as .. (which, if we’re in /home/nelle, refers to the /Users directory) As you can
see, it also displays another special directory that’s just called ., which means “the current
working directory”. It may seem redundant to have a name for it, but we’ll see some uses
for it soon.

3.2.5 Other Hidden Files

In addition to the hidden directories .. and ., you may also see a file called .bash_profile.
This file usually contains shell configuration settings. You may also see other files and
directories beginning with .. These are usually files and directories that are used to
configure different programs on your computer. The prefix . is used to prevent these
configuration files from cluttering the terminal when a standard ls command is used.

These then, are the basic commands for navigating the filesystem on your computer: pwd,
ls and cd. Let’s explore some variations on those commands. What happens if you type cd
on its own, without giving a directory?� �
$ cd� �
How can you check what happened? pwd gives us the answer!� �
$ pwd

/home/nelle� �
It turns out that cd without an argument will return you to your home directory, which is
great if you’ve gotten lost in your own filesystem.

Let’s try returning to the data directory from before. Last time, we used three commands,
but we can actually string together the list of directories to move to data in one step:� �
$ cd Desktop/data-shell/data

Check that we’ve moved to the right place by running pwd and ls -F.

88

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

If we want to move up one level from the shell directory, we could use cd ... But there is
another way to move to any directory, regardless of your current location.

So far, when specifying directory names, or even a directory path (as above), we have been
using relative paths. When you use a relative path with a command like ls or cd, it tries
to find that location from where we are, rather than from the root of the file system.

However, it is possible to specify the absolute path to a directory by including its entire
path from the root directory, which is indicated by a leading slash. The leading / tells the
computer to follow the path from the root of the file system, so it always refers to exactly
one directory, no matter where we are when we run the command.

This allows us to move to our data-shell directory from anywhere on the filesystem
(including from inside data). To find the absolute path we’re looking for, we can use pwd

and then extract the piece we need to move to data-shell.� �
$ pwd

/home/nelle/Desktop/data-shell/data� �� �
$ cd /home/nelle/Desktop/data-shell

Run pwd and ls -F to ensure that we’re in the directory we expect.

3.2.6 Two More Shortcuts

The shell interprets the character ~ (tilde) at the start of a path to mean “the current user’s
home directory”. For example, if Nelle’s home directory is /home/nelle, then ~/data is
equivalent to /home/nelle/data. This only works if it is the first character in the path:
here/there/~/elsewhere is not here/there/home/nelle/elsewhere.

Another shortcut is the - (dash) character. cd will translate - into the previous directory I
was in, which is faster than having to remember, then type, the full path. This is a very
efficient way of moving back and forth between directories. The difference between cd ..

and cd - is that the former brings you up, while the latter brings you back.

Nelle’s Pipeline: Organizing Files

Knowing just this much about files and directories, Nelle is ready to organize the files that
the protein assay machine will create. First, she creates a directory called north-pacific-gyre

(to remind herself where the data came from). Inside that, she creates a directory called

89

3.2. FILES AND DIRECTORIES CHAPTER 3. THE UNIX SHELL

2012-07-03, which is the date she started processing the samples. She used to use names
like conference-paper and revised-results, but she found them hard to understand
after a couple of years. (The final straw was when she found herself creating a directory
called revised-revised-results-3.)

3.2.7 Output sorting

Nelle names her directories “year-month-day”, with leading zeroes for months and days,
because the shell displays file and directory names in alphabetical order. If she used month
names, December would come before July; if she didn’t use leading zeroes, November (‘11’)
would come before July (‘7’). Similarly, putting the year first means that June 2012 will
come before June 2013.

Each of her physical samples is labelled according to her lab’s convention with a unique
ten-character ID, such as “NENE01729A”. This is what she used in her collection log to
record the location, time, depth, and other characteristics of the sample, so she decides to
use it as part of each data file’s name. Since the assay machine’s output is plain text, she
will call her files NENE01729A.txt, NENE01812A.txt, and so on. All 1520 files will go into
the same directory.

If she is in her home directory, Nelle can see what files she has using the command:� �
$ ls north-pacific-gyre/2012-07-03/

This is a lot to type, but she can let the shell do most of the

work

through what is called \textbf{tab completion}. If she types:

\begin{lstlisting}[style=commandprompt]

$ ls nor� �
and then presses tab (the tab key on her keyboard), the shell automatically completes the
directory name for her:� �
$ ls north-pacific-gyre/

If she presses tab again, Bash will add 2012-07-03/ to the command, since it’s the only
possible completion. Pressing tab again does nothing, since there are 19 possibilities;
pressing tab twice brings up a list of all the files, and so on. This is called tab completion,
and we will see it in many other tools as we go on.

90

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

3.2.8 Questions

Many ways to do the same thing - absolute vs relative paths: Starting from a filesystem
location of /home/amanda/data/, which of the following commands could Amanda
use to navigate to her home directory, which is /home/amanda?

1. cd .

2. cd /

3. cd /home/amanda

4. cd ../..

5. cd ~

6. cd home

7. cd ~/data/..

8. cd

9. cd ..

Relative path resolution: Using the filesystem diagram below, if pwd displays /home/thing,
what will ls ../backup display?

1. ../backup: No such file or directory

2. 2012-12-01 2013-01-08 2013-01-27

3. 2012-12-01/ 2013-01-08/ 2013-01-27/

4. original pnas_final pnas_sub

ls reading comprehension Assuming a directory structure as in the above Figure (File
System for Challenge Questions), if pwd displays /home/backup, and -r tells ls to
display things in reverse order, what command will display:

pnas_sub/ pnas_final/ original/

1. ls pwd

2. ls -r -F

3. ls -r -F /home/backup

4. Either #2 or #3 above, but not #1.

91

3.2. FILES AND DIRECTORIES CHAPTER 3. THE UNIX SHELL

Users

thing

backup

2012-12-01 2013-01-08 2013-01-27

backup

original pnas_final pnas_sub

Figure 3.3: File System for Challenge Questions

92

CHAPTER 3. THE UNIX SHELL 3.2. FILES AND DIRECTORIES

Exploring more ls arguments What does the command ls do when used with the -s and
-h arguments?

Listing Recursively and By Time The command ls -R lists the contents of directories re-
cursively, i.e., lists their sub-directories, sub-sub-directories, and so on in alphabetical
order at each level. The command ls -t lists things by time of last change, with most
recently changed files or directories first. In what order does ls -R -t display things?
(Hint: ls -l use a long listing format to view timestamps.)

93

3.3. CREATING THINGS CHAPTER 3. THE UNIX SHELL

3.3 Creating Things

In this section we learn how to (a) create a directory hierarchy that matches a given diagram,
(b) create files in that hierarchy using an editor or by copying and renaming existing files,
(c) display the contents of a directory using the command line, and (d) delete specified files
and/or directories.

We now know how to explore files and directories, but how do we create them in the first
place? Let’s go back to our data-shell directory on the Desktop and use ls -F to see what
it contains:� �
$ pwd

/home/nelle/Desktop/data-shell� �� �
$ ls -F

creatures/ molecules/ pizza.cfg

data/ north-pacific-gyre/ solar.pdf

Desktop/ notes.txt writing/� �
Let’s create a new directory called thesis using the command mkdir thesis (which has
no output):� �
$ mkdir thesis

As you might (or might not) guess from its name, mkdir means “make directory”. Since
thesis is a relative path (i.e., doesn’t have a leading slash), the new directory is created in
the current working directory:� �
$ ls -F

creatures/ north-pacific-gyre/ thesis/

data/ notes.txt writing/

Desktop/ pizza.cfg

molecules/ solar.pdf� �
However, there’s nothing in it yet:� �
$ ls -F thesis

Let’s change our working directory to thesis using cd, then run a text editor called Nano
to create a file called draft.txt:

94

CHAPTER 3. THE UNIX SHELL 3.3. CREATING THINGS

� �
$ cd thesis

$ nano draft.txt

3.3.1 Which Editor?

When we say, “nano is a text editor,” we really do mean “text”: it can only work with
plain character data, not tables, images, or any other human-friendly media. We use it in
examples because almost anyone can drive it anywhere without training, but please use
something more powerful for real work. On Unix systems (such as Linux and Mac OS X),
many programmers use Emacs or Vim (both of which are completely unintuitive, even by
Unix standards), or a graphical editor such as Gedit.

No matter what editor you use, you will need to know where it searches for and saves files.
If you start it from the shell, it will (probably) use your current working directory as its
default location. If you use your computer’s start menu, it may want to save files in your
desktop or documents directory instead. You can change this by navigating to another
directory the first time you “Save As. . . ”

Let’s type in a few lines of text. Once we’re happy with out text, we can press Ctrl-O (press
the Ctrl key and, while holding it down, press the O key) to write our data to disk (we’ll
be asked what file we want to save this to: press Return to accept the suggested default of
draft.txt).

Figure 3.4: Nano in action

Once our file is saved, we can use Ctrl-X to quit the editor and return to the shell.

nano doesn’t leave any output on the screen after it exits, but ls now shows that we have
created a file called draft.txt:

95

3.3. CREATING THINGS CHAPTER 3. THE UNIX SHELL

� �
$ ls

draft.txt

\end{verbatim}

Let’s tidy up by running \texttt{rm\ draft.txt}:

\begin{lstlisting}[style=promptonly]

$ rm draft.txt� �
This command removes files (rm is short for “remove”). If we run ls again, its output is
empty once more, which tells us that our file is gone:� �
$ ls� �
3.3.2 Deleting Is Forever

The Unix shell doesn’t have a trash bin that we can recover deleted files from (though most
graphical interfaces to Unix do). Instead, when we delete files, they are unhooked from
the file system so that their storage space on disk can be recycled. Tools for finding and
recovering deleted files do exist, but there’s no guarantee they’ll work in any particular
situation, since the computer may recycle the file’s disk space right away.

Let’s re-create that file and then move up one directory to /home/nelle using cd ..:� �
$ pwd

/home/nelle/thesis� �� �
$ nano draft.txt

$ ls

draft.txt� �� �
$ cd ..� �
If we try to remove the entire thesis directory using rm thesis, we get an error message:� �
$ rm thesis

rm: cannot remove ‘thesis’: Is a directory� �
96

CHAPTER 3. THE UNIX SHELL 3.3. CREATING THINGS

This happens because rm only works on files, not directories. The right command is rmdir,
which is short for “remove directory”. It doesn’t work yet either, though, because the
directory we’re trying to remove isn’t empty:� �
$ rmdir thesis

rmdir: failed to remove ‘thesis’: Directory not empty� �
This little safety feature can save you a lot of grief, particularly if you are a bad typist. To
really get rid of thesis we must first delete the file draft.txt:� �
$ rm thesis/draft.txt� �
The directory is now empty, so rmdir can delete it:� �
$ rmdir thesis� �
3.3.3 With Great Power Comes Great Responsibility

Removing the files in a directory just so that we can remove the directory quickly becomes
tedious. Instead, we can use rm with the -r flag (which stands for “recursive”):� �
$ rm -r thesis� �
This removes everything in the directory, then the directory itself. If the directory contains
sub-directories, rm -r does the same thing to them, and so on. It’s very handy, but can do a
lot of damage if used without care.

Let’s create that directory and file one more time. (Note that this time we’re running nano

with the path thesis/draft.txt, rather than going into the thesis directory and running
nano on draft.txt there.)� �
$ pwd

/home/nelle� �� �
$ mkdir thesis� �� �
$ nano thesis/draft.txt

$ ls thesis

draft.txt� �
97

3.3. CREATING THINGS CHAPTER 3. THE UNIX SHELL

draft.txt isn’t a particularly informative name, so let’s change the file’s name using mv,
which is short for “move”:� �
$ mv thesis/draft.txt thesis/quotes.txt

The first parameter tells mv what we’re “moving”, while the second is where it’s to go. In
this case, we’re moving thesis/draft.txt to thesis/quotes.txt, which has the same
effect as renaming the file. Sure enough, ls shows us that thesis now contains one file
called quotes.txt:� �
$ ls thesis

quotes.txt� �
One has to be careful when specifying the target file name, since mv will silently overwrite
any existing file with the same name, which could lead to data loss. An additional flag,
mv -i (or mv --interactive), can be used to make mv ask you for confirmation before
overwriting.

Just for the sake of inconsistency, mv also works on directories — there is no separate mvdir
command.

Let’s move quotes.txt into the current working directory. We use mv once again, but this
time we’ll just use the name of a directory as the second parameter to tell mv that we want
to keep the filename, but put the file somewhere new. (This is why the command is called
“move”.) In this case, the directory name we use is the special directory name . that we
mentioned earlier.� �
$ mv thesis/quotes.txt .� �
The effect is to move the file from the directory it was in to the current working directory.
ls now shows us that thesis is empty:� �
$ ls thesis� �
Further, ls with a filename or directory name as a parameter only lists that file or directory.
We can use this to see that quotes.txt is still in our current directory:� �
$ ls quotes.txt

quotes.txt� �
The cp command works very much like mv, except it copies a file instead of moving it. We
can check that it did the right thing using ls with two paths as parameters — like most
Unix commands, ls can be given thousands of paths at once:

98

CHAPTER 3. THE UNIX SHELL 3.3. CREATING THINGS

� �
$ cp quotes.txt thesis/quotations.txt

$ ls quotes.txt thesis/quotations.txt

quotes.txt thesis/quotations.txt� �
To prove that we made a copy, let’s delete the quotes.txt file in the current directory and
then run that same ls again.� �
$ rm quotes.txt

$ ls quotes.txt thesis/quotations.txt

ls: cannot access quotes.txt: No such file or directory

thesis/quotations.txt� �
This time it tells us that it can’t find quotes.txt in the current directory, but it does find
the copy in thesis that we didn’t delete.

3.3.4 What’s In A Name?

You may have noticed that all of Nelle’s files’ names are “something dot something”, and in
this part of the lesson, we always used the extension .txt. This is just a convention: we can
call a file mythesis or almost anything else we want. However, most people use two-part
names most of the time to help them (and their programs) tell different kinds of files apart.
The second part of such a name is called the filename extension, and indicates what type
of data the file holds: .txt signals a plain text file, .pdf indicates a PDF document, .cfg is
a configuration file full of parameters for some program or other, .png is a PNG image, and
so on.

This is just a convention, albeit an important one. Files contain bytes: it’s up to us and our
programs to interpret those bytes according to the rules for plain text files, PDF documents,
configuration files, images, and so on.

Naming a PNG image of a whale as whale.mp3 doesn’t somehow magically turn it into a
recording of whalesong, though it might cause the operating system to try to open it with a
music player when someone double-clicks it.

3.3.5 Questions

Renaming files: Suppose that you created a .txt file in your current directory to contain
a list of the statistical tests you will need to do to analyze your data, and named it:

99

3.3. CREATING THINGS CHAPTER 3. THE UNIX SHELL

statstics.txt

After creating and saving this file you realize you misspelled the filename! You want
to correct the mistake, which of the following commands could you use to do so?

1. cp statstics.txt statistics.txt

2. mv statstics.txt statistics.txt

3. mv statstics.txt .

4. cp statstics.txt .

Moving and Copying: What is the output of the closing ls command in the sequence
shown below?

$ pwd

/home/jamie/data

$ ls

proteins.dat

$ mkdir recombine

$ mv proteins.dat recombine

$ cp recombine/proteins.dat ../proteins-saved.dat

$ ls

1. proteins-saved.dat recombine

2. recombine

3. proteins.dat recombine

4. proteins-saved.dat

Organizing Directories and Files: Jamie is working on a project and she sees that her files
aren’t very well organized:

$ ls -F

analyzed/ fructose.dat raw/ sucrose.dat

The fructose.dat and sucrose.dat files contain output from her data analysis.
What command(s) covered in this lesson does she need to run so that the commands
below will produce the output shown?

$ ls -F

analyzed/ raw/

$ ls analyzed

fructose.dat sucrose.dat

100

CHAPTER 3. THE UNIX SHELL 3.3. CREATING THINGS

Copy with Multiple Filenames: What does cp do when given several filenames and a
directory name, as in:

$ mkdir backup

$ cp thesis/citations.txt thesis/quotations.txt backup

What does cp do when given three or more filenames, as in:

$ ls -F

intro.txt methods.txt survey.txt

$ cp intro.txt methods.txt survey.txt

Listing Recursively and By Time: The command ls -R lists the contents of directories
recursively, i.e., lists their sub-directories, sub-sub-directories, and so on in alphabeti-
cal order at each level. The command ls -t lists things by time of last change, with
most recently changed files or directories first. In what order does ls -R -t display
things?

101

3.4. PIPES AND FILTERS CHAPTER 3. THE UNIX SHELL

3.4 Pipes and Filters

In this section we learn how tp (a) redirect a command’s output to a file, (b) process a file
instead of keyboard input using redirection, (c) construct command pipelines with two or
more stages, (d) explain what usually happens if a program or pipeline isn’t given any input
to process, (e) explain Unix’s “small pieces, loosely joined” philosophy.

Now that we know a few basic commands, we can finally look at the shell’s most powerful
feature: the ease with which it lets us combine existing programs in new ways. We’ll start
with a directory called molecules that contains six files describing some simple organic
molecules. The .pdb extension indicates that these files are in Protein Data Bank format, a
simple text format that specifies the type and position of each atom in the molecule.� �
$ ls molecules

cubane.pdb ethane.pdb methane.pdb

octane.pdb pentane.pdb propane.pdb� �
Let’s go into that directory with cd and run the command wc *.pdb. wc is the “word count”
command: it counts the number of lines, words, and characters in files. The * in *.pdb

matches zero or more characters, so the shell turns *.pdb into a list of all .pdb files in the
current directory:� �
$ cd molecules

$ wc *.pdb

20 156 1158 cubane.pdb

12 84 622 ethane.pdb

9 57 422 methane.pdb

30 246 1828 octane.pdb

21 165 1226 pentane.pdb

15 111 825 propane.pdb

107 819 6081 total� �
3.4.1 Wildcards

* is a wildcard. It matches zero or more characters, so *.pdbmatches ethane.pdb, propane.pdb,
and every file that ends with ‘.pdb’. On the other hand, p*.pdb only matches pentane.pdb
and propane.pdb, because the ‘p’ at the front only matches filenames that begin with the
letter ‘p’.

102

CHAPTER 3. THE UNIX SHELL 3.4. PIPES AND FILTERS

? is also a wildcard, but it only matches a single character. This means that p?.pdb matches
pi.pdb or p5.pdb, but not propane.pdb. We can use any number of wildcards at a time: for
example, p*.p?* matches anything that starts with a ‘p’ and ends with ‘.’, ‘p’, and at least
one more character (since the ? has to match one character, and the final * can match any
number of characters). Thus, p*.p?* would match preferred.practice, and even p.pi

(since the first * can match no characters at all), but not quality.practice (doesn’t start
with ‘p’) or preferred.p (there isn’t at least one character after the ‘.p’).

When the shell sees a wildcard, it expands the wildcard to create a list of matching filenames
before running the command that was asked for. As an exception, if a wildcard expression
does not match any file, Bash will pass the expression as a parameter to the command as
it is. For example typing ls *.pdf in the molecules directory (which contains only files
with names ending with .pdb) results in an error message that there is no file called *.pdf.
However, generally commands like wc and ls see the lists of file names matching these
expressions, but not the wildcards themselves. It is the shell, not the other programs, that
deals with expanding wildcards, and this is another example of orthogonal design.

3.4.2 Using wildcards

When run in the molecules directory, which ls command will produce this output?

ethane.pdb methane.pdb

1. ls *t*ane.pdb

2. ls *t?ne.*

3. ls *t??ne.pdb

4. ls ethane.*

If we run wc -l instead of just wc, the output shows only the number of lines per file:� �
$ wc -l *.pdb

20 cubane.pdb

12 ethane.pdb

9 methane.pdb

30 octane.pdb

21 pentane.pdb

15 propane.pdb

107 total� �
103

3.4. PIPES AND FILTERS CHAPTER 3. THE UNIX SHELL

We can also use -w to get only the number of words, or -c to get only the number of
characters.

Which of these files is shortest? It’s an easy question to answer when there are only six files,
but what if there were 6000? Our first step toward a solution is to run the command:� �
$ wc -l *.pdb \textgreater lengths.txt

The greater than symbol, >, tells the shell to redirect the command’s output to a file instead
of printing it to the screen. (This is why there is no screen output: everything that wc would
have printed has gone into the file lengths.txt instead.) The shell will create the file if it
doesn’t exist. If the file exists, it will be silently overwritten, which may lead to data loss
and thus requires some caution. ls lengths.txt confirms that the file exists:� �
$ ls lengths.txt

lengths.txt� �
We can now send the content of lengths.txt to the screen using cat lengths.txt. cat
stands for “concatenate”: it prints the contents of files one after another. There’s only one
file in this case, so cat just shows us what it contains:� �
$ cat lengths.txt

20 cubane.pdb

12 ethane.pdb

9 methane.pdb

30 octane.pdb

21 pentane.pdb

15 propane.pdb

107 total� �
3.4.3 Output page by page

We’ll continue to use cat in this lesson, for convenience and consistency, but it has the
disadvantage that it always dumps the whole file onto your screen. More useful in practice
is the command less, which you use with $ less lengths.txt. This displays a screenful
of the file, and then stops. You can go forward one screenful by pressing the spacebar, or
back one by pressing b. Press q to quit.

Now let’s use the sort command to sort its contents. We will also use the -n flag to specify
that the sort is numerical instead of alphabetical. This does not change the file; instead, it
sends the sorted result to the screen:

104

CHAPTER 3. THE UNIX SHELL 3.4. PIPES AND FILTERS

� �
$ sort -n lengths.txt

9 methane.pdb

12 ethane.pdb

15 propane.pdb

20 cubane.pdb

21 pentane.pdb

30 octane.pdb

107 total� �
We can put the sorted list of lines in another temporary file called sorted-lengths.txt by
putting > sorted-lengths.txt after the command, just as we used > lengths.txt to put
the output of wc into lengths.txt. Once we’ve done that, we can run another command
called head to get the first few lines in sorted-lengths.txt:� �
$ sort -n lengths.txt \textgreater sorted-lengths.txt

$ head -n 1 sorted-lengths.txt

9 methane.pdb� �
Using the parameter -n 1 with head tells it that we only want the first line of the file; -n
20 would get the first 20, and so on. Since sorted-lengths.txt contains the lengths of our
files ordered from least to greatest, the output of head must be the file with the fewest lines.

If you think this is confusing, you’re in good company: even once you understand what wc,
sort, and head do, all those intermediate files make it hard to follow what’s going on. We
can make it easier to understand by running sort and head together:� �
$ sort -n lengths.txt | head -n 1

9 methane.pdb� �
The vertical bar, |, between the two commands is called a pipe. It tells the shell that we
want to use the output of the command on the left as the input to the command on the right.
The computer might create a temporary file if it needs to, or copy data from one program to
the other in memory, or something else entirely; we don’t have to know or care.

Nothing prevents us from chaining pipes consecutively. That is, we can for example send
the output of wc directly to sort, and then the resulting output to head. Thus we first use a
pipe to send the output of wc to sort:� �
$ wc -l *.pdb | sort -n

105

3.4. PIPES AND FILTERS CHAPTER 3. THE UNIX SHELL

9 methane.pdb

12 ethane.pdb

15 propane.pdb

20 cubane.pdb

21 pentane.pdb

30 octane.pdb

107 total� �
And now we send the output ot this pipe, through another pipe, to head, so that the full
pipeline becomes:� �
$ wc -l *.pdb | sort -n | head -n 1

9 methane.pdb� �
This is exactly like a mathematician nesting functions like log(3x) and saying “the log of
three times x”. In our case, the calculation is “head of sort of line count of *.pdb”.

Here’s what actually happens behind the scenes when we create a pipe. When a computer
runs a program — any program — it creates a process in memory to hold the program’s
software and its current state. Every process has an input channel called standard input.
(By this point, you may be surprised that the name is so memorable, but don’t worry: most
Unix programmers call it “stdin”. Every process also has a default output channel called
standard output (or “stdout”).

The shell is actually just another program. Under normal circumstances, whatever we type
on the keyboard is sent to the shell on its standard input, and whatever it produces on
standard output is displayed on our screen. When we tell the shell to run a program, it
creates a new process and temporarily sends whatever we type on our keyboard to that
process’s standard input, and whatever the process sends to standard output to the screen.

Here’s what happens when we run wc -l *.pdb > lengths.txt. The shell starts by telling
the computer to create a new process to run the wc program. Since we’ve provided some
filenames as parameters, wc reads from them instead of from standard input. And since
we’ve used > to redirect output to a file, the shell connects the process’s standard output to
that file.

If we run wc -l *.pdb | sort -n instead, the shell creates two processes (one for each
process in the pipe) so that wc and sort run simultaneously. The standard output of wc
is fed directly to the standard input of sort; since there’s no redirection with >, sort’s
output goes to the screen. And if we run wc -l *.pdb | sort -n | head -n 1, we get

106

CHAPTER 3. THE UNIX SHELL 3.4. PIPES AND FILTERS

three processes with data flowing from the files, through wc to sort, and from sort through
head to the screen.

wc -l *.pdb

wc -l *.pdb

$

Output in Shell

OUT

wc -l *.pdb

Output in File

OUT

wc -l *.pdb

wc -l *.pdb OUT

$

Output in Shell

sort -nIN OUT IN OUThead -1

lengths

$

$ | sort -n | head -1wc -l *.pdb$ | sort -n | head -1

wc -l *.pdb$ > lengths

Figure 3.5: Redirects and Pipes

This simple idea is why Unix has been so successful. Instead of creating enormous programs
that try to do many different things, Unix programmers focus on creating lots of simple
tools that each do one job well, and that work well with each other. This programming
model is called “pipes and filters”. We’ve already seen pipes; a filter is a program like wc or
sort that transforms a stream of input into a stream of output. Almost all of the standard
Unix tools can work this way: unless told to do otherwise, they read from standard input,
do something with what they’ve read, and write to standard output.

The key is that any program that reads lines of text from standard input and writes lines of
text to standard output can be combined with every other program that behaves this way as
well. You can and should write your programs this way so that you and other people can put
those programs into pipes to multiply their power.

107

3.4. PIPES AND FILTERS CHAPTER 3. THE UNIX SHELL

3.4.4 Redirecting Input

As well as using > to redirect a program’s output, we can use < to redirect its input, i.e.,
to read from a file instead of from standard input. For example, instead of writing wc

ammonia.pdb, we could write wc < ammonia.pdb. In the first case, wc gets a command line
parameter telling it what file to open. In the second, wc doesn’t have any command line
parameters, so it reads from standard input, but we have told the shell to send the contents
of ammonia.pdb to wc’s standard input.

3.4.5 Nelle’s Pipeline: Checking Files

Nelle has run her samples through the assay machines and created 1520 files in the
north-pacific-gyre/2012-07-03 directory described earlier. As a quick sanity check,
starting from her home directory, Nelle types:� �
$ cd north-pacific-gyre/2012-07-03

$ wc -l *.txt

The output is 1520 lines that look like this:
300 NENE01729A.txt

300 NENE01729B.txt

300 NENE01736A.txt

300 NENE01751A.txt

300 NENE01751B.txt

300 NENE01812A.txt

... ...� �
Now she types this:� �
$ wc -l *.txt | sort -n | head -n 5

240 NENE02018B.txt

300 NENE01729A.txt

300 NENE01729B.txt

300 NENE01736A.txt

300 NENE01751A.txt� �
Whoops: one of the files is 60 lines shorter than the others. When she goes back and checks
it, she sees that she did that assay at 8:00 on a Monday morning — someone was probably
in using the machine on the weekend, and she forgot to reset it. Before re-running that
sample, she checks to see if any files have too much data:

108

CHAPTER 3. THE UNIX SHELL 3.4. PIPES AND FILTERS

� �
$ wc -l *.txt | sort -n | tail -n 5

300 NENE02040B.txt

300 NENE02040Z.txt

300 NENE02043A.txt

300 NENE02043B.txt

5082 total� �
Those numbers look good — but what’s that ‘Z’ doing there in the third-to-last line? All of
her samples should be marked ‘A’ or ‘B’; by convention, her lab uses ‘Z’ to indicate samples
with missing information. To find others like it, she does this:� �
$ ls *Z.txt

NENE01971Z.txt NENE02040Z.txt� �
Sure enough, when she checks the log on her laptop, there’s no depth recorded for either of
those samples. Since it’s too late to get the information any other way, she must exclude
those two files from her analysis. She could just delete them using rm, but there are actually
some analyses she might do later where depth doesn’t matter, so instead, she’ll just be
careful later on to select files using the wildcard expression *[AB].txt. As always, the *
matches any number of characters; the expression [AB] matches either an ‘A’ or a ‘B’, so
this matches all the valid data files she has.

3.4.6 Questions

What does sort -n do? If we run sort on this file:

10

2

19

22

6

the output is:

10

19

2

22

6

109

3.4. PIPES AND FILTERS CHAPTER 3. THE UNIX SHELL

If we run sort -n on the same input, we get this instead:

2

6

10

19

22

Explain why -n has this effect.

What does < mean? What is the difference between:

wc -l < mydata.dat

and:

wc -l mydata.dat

What does >> mean? What is the difference between:

echo hello > testfile01.txt

and:

echo hello >> testfile02.txt

Hint: Try executing each command twice in a row and then examining the output
files.

Piping commands together: In our current directory, we want to find the 3 files which
have the least number of lines. Which command listed below would work?

1. wc -l * > sort -n > head -n 3

2. wc -l * | sort -n | head -n 1-3

3. wc -l * | head -n 3 | sort -n

4. wc -l * | sort -n | head -n 3

Why does uniq only remove adjacent duplicates? The command uniq removes adjacent
duplicated lines from its input. For example, if a file salmon.txt contains:

coho

coho

steelhead

coho

steelhead

steelhead

110

CHAPTER 3. THE UNIX SHELL 3.4. PIPES AND FILTERS

then uniq salmon.txt produces:

coho

steelhead

coho

steelhead

Why do you think uniq only removes adjacent duplicated lines? (Hint: think about
very large data sets.) What other command could you combine with it in a pipe to
remove all duplicated lines?

Pipe reading comprehension: A file called animals.txt contains the following data:

2012-11-05,deer

2012-11-05,rabbit

2012-11-05,raccoon

2012-11-06,rabbit

2012-11-06,deer

2012-11-06,fox

2012-11-07,rabbit

2012-11-07,bear

What text passes through each of the pipes and the final redirect in the pipeline
below?

cat animals.txt | head -n 5 | tail -n 3 | sort -r > final.txt

Pipe construction: For the file animals.txt from the previous exercise, the command:

$ cut -d , -f 2 animals.txt

produces the following output:

deer

rabbit

raccoon

rabbit

deer

fox

rabbit

bear

What other command(s) could be added to this in a pipeline to find out what animals
the file contains (without any duplicates in their names)?

111

3.5. FINDING THINGS CHAPTER 3. THE UNIX SHELL

3.5 Finding Things

In this section we learn to (a) use grep to select lines from text files that match simple
patterns, (b) use find to find files whose names match simple patterns, (c) use the output
of one command as the command-line parameters to another command, (d) explain what is
meant by “text” and “binary” files, and why many common tools don’t handle the latter well.

In the same way that many of us now use “Google” as a verb meaning “to find”, Unix
programmers often use the word “grep”. “grep” is a contraction of “global/regular expres-
sion/print”, a common sequence of operations in early Unix text editors. It is also the name
of a very useful command-line program.

grep finds and prints lines in files that match a pattern. For our examples, we will use a file
that contains three haikus taken from a 1998 competition in Salon magazine. For this set of
examples we’re going to be working in the writing subdirectory:� �
$ cd

$ cd writing

$ cat haiku.txt

The Tao that is seen

Is not the true Tao, until

You bring fresh toner.

With searching comes loss

and the presence of absence:

"My Thesis" not found.

Yesterday it worked

Today it is not working

Software is like that.� �
Let’s find lines that contain the word “not”:� �
$ grep not haiku.txt

Is not the true Tao, until

"My Thesis" not found

Today it is not working� �
Here, not is the pattern we’re searching for. It’s pretty simple: every alphanumeric character
matches against itself. After the pattern comes the name or names of the files we’re searching
in. The output is the three lines in the file that contain the letters “not”.

112

CHAPTER 3. THE UNIX SHELL 3.5. FINDING THINGS

Let’s try a different pattern: “day”.� �
$ grep day haiku.txt

Yesterday it worked

Today it is not working� �
This time, two lines that include the letters “day” are outputted. However, these letters are
contained within larger words. To restrict matches to lines containing the word “day” on
its own, we can give grep with the -w flag. This will limit matches to word boundaries.� �
$ grep -w day haiku.txt

In this case, there aren’t any, so grep’s output is empty. Sometimes we don’t want to search
for a single word, but a phrase. This is also easy to do with grep by putting the phrase in
quotes.� �
$ grep -w "is not" haiku.txt

Today it is not working� �
We’ve now seen that you don’t have to have quotes around single words, but it is useful to
use quotes when searching for multiple words. It also helps to make it easier to distinguish
between the search term or phrase and the file being searched. We will use quotes in the
remaining examples.

Another useful option is -n, which numbers the lines that match:� �
$ grep -n "it" haiku.txt

5:With searching comes loss

9:Yesterday it worked

10:Today it is not working� �
Here, we can see that lines 5, 9, and 10 contain the letters “it”.

We can combine options (i.e. flags) as we do with other Unix commands. For example, let’s
find the lines that contain the word “the”. We can combine the option -w to find the lines
that contain the word “the” and -n to number the lines that match:� �
$ grep -n -w "the" haiku.txt

2:Is not the true Tao, until

6:and the presence of absence:� �
Now we want to use the option -i to make our search case-insensitive:

113

3.5. FINDING THINGS CHAPTER 3. THE UNIX SHELL

� �
$ grep -n -w -i "the" haiku.txt

1:The Tao that is seen

2:Is not the true Tao, until

6:and the presence of absence:� �
Now, we want to use the option -v to invert our search, i.e., we want to output the lines
that do not contain the word “the”.� �
$ grep -n -w -v "the" haiku.txt

1:The Tao that is seen

3:You bring fresh toner.

4:

5:With searching comes loss

7:"My Thesis" not found.

8:

9:Yesterday it worked

10:Today it is not working

11:Software is like that.� �
grep has lots of other options. To find out what they are, we can type:� �
$ grep --help� �
Many bash commands, and programs that people have written that can be run from within
bash, support a --help flag to display more information on how to use the commands or
programs.

For more information on how to use grep we can type man grep. man is the Unix “manual”
command: it prints a description of a command and its options, and (if you’re lucky)
provides a few examples of how to use it.

To navigate through the man pages, you may use the up and down arrow keys to move
line-by-line, or try the “b” and spacebar keys to skip up and down by full page. Quit the
man pages by typing “q”.

3.5.1 Wildcards

grep‘s real power doesn’t come from its options, though; it comes from the fact that patterns
can include wildcards. (The technical name for these is regular expressions, which is what

114

CHAPTER 3. THE UNIX SHELL 3.5. FINDING THINGS

the “re” in “grep” stands for.) Regular expressions are both complex and powerful; if you
want to do complex searches, please look at the lesson on our website. As a taster, we can
find lines that have an ’o’ in the second position like this:� �
$ grep -E ’^.o’ haiku.txt

You bring fresh toner.

Today it is not working

Software is like that.� �
We use the -E flag and put the pattern in quotes to prevent the shell from trying to interpret
it. (If the pattern contained a *, for example, the shell would try to expand it before running
grep.) The ˆ in the pattern anchors the match to the start of the line. The . matches a
single character (just like ? in the shell), while the o matches an actual ‘o’.

While grep finds lines in files, the find command finds files themselves. Again, it has a lot
of options; to show how the simplest ones work, we’ll use the directory tree shown below.

writing

thesisdata toolshaiku.txt

oldformatone.txt two.txt stats
empty-
draft.md

oldtool

Figure 3.6: File Tree for Find Example

Nelle’s writing directory contains one file called haiku.txt and four subdirectories:

115

http://software-carpentry.org/v4/regexp/index.html

3.5. FINDING THINGS CHAPTER 3. THE UNIX SHELL

thesis (which contains a sadly empty file, empty-draft.md), data (which contains two
files one.txt and two.txt), a tools directory that contains the programs format and
stats, and a subdirectory called old, with a file oldtool.

For our first command, let’s run find . -type d. As always, the . on its own means the
current working directory, which is where we want our search to start; -type d means
“things that are directories”. Sure enough, find’s output is the names of the five directories
in our little tree (including .):� �
$ find . -type d

./

./data

./thesis

./tools

./tools/old� �
If we change -type d to -type f, we get a listing of all the files instead:� �
$ find . -type f

./haiku.txt

./tools/stats

./tools/old/oldtool

./tools/format

./thesis/empty-draft.md

./data/one.txt

./data/two.txt� �
find automatically goes into subdirectories, their subdirectories, and so on to find every-
thing that matches the pattern we’ve given it. If we don’t want it to, we can use -maxdepth
to restrict the depth of search:� �
$ find . -maxdepth 1 -type f

./haiku.txt� �
The opposite of -maxdepth is -mindepth, which tells find to only report things that are
at or below a certain depth. -mindepth 2 therefore finds all the files that are two or more
levels below us:� �
$ find . -mindepth 2 -type f

./data/one.txt

./data/two.txt

116

CHAPTER 3. THE UNIX SHELL 3.5. FINDING THINGS

./tools/format

./tools/stats� �
Now let’s try matching by name:� �
$ find . -name *.txt

./haiku.txt

\end{verbatim}

We expected it to find all the text files, but it only prints out

\texttt{./haiku.txt}. The problem is that the shell expands

wildcard

characters like \texttt{*} \emph{before} commands run. Since

\texttt{*.txt} in the current directory expands to

\texttt{haiku.txt},

the command we actually ran was:

\begin{lstlisting}[style=promptonly]

$ find . -name haiku.txt� �
find did what we asked; we just asked for the wrong thing.

To get what we want, let’s do what we did with grep: put *.txt in single quotes to prevent
the shell from expanding the * wildcard. This way, find actually gets the pattern *.txt,
not the expanded filename haiku.txt:� �
$ find . -name ’*.txt’

./data/one.txt

./data/two.txt

./haiku.txt� �
3.5.2 Listing vs. Finding

ls and find can be made to do similar things given the right options, but under normal
circumstances, ls lists everything it can, while find searches for things with certain
properties and shows them.

As we said earlier, the command line’s power lies in combining tools. We’ve seen how to
do that with pipes; let’s look at another technique. As we just saw, find . -name '*.txt'

117

3.5. FINDING THINGS CHAPTER 3. THE UNIX SHELL

gives us a list of all text files in or below the current directory. How can we combine that
with wc -l to count the lines in all those files?

The simplest way is to put the find command inside $():� �
$ wc -l $(find . -name ’*.txt’)

11 ./haiku.txt

300 ./data/two.txt

70 ./data/one.txt

381 total� �
When the shell executes this command, the first thing it does is run whatever is inside the
$(). It then replaces the $() expression with that command’s output. Since the output of
find is the three filenames ./data/one.txt, ./data/two.txt, and ./haiku.txt, the shell
constructs the command:� �
$ wc -l ./data/one.txt ./data/two.txt ./haiku.txt� �
which is what we wanted. This expansion is exactly what the shell does when it expands
wildcards like * and ?, but lets us use any command we want as our own “wildcard”.

It’s very common to use find and grep together. The first finds files that match a pattern;
the second looks for lines inside those files that match another pattern. Here, for example,
we can find PDB files that contain iron atoms by looking for the string “FE” in all the .pdb
files above the current directory:� �
$ grep "FE" $(find .. -name ’*.pdb’)

../data/pdb/heme.pdb:ATOM 25 FE 1 -0.924

0.535 -0.518� �
3.5.3 Binary Files

We have focused exclusively on finding things in text files. What if your data is stored as
images, in databases, or in some other format? One option would be to extend tools like
grep to handle those formats. This hasn’t happened, and probably won’t, because there are
too many formats to support.

The second option is to convert the data to text, or extract the text-ish bits from the data.
This is probably the most common approach, since it only requires people to build one tool
per data format (to extract information). On the one hand, it makes simple things easy to

118

CHAPTER 3. THE UNIX SHELL 3.5. FINDING THINGS

do. On the negative side, complex things are usually impossible. For example, it’s easy
enough to write a program that will extract X and Y dimensions from image files for grep
to play with, but how would you write something to find values in a spreadsheet whose
cells contained formulas?

The third choice is to recognize that the shell and text processing have their limits, and
to use a programming language such as Python instead. When the time comes to do this,
don’t be too hard on the shell: many modern programming languages, Python included,
have borrowed a lot of ideas from it, and imitation is also the sincerest form of praise.

The Unix shell is older than most of the people who use it. It has survived so long because
it is one of the most productive programming environments ever created — maybe even the
most productive. Its syntax may be cryptic, but people who have mastered it can experiment
with different commands interactively, then use what they have learned to automate their
work. Graphical user interfaces may be better at the first, but the shell is still unbeaten
at the second. And as Alfred North Whitehead wrote in 1911, “Civilization advances by
extending the number of important operations which we can perform without thinking
about them.”

3.5.4 Questions

Using grep The Tao that is seen

Is not the true Tao, until

You bring fresh toner.

With searching comes loss

and the presence of absence:

"My Thesis" not found.

Yesterday it worked

Today it is not working

Software is like that.

From the above text, contained in the file haiku.txt, which command would result
in the following output:

and the presence of absence:

1. grep "of" haiku.txt

2. grep -E "of" haiku.txt

119

3.5. FINDING THINGS CHAPTER 3. THE UNIX SHELL

3. grep -w "of" haiku.txt

4. grep -i "of" haiku.txt

find pipeline reading comprehension Write a short explanatory comment for the follow-
ing shell script:

wc -l $(find . -name ’*.dat’) | sort -n

Matching ose.dat but not temp The -v flag to grep inverts pattern matching, so that only
lines which do not match the pattern are printed. Given that, which of the following
commands will find all files in /data whose names end in ose.dat (e.g., sucrose.dat
or maltose.dat), but do not contain the word temp?

1. find /data -name '*.dat' | grep ose | grep -v temp

2. find /data -name ose.dat | grep -v temp

3. grep -v "temp" $(find /data -name '*ose.dat')

4. None of the above.

120

Part II

C Programming

