
Git quick reference
for beginners
Kevin Markham

http://www.dataschool.io/

The guide below is organized by task, with
an emphasis on basic tasks and common
command line arguments. It begins with
the workflow for cloning, updating, and
syncing with a remote repo because that's
a common way to get started with Git and
GitHub.

Note that this is only a reference guide,
and will not teach you Git. It does not
explain the difference between staged and
committed, what to do with a .gitignore file,
or when to create a branch. But if you are
already familiar with those concepts, this
guide will hopefully refresh your memory
and help you to discover other commands

1

http://www.dataschool.io/


you might need.

Cloning a remote repo (that you created or
forked on GitHub)

• git clone 〈your-repo-url〉

copies your remote repo to your local
machine (in a subdirectory with the repo's
name), and automatically creates an "ori-
gin" handle

• git remote add upstream 〈forked-repo-url〉

adds an "upstream" handle for the repo
you forked

• git remote -v

shows the handles for your remotes

• git remote show 〈handlename〉

inspect a remote in detail

Tracking, committing, and pushing your
changes

• git add 〈name〉

2



if untracked, start tracking a file or di-
rectory; if tracked and modified, stage
it for committing

• git reset HEAD 〈name〉

unstage a changed file

• git commit -m "message"

commits everything that has been staged
with a message

∗ -a -m "message"

automatically stages any modified files,
then commits

∗ --amend -m "new message"

fixes the message from the last com-
mit

• git push origin master

pushes your commits to the master branch
of the origin

Syncing your local repo with the upstream
repo

• git fetch upstream

3



fetch the upstream and store its master
branch in "upstream/master"

• git merge upstream/master

merge that branch into the working branch

Viewing the status of your files

• git status

check which files have been modified
and/or staged since the last commit

• git diff

shows the diff for files that are modified
but not staged

∗ --staged

shows the diff for files that are staged
but not committed

Viewing the commit history

• git log: shows the detailed commit his-
tory

∗ -1

only shows the last 1 commit

4



∗ -p

shows the line diff for each commit

∗ -p --word-diff

shows the word diff for each commit

∗ --stat

shows stats instead of diff details

∗ --name-status

shows a simpler version of stat

∗ --oneline

just shows commit comments

• gitk

open a visual commit browser

Managing branches

• git branch

shows a list of local branches

∗ 〈branchname〉

create a new branch with that name

∗ -d 〈branchname〉

delete a branch

5



∗ -v

show the last commit on each local
branch

∗ -a

show local and remote branches

∗ -va

show the last commit on each local
and remote branch

∗ --merged

list which branches are already merged
into the working branch (safe to delete)

∗ --no-merged

list which branches are not merged
into the working branch

• git checkout 〈branchname〉

switch the HEAD pointer to a different
branch

∗ -b 〈branchname〉

create a new branch and switch to it

6



Removing, deleting, and reverting files

• git rm 〈name〉

deletes that file from the disk, then stages
its deletion

∗ --cached 〈name〉

stops tracking a file, then stages its
deletion (but does not delete it from
the disk)

• git mv 〈oldname〉 〈newname〉

renames the file on disk, then stages the
deletion of the old name and addition of
the new name

• git checkout -- 〈name〉

revert a modified file on disk back to the
last committed version

Other basic commands

• git init

initialize Git in an existing directory

• git config --list

shows your Git configuration

7



• touch .gitignore

create an empty .gitignore file

8


