
1 Van der Pol oscillator

The second order non-linear autonomous differential equation

d2x

dt2
+ µ

(

x2 − 1
) dx

dt
+ x = 0, µ > 0 (1)

is called the van der Pol equation. It describes many physical systems collec-
tively called van der Pol oscillators. The equation models a non-conservative
system in which energy is added to and subtracted from the system, result-
ing in a periodic motion called a limit cycle. The parameter mu is a positive
scalar indicating the nonlinearity and the strength of the damping. The

sign of the damping term in Eq. (1),
(

x2 − 1
) dx

dt
changes, depending upon

whether |x| is larger or smaller than unity.

1.1 Numerical integration

Let’s write Eq. (1) as a first order system of differential equations,














dx

dt
= y,

dy

dt
= −µ (x2 − 1)

dx

dt
− x,

(2)

The results of numerical integration of Eqs. (2) are presented in Figs. 1–4.
Numerical integration of Eq. (2) shows that every initial condition (except

x = 0, ẋ = 0) approaches a unique periodic motion. The nature of this limit
cycle is dependent on the value of µ. For small values of µ the motion is
nearly sinusoidal, whereas for large values of µ it is a relaxation oscillation,
meaning that it tends to resemble a series of step functions, jumping between
positive and negative values twice per cycle.

Numerical integration shows that the limit cycle is a closed curve en-
closing the origin in the x-y phase plane. From the fact that Eqs. (2) are
invariant under the transformation x→ −x, y → −y, we may conclude that
the curve representing the limit cycle is point symmetric about the origin.

1.2 Small nonlinearity – the method of averaging

In order to obtain information regarding the approach to the limit cycle,
we use a powerful perturbation method called the method of averaging. We
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Figure 1: Typical solution of van der Pol equation for small values of µ; top
graph – x(t), bottom graph – ẋ(t); µ = 0.1

begin with a system of the more general form:

d2x

dt2
+ x = µF

(

x,
dx

dt

)

, (3)
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Figure 2: Solution of van der Pol equation for small values of µ.

where in our case

F

(

x,
dx

dt

)

= −
(

x2 − 1
) dx

dt
. (4)

We seek a solution to Eq. (3) in the form:

x = a(t) cos (t+ ψ(t)) , (5)

dx

dt
= −a(t) sin (t+ ψ(t)) . (6)

Our motivation for this ansatz is that when µ is zero, Eq. (3) has its solution
of the form Eq. (5) with a and ψ constants. For small values of µ we expect
the same form of the solution to be approximately valid, but now a and ψ

are expected to be slowly varying functions of t. Differentiating Eq. (5) and
requiring Eq. (6) to hold, we obtain:

da

dt
cos (t+ ψ(t))− a

dψ

dt
sin (t + ψ(t)) = 0. (7)

Differentiating Eq. (6) and substituting the result into Eq. (3) gives

−
da

dt
sin (t+ ψ)− a

dψ

dt
cos (t + ψ) = µF (a(t) cos (t+ ψ) ,−a(t) sin (t+ ψ)) .

(8)
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Figure 3: Typical solution of van der Pol equation for large values of µ; top
graph – x(t), bottom graph – ẋ(t); µ = 10.

Solving Eqs. (7) and (8) for
da

dt
and

dψ

dt
, we obtain:

da

dt
= −µF (a(t) cos (t+ ψ) ,−a(t) sin (t + ψ)) sin(t+ ψ) (9)
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Figure 4: Solution of van der Pol equation for large values of µ.

dψ

dt
= −

µ

a
F (a cos (t+ ψ) ,−a sin (t+ ψ) cos(t + ψ) , (10)

where
F (. . .) = a

(

a2 cos2 (t+ ψ)− 1
)

sin (t + ψ) . (11)

da

dt
= −µa

(

a2 cos2 (t+ ψ)− 1
)

sin2 (t + ψ) (12)

dψ

dt
= −µ

(

a2 cos2 (t + ψ)− 1
)

sin (t+ ψ) cos (t+ ψ) (13)

So far our treatment has been exact and is essentially the procedure of vari-
ation of parameters which is used to obtain particular solutions to nonho-
mogenous linear differential equations.

Now we introduce the following approximation: since µ is small,
da

dt
and

dψ

dt
are also small. Hence a(t) and ψ(t) are slowly varying functions of t.

Thus over one cycle of oscillations the quantities a(t) and ψ(t) on the right
hand sides of Eqs. (12) and (13) can be treated as nearly constant, and thus
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these right hand sides may be replaced by their averages:

1

2π

∫

2π

0

dφ . . . (14)

Eqs. (12) and (13) become

da

dt
= −µ

1

2π

∫

2π

0

dφa
(

a2 cos2 (φ)− 1
)

sin2 (φ) (15)

dψ

dt
= −µ

1

2π

∫

2π

0

dφ
(

a2 cos2 (φ)− 1
)

sin (φ) cos (φ) (16)

The right hand side of Eq. (16) is zero. The averaging in Eq. (15) can be
done using the following trigonometric identities:

cos2(φ) =
1

2
(1 + cos(2φ)) , sin2(φ) =

1

2
(1− cos(2φ)) ,

1

2π

∫

2π

0

dφ cos2(nφ) =
1

2π

∫

2π

0

dφ sin2(nφ) =
1

2
, n = 1, 2, . . .

1

2π

∫

2π

0

dφ cos(nφ) =
1

2π

∫

2π

0

dφ sin(nφ) = 0, n = 1, 2, . . .

1

2π

∫

2π

0

dφ cos4(φ) =
1

2π

∫

2π

0

dφ
(

1

2
(1 + cos(2φ))

)2

=

=
1

4

1

2π

∫

2π

0

dφ
(

1 + 2 cos(2φ) + cos2(2φ)
)

=

=
1

4

(

1 +
1

2

)

=
3

8
(17)

1

2π

∫

2π

0

dφa
(

a2 cos2 (φ)− 1
)

sin2 (φ) =
a3

2π

∫

2π

0

dφ cos2(φ)
(

1− cos2(φ)
)

−
a

2π

∫

2π

0

dφ sin2(φ)

=
a3

2π

∫

2π

0

dφ
(

cos2(φ)− cos4(φ)
)

−
a

2

= a3
(

1

2
−

3

8

)

−
a

2
=

1

8
a(a2 − 4)

(18)
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da

dt
=
µ

8
a(4− a2) (19)

Eq. (19) can be solved separating variables:

da

a(2− a)(2 + a)
=

1

8
µdt (20)

1

a(2− a)(2 + a)
= −

1

4

1

a
+

1

8

1

2− a
+

1

8

1

2 + a
(21)

−2
da

a
+

da

2− a
+

da

2 + a
= µdt (22)

−2
da

a
−

d(2− a)

2− a
+

d(2 + a)

2 + a
= µdt (23)

−d log
(

a2
)

− d log(2− a)d log(2 + a) = µdt (24)

log

(

a+ 2

a2(2− a)

)

= µ(t+ t0) (25)

a ≈ 2− e−µt (26)
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