The Three-Body Problem

Adapted from Richard Fitzpatrick, *Newtonian Dynamics*

December 3, 2013

1 Introduction

An isolated dynamical system consisting of two moving point masses exerting forces on one another — which is usually referred to as a two-body problem — can always be converted into an equivalent one-body problem. In particular, this implies that we can exactly solve a dynamical system containing two gravitationally interacting point masses, since the equivalent one-body problem is exactly soluble. What about a system containing three gravitationally interacting point masses? Despite hundreds of years of research, no exact solution of this famous problem — which is generally known as the three-body problem — has ever been found. It is, however, possible to make some progress by restricting the problem’s scope.

2 The Circular Restricted Three-Body Problem

Consider a mechanical system consisting of three gravitationally interacting point masses, M_1, M_2, and m. Suppose, that the third mass, m, is so much smaller than the other two that it has a negligible effect on their motion. Suppose, further, that the first two masses, M_1 and M_2, execute a circular orbit about their common center of mass. This simplified problem is known as the circular restricted three-body problem.

Let us further assume, to simplify the presentation of the final calculations, that mass m moves in the plane of the orbital motion of masses M_1 and M_2.

Let ω be the constant orbital angular velocity of masses M_1 and M_2 on the circular orbit. We can find ω by equating F_{cp}, the centripetal force acting upon the mass $\mu = \frac{M_1 M_2}{M_1 + M_2}$ (the equivalent one-body problem), and F_g, the force of gravitational attraction between masses M_1 and M_2:

$$F_{cp} = \frac{M_1 M_2}{M_1 + M_2} \frac{v^2}{R}, \quad F_g = G \frac{M_1 M_2}{R^2},$$

(1)

where G is the gravitational constant, v is the constant linear velocity of mass μ. From Eq. (1)

$$v^2 = G \frac{M_1 + M_2}{R}. \quad (2)$$

1
On the other hand, the period of orbital motion on a circular orbit, T, is

$$ T = \frac{2\pi R}{v}, $$

thus,

$$ \omega \equiv \frac{2\pi}{T} = \frac{v}{R}, \quad \omega^2 = \frac{v^2}{R^2}. $$

Substituting Eq. (2) into Eq. (4), we arrive at the following expression.

$$ \omega^2 = G \frac{M_1 + M_2}{R^3}. $$

Let us define a Cartesian coordinate system (ξ, η, ζ) in an inertial reference frame whose origin coincides with the center of mass, C, of the two orbiting masses, M_1 and M_2. Let the orbital plane of these masses coincide with the ξ-η plane, and let them both lie on the ξ-axis at time $t = 0$ — see Figure 1. Suppose that R is the constant distance between the two orbiting masses, r_1 the constant distance between mass M_1 and the origin, and r_2 the constant distance between mass M_2 and the origin.

Let the third mass have position vector $\vec{r} = (\xi, \eta, 0)$. The Cartesian components of the equation of motion of this mass are thus

$$ \ddot{\xi} = -GM_1 \frac{(\xi - \xi_1)}{\rho_1^3} - GM_2 \frac{(\xi - \xi_2)}{\rho_2^3}, $$

$$ \ddot{\eta} = -GM_1 \frac{(\eta - \eta_1)}{\rho_1^3} - GM_2 \frac{(\eta - \eta_2)}{\rho_2^3}. $$
where
\[\rho_1^2 = (\xi - \xi_1)^2 + (\eta - \eta_1)^2, \quad (8)\]
\[\rho_2^2 = (\xi - \xi_2)^2 + (\eta - \eta_2)^2. \quad (9)\]

3 Co-Rotating Frame

Let us transform to a non-inertial frame of reference rotating with angular velocity \(\omega\) about an axis normal to the orbital plane of masses \(M_1\) and \(M_2\), and passing through their center of mass. The masses \(M_1\) and \(M_2\) are stationary in this new reference frame. Let us define a Cartesian coordinate system \((X, Y)\) in the rotating frame of reference which is such that masses \(M_1\) and \(M_2\) always lie on the \(X\)-axis. Let the position vector of mass \(m\) be \(\vec{r} = (x, y)\) — see Figure 2.

The masses \(M_1\) and \(M_2\) have the fixed position vectors
\[\vec{r}_1 = (-\alpha R, 0, 0) \quad \vec{r}_2 = ((1 - \alpha)R, 0, 0) \quad (10)\]
in our new coordinate system. Indeed, by the definition of the center of mass,
\[r_1 M_1 = r_2 M_2. \quad (11)\]
on the other hand,
\[r_1 + r_2 = R. \quad (12)\]
Solving Eqs. (11) and (12), we obtain,
\[r_1 = \frac{M_2}{M_1 + M_2} R, \quad r_2 = \frac{M_1}{M_1 + M_2} R = \left(1 - \frac{M_2}{M_1 + M_2}\right) R, \quad (13)\]
i.e. in Eq. (10)
\[\alpha = \frac{M_2}{M_1 + M_2} \quad (14)\]

The equation of motion of mass \(m\) in the rotating reference frame are obtained by including into Eqs. (6), (7) two additional forces — Coriolis force \(\vec{F}_{\text{cor}}\) and centrifugal force \(\vec{F}_{\text{cf}}\):
\[\vec{F}_{\text{cf}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}) = m\omega^2 \vec{r}, \quad (15)\]
\[\vec{F}_{\text{cor}} = -2m\vec{\omega} \times \vec{\dot{r}} = 2m\omega (-\hat{x}\dot{y} + \hat{y}\dot{x}), \quad (16)\]
\[\vec{\ddot{r}} = -GM_1 \frac{(\vec{r} - \vec{r}_1)}{\rho_1^3} - GM_2 \frac{(\vec{r} - \vec{r}_2)}{\rho_2^3} - \vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2\vec{\omega} \times \vec{\dot{r}}, \quad (17)\]
where \(\vec{\omega} = (0, 0, \omega)\), and
\[\rho_1^2 = (x + \alpha R)^2 + y^2, \quad (18)\]
\[\rho_2^2 = (x - (1 - \alpha)R)^2 + y^2. \quad (19)\]
Here, the last two terms on the right-hand side of Eq. (17) are the centrifugal acceleration and the Coriolis acceleration.

The components of Eq. (17) reduce to

\[
\ddot{x} = -\frac{G M_1 (x + \alpha R)}{\rho_1} - \frac{G M_2 (x - (1 - \alpha)R)}{\rho_2} + \omega^2 x + 2 \omega \dot{y}, \tag{20}
\]

\[
\ddot{y} = -\frac{G M_1}{\rho_1} y - \frac{G M_2 y}{\rho_2} + \omega^2 y - 2 \omega \dot{x}. \tag{21}
\]

4 Jacobi integral

Eqs. (20), (21) can be rewritten as following.

\[
\ddot{x} - 2 \omega \dot{y} = -\frac{\partial U}{\partial x}, \tag{22}
\]

\[
\ddot{y} + 2 \omega \dot{x} = -\frac{\partial U}{\partial y}. \tag{23}
\]

where

\[
U = -\frac{G M_1}{\rho_1} - \frac{G M_2}{\rho_2} - \frac{\omega^2}{2} (x^2 + y^2) \tag{24}
\]

is the sum of the gravitational and centrifugal potentials.
Now, it follows from Eqs (22)–(23) that
\[\ddot{x} \dot{x} - 2 \omega \dot{x} \dot{y} = -\dot{x} \frac{\partial U}{\partial x}, \]
(25)
\[\ddot{y} \dot{y} + 2 \omega \dot{x} \dot{y} = -\dot{y} \frac{\partial U}{\partial y}. \]
(26)

Summing the above equations, we obtain
\[\frac{d}{dt} \left[\frac{1}{2} (\dot{x}^2 + \dot{y}^2) + U \right] = 0. \]
(27)

In other words,
\[C = -2U - v^2 \]
(28)
is a constant of the motion, where \(v^2 = \dot{x}^2 + \dot{y}^2 \). \(C \) is called the Jacobi integral. The mass \(m \) is restricted to regions in which
\[-2U \geq C, \]
(29)
since \(v^2 \) is a positive definite quantity.

5 Dimensionless form of the equations

No analytic solutions of Eqs. (20)–(21) are known. Our goal is to solve them numerically. As the first required step, we convert the to a dimensionless form.

Circular restricted three body problem has two natural scales: the distance, \(R \), between masses \(M_1 \) and \(M_2 \), and the characteristic time of their orbital motion \(1/\omega \). Let us introduce dimensionless variables by measuring the coordinates \(x \) and \(y \) in units of \(R \), thus introducing new unknowns \(u \) and \(v \) as following,
\[u \equiv \frac{x}{R}, \quad v \equiv \frac{y}{R}, \]
(30)

Let us measure time \(t \) in units of \(1/\omega \), introducing dimensionless variable \(\tau \),
\[\tau \equiv \omega t. \]
(31)

“Old” derivatives with respect to time are going to have the following forms:
\[\dot{x} \equiv \frac{dx}{dt} = \frac{d(u R)}{d(\tau/\omega)} = \omega R \frac{du}{d\tau}, \]
(32)
\[\ddot{x} \equiv \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d}{d\tau} \left(\omega R \frac{du}{d\tau} \right) = \omega R \frac{d}{d\tau/\omega} \left(\frac{du}{d\tau} \right) = \omega^2 R \frac{d^2 u}{d\tau^2}. \]
(33)

Similarly,
\[\dot{y} = \omega R \frac{dv}{d\tau} \]
(34)
\[\ddot{y} = \omega^2 R \frac{d^2 v}{d \tau^2} \]

Substituting Eqs. (32)–(35) into Eqs. (20), (21), we get:

\[
\begin{align*}
\omega^2 R \frac{d^2 u}{d \tau^2} &= -\frac{GM_1 R (u + \alpha)}{\rho_1^3} - \frac{GM_2 R (u - 1 + \alpha)}{\rho_2^3} + \omega^2 R u + 2 \omega^2 R \frac{dv}{d \tau}, \\
\omega^2 R \frac{d^2 v}{d \tau^2} &= -\frac{GM_1 R v}{\rho_1^3} - \frac{GM_2 R v}{\rho_2^3} + \omega^2 R v - 2 \omega^2 R \frac{du}{d \tau}.
\end{align*}
\]

Here \(\rho_1 \) and \(\rho_2 \) expressed via dimensionless parameters are as following:

\[
\begin{align*}
\rho_1 &= R \left((u + \alpha)^2 + v^2 \right)^{\frac{1}{2}} = Rd_1, \\
\rho_2 &= R \left((u - 1 + \alpha)^2 + v^2 \right)^{\frac{1}{2}} = Rd_2,
\end{align*}
\]

where

\[
\begin{align*}
d_1 &\equiv \left((u + \alpha)^2 + v^2 \right)^{\frac{1}{2}}, \\
d_2 &\equiv \left((u - 1 + \alpha)^2 + v^2 \right)^{\frac{1}{2}}.
\end{align*}
\]

Dividing each term in Eqs. (36)–(37) by \(\omega^2 R \), we arrive at the following equations:

\[
\begin{align*}
\frac{d^2 u}{d \tau^2} &= -\frac{GM_1}{\omega^2 R^3} \frac{(u + \alpha)}{d_1^3} - \frac{GM_2}{\omega^2 R^3} \frac{(u - 1 + \alpha)}{d_2^3} + u + 2 \frac{dv}{d \tau}, \\
\frac{d^2 v}{d \tau^2} &= -\frac{GM_1}{\omega^2 R^3} \frac{v}{d_1^3} - \frac{GM_2}{\omega^2 R^3} \frac{v}{d_2^3} + v - 2 \frac{du}{d \tau}.
\end{align*}
\]

Noticing that

\[
\frac{GM_1}{\omega^2 R^3} = \frac{M_1}{M_1 + M_2} \equiv 1 - \alpha
\]

and

\[
\frac{GM_2}{\omega^2 R^3} = \frac{M_2}{M_1 + M_2} \equiv \alpha
\]

we arrive at the following equations.

\[
\begin{align*}
\frac{d^2 u}{d \tau^2} &= -(1 - \alpha) \frac{(u + \alpha)}{d_1^3} - \alpha \frac{(u - 1 + \alpha)}{d_2^3} + u + 2 \frac{dv}{d \tau}, \\
\frac{d^2 v}{d \tau^2} &= -(1 - \alpha) \frac{v}{d_1^3} - \alpha \frac{v}{d_2^3} + v - 2 \frac{du}{d \tau}.
\end{align*}
\]

Equations (46)–(47) can be rewritten in a compact form

\[
\begin{align*}
\ddot{u} &= -\frac{\partial U}{\partial v} + 2 \dot{v}, \\
\ddot{v} &= -\frac{\partial U}{\partial v} - 2 \dot{u},
\end{align*}
\]
where

$$U(u, v) = -\frac{1 - \alpha}{d_1} - \frac{\alpha}{d_2} - \frac{1}{2} \left(u^2 + v^2\right)$$ \hspace{2cm} (50)$$

is the dimensionless version of Eq. (24).

Equations (46)- (47) are dimensionless and contain a single parameter, α. Some of the results of their numerical solution are presented in Figs. 3 and 4. A fragment of the code used for calculations is presented in the Appendix A.

Figure 3: Arenstorf periodic orbits for $\alpha = 0.012277471$ and initial conditions $x(0) = 0.994$, $y(0) = 0$, $\dot{x}(0) = 0$; left subfigure: $\dot{y}(0) = -2.0317326295573368357302057924$, right subfigure: $\dot{y}(0) = -2.00158510637908252240537862224$.

Figure 4: Chaotic orbit: $\alpha = 0.5$, $x(0) = 1$, $y(0) = 0$, $\dot{x}(0) = 0$, $\dot{y}(0) = 0$.
Appendix A

A fragment of a C code to solve the restricted three-body problem using gsl library.

```c
int func (double t, const double yy[], double f[], void *params)
{
    double a = *(double *) params;
    double d1, d2;
    double x = yy[0], y = yy[1], vx = yy[2], vy = yy[3];

    d1 = pow((x + a)*(x + a) + y*y, 1.5);
    d2 = pow((x + a - 1.)*(x + a - 1.) + y*y, 1.5);

    f[0] = vx;
    f[1] = vy;
    f[2] = -(1. - a)*(x + a)/d1 - a*(x + a - 1.)/d2 + x + 2*vy,
    f[3] = -(1. - a)*y/d1 - a*y/d2 + y - 2*vx;

    return GSL_SUCCESS;
}
```