
Physics 2200 Computational Physics Midterm I

Show all your work and indicate your reasoning in order to receive the most credit.

Name:

1. (3pt) Convert decimal number 137 to binary form.

2. (3pt) Convert binary number 1110011 to decimal form.

3. (4pt) How many CPUs are there in the laptop used by the instructor in class? How much
RAM?

4. (80pt) Write a C program that implements the algorithm presented below.
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The elliptic integrals of the first and second kind are related by 

(4.5) J(ao, bo) = (ao- 4 2 cn)I(ao, bo) 

where, as before, cn = an- bn and an and bn are computed from the AGM iteration. 
Legendre's proof of (4.4) can be found in [3] and [8]. His elegant elementary 

argument is to differentiate (4.4) and show the derivative to be constant. He then 
evaluates the constant, essentially by Proposition 1. Strangely enough, Legendre had 
some difficulty in evaluating the constant since he had-problems in showing that k2 log (k) 
tends to zero with k [8, p. 150]. 

Relation (4.5) uses properties of the ascending Landen transformation and is derived 
by King in [11]. 

From (4.4) and (4.5), noting that if k equals 2-l/2 then so does k', it is immediate 
that 

(4.6) Jr = [2AG(1, 2 1/2)]2 (4.6) 
~~~~~~~1 - E-00 2n+'C2 

This concise and surprising exponentially converging formula for ir is used by both 
Salamin and Brent. As Salamin points out, by 1819 Gauss was in possession of the AGM 
iteration for computing elliptic integrals of the first kind and also formula (4.5) for 
computing elliptic integrals of second kind. Legendre had derived his relation (4.4) by 
1811, and as Watson puts it [20, p. 14] "in the hands of Legendre, the transformation 
[(3.23)] became a most powerful method for computing elliptic integrals." (See also [10], 
[14] and the footnotes of [ 11 ].) King [ 1 1, p. 39] derives (4.6) which he attributes, in an 
equivalent form, to Gauss. It is perhaps surprising that (4.6) was not suggested as a 
practical means of calculating ir to great accuracy until recently. 

It is worth emphasizing the extraordinary similarity between (1.1) which leads to 
linearly convergent algorithms for all the elementary functions, and (3.1) which leads to 
exponentially convergent algorithms. 

Brent's algorithms for the elementary functions require a discussion of incomplete 
elliptic integrals and the Landen transform, matters we will not pursue except to mention 
that some of the contributions of Landen and Fagnano are entertainingly laid out in an 
article by G.N. Watson entitled "The Marquis [Fagnano] and the Land Agent [Land- 
en]" [20]. We note that Proposition 1 is also central to Brent's development though he 
derives it somewhat tangentially. He also derives Theorem 1 (a) in different variables via 
the Landen transform. 

5. An algorithm for ir. We now present the details of our exponentially converging 
algorithm for calculating the digits of ir. Twenty iterations will provide over two million 
digits. Each iteration requires about ten operations. The algorithm is very stable with all 
the operations being performed on numbers between 1/2 and 7. The eighth iteration, for 
example, gives ir correctly to 694 digits. 

THEOREM 2. Consider the three-term iteration with initial values 

a0o 1, fBo f: r0o 2 + N:2 V 

given by 

(i) (1n+l =- (/2 + a-1/2 2+ ARITHMETIC-GEOMETRIC MEAN AND FAST COMPUTATION 361 

(ii fln+l1:= at 1(dO 
+ 

I-) 

(iii) Irn+l :=7nfln+l (I+ an+1 
(1 ? n+1 

Then rn converges exponentially to 7r and 

7in - rI-I02 

Proof Consider the formula 

(5.1) 
1 

log (4 n) - an 

which, as we will see later, converges exponentially at a uniform rate to zero in some 
(complex) neighbourhood of 1/ AF2. (We are considering each of an, bn, Cn, a', b', c' as 
being functions of a complex initial value k, i.e. bo = k, bo = 1 - k2, ao = a' = 1.) 

Differentiating (5.1) with respect to k yields 

(5.2) 
-n (a c ) 2 an 

e an an an 2an en! 2 an an J 
which also converges uniformly exponentially to zero in some neighbourhood of 1/ v12. 
(This general principle for exponential convergence of differentiated sequences of 
analytic functions is a trivial consequence of the Cauchy integral formula.) We can 
compute an, bn and cn from the recursions 

an + bn 

2' 
(5.3) b - 

bn nan+ 1 = 

c+l=2 (an- bn 
-+ 2(n - b) 

where bo:= O, b0:= 1, ao:= I and bo:= k. 
We note that an and bn map {z I Re (z) > O} into itself and that an and bn (for 

sufficiently large n) do likewise. 
It is convenient to set 

an a 
(5.4) an:=b and O,n :=2a 

bn6, 

with 

ao:= and 3o:= O. 

We can derive the following formulae in a completely elementary fashion from the basic 
relationships for an, bn and cn and (5.3): 

(5.5) a bn+ = (a_n An) (inbn (5.5) '~n+1 - n+i /1bn1I 

Print the result of each iteration of the algorithm. Make as many iterations as necessary
to achieve the accuracy better than 10−10. Provide printouts of your (formatted) C code,
your makefile, and (nicely formatted) output of your program.

5. (5pt) An adaptive integration routine (a) uses Simpson’s rule as the basic algorithm and
(b) always subdivides the interval into equal halves. The routine was used to calculate
the following integral: ∫ π

0
sin2 (64x) dx.

What was the result of the integration? What is the correct result?
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6. (5pt) As a part of the solution of a particular problem you need (repeated) calculations
of the following expression:

1

1−
√

1− x
. (1)

for small x, x ∼ ε, where ε is machine epsilon.

What troubles you expect when using Eq. (1)? Rewrite Eq. (1) to avoid those troubles.
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