
Phase field modelling of microstructural

evolution using the Cahn-Hilliard equation: A

report to accompany CH-muSE

1 The Cahn-Hilliard equation

Let us consider a binary alloy of average composition c0 occupying the (2D)
xy-plane. Let the alloy consist of two phases m and p, that is, it is kept
at a temperature (say T ) that corresponds to the two phase region in the
phase diagram (see Figure 1). We assume that the temperature remains a
constant, i.e., our present formulation is an isothermal one.

Let the composition at any point r in the xy-plane at time t be denoted
by c(r, t). Let the microstructure of the system be completely described by
the composition field. Let us choose a domain Ω bounded by ∂Ω of such a
system. Further, we assume the composition field to be periodic on Ω, i.e., Ω
is the representative area for the 2-dimensional system and repeats infinitely
to fill the entire xy-plane (see Figure 2). This assumption of periodicity helps
us avoid accounting for the surfaces in our calculations.

Given an initial composition profile, say c(r,0), the composition profile at
any future time t can be obtained by solving the following (Cahn-Hilliard)
non-linear diffusion equation (with periodic boundary conditions):

∂c

∂t
= ∇ · M∇µ, (1)

where, M is the mobility, c is the (scaled) composition t is the time, and µ

is the chemical potential, given by

µ =
δF ch

δc
, (2)
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Figure 1: Schematic phase diagram.
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Figure 2: Periodic domain Ω.

where δ
δc

denotes the variational derivative with respect to composition, and
F is the chemical free energy

F ch = NAV

∫

Ω

[f0(c) + κ(∇c)2]dΩ, (3)

where, NAV is the Avogadro number, κ is the gradient energy coefficient, and
f0(c) is the bulk free energy density, and is given by

f0(c) = Ac2(1 − c)2, (4)

where A is a positive constant indicating the energy barrier between the two
equilibrium phases m and p (see Figure 3). Using the expressions (3) and (4)
in the definition of the chemical potential, we obtain

µ = h − 2κ∇2c, (5)

where,

h =
∂f0

∂c
= 4Ac(1 − c)(1 − 2c). (6)

We assume the mobility M and the gradient energy κ to be (scalar) con-
stants: this amounts to assuming the interfacial energies and the diffusivities
to be isotropic.
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Figure 3: Bulk free energy density as a function of composition for A=1.
Note that the energy barrier is one-sixteenth of A, and the equilibrium com-
positions of the m and p phases are scaled to be zero and unity respectively

Using the Equation (5) above, and the fact that M is a constant, we
obtain the Cahn-Hilliard equation as follows:

∂c

∂t
= M∇2(h − 2κ∇2c). (7)

2 Numerical implementation and benchmark-

ing

2.1 Implementation details

2.1.1 Non-dimensionalisation

All the parameters used in our simulations are non-dimensional. The non-
dimensionalisation was carried out using the characteristic length L′, energy
E ′, and time T ′, as follows:

L′ =
( κ

A

)
1

2

, (8)
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E ′ = AL′3, (9)

T ′ =
L′2(ce

p − ce
m)2

ME ′
, (10)

where ce
p and ce

p are the equilibrium precipitate and matrix compositions,
respectively. We note that this choice of non-dimensionalisation renders the
non-dimensional κ, A, and M unity.

Thus, using these non-dimensionalisation we obtain the following Cahn-
Hilliard equation (from Equation (7)):

∂c

∂t
= ∇2(h − 2∇2c). (11)

2.1.2 Fourier transform and discretization

Let us consider the equation (11) above and take the (spatial-) Fourier trans-
form on both sides of the equations:

∂{c}g

∂t
= −g2({h}g + 2g2{c}g), (12)

where, {·}g represents the (spatial-) Fourier transform of the quantity {·}.
The semi-implicit discretization of the above equation is then obtained

as follows:

c(g, t + ∆t) − c(g, t)

∆t
= −g2{h}g − 2g4c(g, t + ∆t) (13)

c(g, t + ∆t) =
c(g, t) − g2{h}g∆t

1 + 2∆tg4
, (14)

where ∆t is the time step for the numerical integration. Thus the problem
of microstructural evolution reduces to numerically solving the discretized
equation above.

2.1.3 Algorithm for microstructural evolution

The following is the algorithm for microstructural evolution:

5



1. Given a composition profile at time t, we calculate the h and its Fourier
transform as well as the Fourier transform of c.

2. Using {h}g and {c}g in equation (14), we calculate the composition
profile at some future time t + ∆t.

3. The inverse Fourier transform of c(t+∆t) gives the composition profile
at time t + ∆t.

4. We repeat steps 1-3 to march in time for the given number of time
steps.

The (discrete) Fourier transforms needed for our calculations have been
carried out using FFTW developed by Frigo and Johnson [1].
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