Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

Lecture 36: Wave motion

What's a wave?

- A wave is a traveling disturbance that transports energy but not matter.
 - Mechanical waves are disturbances of a material medium.
 - The medium moves briefly as the wave goes by, but the medium itself isn't transported any distance.
 - The wave propagates as the disturbance of the medium is communicated to adjacent parts of the medium.
 - Electromagnetic waves, including light, have no medium.
 - Nevertheless, they share many of the properties of mechanical waves.

Longitudinal and Transverse waves

• In a **longitudinal wave**, the disturbance is parallel to the wave motion.

• In a **transverse wave**, the disturbance is perpendicular to the wave motion.

• Some waves, like surface waves on water, involve both longitudinal and transverse motions.

Longitudinal wave on a mass-spring system:

Transverse wave on a mass-spring system:

Properties of waves

- Wavelength λ is the distance over which a wave repeats in space.
- **Period** *T* is the time for a complete cycle of the wave at a fixed position:
 - Frequency f = 1/T
- **Amplitude** *A* is the peak value of the wave disturbance.
- Wave speed is the rate at which the wave propagates:

$$v = \lambda / T = \lambda f$$

Simple harmonic waves

- A simple harmonic wave has a sinusoidal shape.
 - A simple harmonic wave is described by a sinusoidal function of space and time:

$$y(x,t) = A\cos(kx - \omega t)$$

- *y* measures the wave disturbance at position *x* and time *t*.
- $k = 2\pi/\lambda$ is the **wave number**, a measure of the rate at which the wave varies in *space*.
- $\omega = 2\pi f = 2\pi/T$ is the **angular frequency**, a measure of the rate at which the wave varies in *time*.
- The wave speed is $v = \lambda f = \omega / k$.

These two waves have the same speed. How do their wavenumbers, angular frequencies, and periods compare?

Slide 36-5

Waves on strings

• On strings, fibers, long springs, cables, wires, etc., tension provides the restoring force that helps transverse waves propagate.

• The speed of such waves is

$$v = \sqrt{\frac{F}{\mu}}$$

where F is the tension and μ is the mass per unit length.

Wave power and intensity

• The power carried by a wave is proportional to the wave speed and to the square of the wave amplitude.

• Details depend on the type of wave; for waves on a string, the

average power is $\overline{P} = \frac{1}{2} \mu \omega^2 A^2 v$.

• Wave intensity is the power per unit area.

- In a plane wave, the intensity remains constant.
 - The plane wave is a good approximation to real waves far from their source.
- A spherical wave spreads in three dimensions, so its intensity drops as the inverse square of the distance from its source: $I = \frac{P}{I} = \frac{P}{I}$

question

Two identical stars are different distances from Earth. The intensity of light from the more distant star is only 1% that of the closer star. How far away is the more distant start compared with the closer star?

- A. 100 times farther away
- B. 10 times farther away
- C. $\sqrt{10}$ times farther away
- D. twice as far away